Glitches and Hazards in Digital Circuits

Hazards

Glitches and a Hazards

A glitch is a fast "spike" usually unwanted.

A hazard in a circuit may produce a glitch. if the propagation delays are unbalanced.

The Classification of Hazards by the Glitch They May Produce static-zero hazard;
signal is static at zero, glitch rises. \qquad
static-one hazard;
signal is one, glitch falls.

dynamic hazard;
signal is changing, up \qquad or down \square

The Two Basic Static-Hazard Circuits

Basic Static-Zero Hazard Circuit

FIG. 1-1 Basic static-0

Any circuit with a static-0 hazard must reduce to the equivalent circuit of FIG. 1-1, if other variables are set to appropriate constants.

Static-zero Hazard's Characteristics

- Two parallel paths for \mathbf{x}.
- One inverted.
- Reconverge at an AND gate.

Basic Static-One Hazard Circuit

FIG. 1-3 Basic static-1
hazard circuit

Any circuit with a static-1 hazard must reduce to the equivalent circuit of FIG. 1-3
$t \quad$ FIG. 1-4 An imbedded static-1 hazard

Static-One Hazard's Characteristics

- Two parallel paths for \mathbf{x}.
- One inverted.
- Reconverge at an OR gate.

The Two Basic Dynamic-Hazard Circuits

Basic Dynamic Hazard Circuits

A static hazard with an extra gate for the static level change.
Three parallel paths, one containing a static hazard.

The basic dynamic hazard circuit with an imbedded static-1 hazard.

FIG. 1-6 The basic dynamic hazard circuit with an imbedded static-0 hazard.

Note that a dynamic hazard always has three parallel paths.

Adding Delay to Hazards

Adding delay can remove hazards, if one has good control of propagation delays.
The original circuit with the delay in the inverter.
FIG. 1-7 Basic static-1 hazard circuit from FIG. 1-3.
Note the hazard appears on the falling edge of x.

- Adding an equal delay in the other path removes the falling-edge glitch.
- Adding too much delay will make the glitch appear on the rising edge.

FIG. 1-8 Adding delay, moves the glitch from \bar{x} \qquad to x .
To kill the glitch balance the delays exactly, if you can! delay

At the silicon layout level, one might balance delays closely enough to suppress the glitch.
With standard cells and field-programmable arrays, balancing is harder.
But see "Absorption of Glitches by Gates" on page 53.

Hazards on a Karnaugh Map

Adjacent but nonoverlapping circles on the map are hazards.

A Static-1 Hazards on a Map

Σ of Π maps can only show static-1 hazards, not static- 0 or dynamic hazard.

Masking a Hazard.
To mask static-1 hazards add a gate that stays high across the ${ }^{\hookrightarrow}$ transition. This gate is logically redundant.

FIG. 1-11 The equation
$F=B \bar{X}+A X$
has redundant term $A B$ added
$F=B \bar{X}+A X+A B$
This fills the valley between terms $B \bar{X}$ and $A X$.

DeMorgan's General Theorem (Review)

Simple form of DeMorgan's Theorems

$$
A \cdot B=\overline{\bar{A}+\bar{B}} \quad \bar{A} \cdot B=\bar{A}+\bar{B} \quad \overline{D+E}=\bar{D} \cdot \bar{E} \quad D+E=\overline{\bar{D} \cdot \bar{E}}
$$

The general form

$$
\overline{F(A, B, C}, \ldots+, \cdot,)=F(\bar{A}, \bar{B}, \bar{C}, \ldots, \cdot,+,) \quad F=[\bar{A} \cdot B \cdot C+D \cdot(A \cdot B+C)] \cdot \bar{A}
$$

a) Bracket all groups of ANDs

$$
F=\{[\{\overline{\mathbf{A}} \cdot \mathbf{B} \cdot \mathbf{C}\}+\{\mathbf{D} \cdot(\{\mathbf{A} \cdot \mathbf{B}\}+\mathrm{C})\}] \cdot \overline{\mathrm{A}}\}
$$

b) Change AND to OR and OR to AND $\left\{\left[\{\bar{A}+B+C\} \cdot\left\{D+\left(\left\{A^{\top}+B\right\} \cdot C\right)\right\}\right]+\bar{A}\right\}$
Clean brackets
$\{\bar{A}+B+C\} \cdot\{D+\{A+B\} \cdot C\}+\bar{A}$
c) Invert all variables

$$
\bar{F}=\{\mathbf{A}+\overline{\mathrm{B}}+\overline{\mathrm{C}}\} \cdot\{\overline{\mathrm{D}}+\{\overline{\mathrm{A}}+\overline{\mathrm{B}}\} \cdot \overline{\mathrm{C}}\}+\mathrm{A}
$$

Examples

Product of Sum (Π of Σ) Maps (Review)

Take the usual Σ of Π map for F.

Circling the " $1 s$ " on the map gives an implementation of F.
Circling the "0s" gives an implementation of \bar{F}.
Make a map of $\overline{\mathrm{F}}$ by circling the zeros
Extract the formula for $\overline{\mathrm{F}}$.

$$
\bar{F}=\bar{X} \cdot \bar{B}+X \cdot \bar{A}
$$

Apply generalized DeMorgan to the formula for $\bar{F} \bar{F}=\bar{X} \cdot \bar{B}+X \cdot \bar{A}$ This gives a formula for F.

$$
\begin{aligned}
\bar{F} & =\{\bar{X} \cdot \bar{B}\}+\{X \cdot \bar{A}\} \\
& \{\bar{X}+\bar{B}\} \cdot\{X+\bar{A}\} \\
F & =\{X+B\} \cdot\{\bar{X}+A\}
\end{aligned}
$$

The result is the Π of Σ expression for F. It was obtained by circling " 0 s ", not " 1 s ."

Showing a Static-0 Hazard on a Π of Σ Map

Π of Σ maps can only show static-0 hazards, not static-1 or dynamic hazards

Masking a Static-0 Hazard on a Π of Σ Map

Algebra and Hazards.

In hazards, delays temporarily make $\bar{x}=\overline{\mathrm{x}}$.
In algebra with hazards, treat x and $\overline{\mathrm{x}}$ as separate variables.
For work with hazards, do not use:

$$
\begin{array}{cccc}
\text { Complementing } & \text { Simplification } & \text { Multiplying Out } & \text { Consensus } \\
\begin{array}{c}
x \bar{x}=0 \\
x+\bar{x}=1
\end{array} & x+\bar{x} y=x+y & (x+y)(\bar{x}+z)=x z+\bar{x} y & x y+y z+\bar{x} z=x y+\bar{x} z \\
& (\bar{x}+y)=x y & x y+\bar{x} z=(x+z)(\bar{x}+y) & (x+y)(y+z)(\bar{x}+z)=(x+y)(\bar{x}+z) \\
& \bar{x} y+x y=y & &
\end{array}
$$

For work with dynamic hazards, avoid the distributive law. (Factoring)
The distributive laws can create dynamic hazards from static hazards, even a masked one.
They will not remove or create static hazards.

$$
\begin{aligned}
& \text { The Distributive Laws } \\
& x(y+z)=x y+x z \\
& x+y z=(x+y)(x+z)
\end{aligned}
$$

Algebra of Hazards

The basic forms for hazards and their equations.
x and \bar{x} are treated as separate variables.
If a circuit has a hazard, the equation of the circuit will reduce to one of these forms.
 Dynamic
$\bar{x} \bar{x}+x$

An Example
Below, a hazard in x must reduce to a basic hazard circuit when $\mathrm{c}=1$ or when $\mathrm{c}=0$.

The Distributive Law and Hazards

The distributive laws can change 2 parallel paths into 3 , and thus may create a dynamic hazard from a static one. They can create a dynamic hazard from a masked hazard (FIG. 1-17 bottom).
FIG. 1-17 The distributive law changing static hazards to dynamic hazards.
ORIGINAL CIRCUIT

Static-1 hazard

$$
\begin{aligned}
\quad x c+\bar{x}= & (c+\bar{x})(x+\bar{x}) \\
\text { When } c=1 \mathrm{x}+\bar{x} & (1+\bar{x})(x+\bar{x})=x+\bar{x} \quad \text { Static-1 hazard when } c=1 ; \\
& (0+\bar{x})(x+\bar{x})=\bar{x}(x+\bar{x}) \text { Dynamic hazard when } c=0
\end{aligned}
$$

Locating and Repairing Hazards Algebraically

- This method will find all hazards
static-1, static-0, and dynamic.
- The circuits do not need to be Σ of Π or Π of Σ.

$$
F=(a+b+c \bar{b}) d e+(\bar{e} a+\bar{d} b) \bar{c}
$$

- Much faster than maps;

It will find all types of hazards on one pass.

- It can also find how to mask them.

Method

1. Remove confusing extended overbars.
2. Find which variables cannot have hazards.
3. Check for hazards in each variable.

Select one variable for checking
make other variables 1 or 0 to bring out hazard

1. $(\overline{\mathrm{A}+\mathrm{B}})+\overline{\mathrm{A} \cdot \mathrm{C}}=>\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}+(\overline{\mathrm{A}}+\overline{\mathrm{C}})$
2. Need both X and \bar{X}
3. $X \cdot \bar{X}, \quad X+\bar{X}, \quad X+X \cdot \bar{X}$ $A X+(B \bar{X}+C)$ $1 X+(1 \bar{X}+0)$ $-\bar{X}+\bar{X}$
4. Find masking terms if needed.

Example

Find All The Hazards In F.

DeMorgan's Laws in Graphical Form (Review)

FIG. 1-18 Equivalent graphical forms for AND, OR, NAND and NOR, using DeMorgan's theorem.

FIG. 1-19 Removing confusing inversions.

Estimating which variables might have hazards.

A hazard, has two paths which reconverge in an AND or OR gate. One path must have an even number of inversions, and the other path must have an odd number.
One need only check for hazards in variables which have such paths.
Checking a circuit for potentially hazardous paths.
FIG. 1-20 To tell what variable need to be checked for hazards:

Remove most inverting circles using DeMorgan's laws.

Check for reconvergent paths one of which is inverting.

Only variable c has such a path;
Only variable c has such a path;
hence only c can have a hazard.

Can also tell from expression. Only c has both c and \bar{c} type

$$
F=(a+\bar{c})(b+c)+c d
$$

Locating Hazards From the Circuit Equation

1. Take the circuit equation.

$$
F=(a+\bar{c})(b+c)+c d
$$

2. Note which variables do not have both \bar{x} and x.

In this case a, b and d. $=>$ only c needs to be checked.
3. Substitute 0 s and 1 s for the other variables. Try to get forms like:

$$
\mathbf{c} \overline{\mathbf{c}}, \quad \mathbf{c}+\overline{\mathbf{c}}, \quad \mathbf{c} \overline{\mathbf{c}}+\mathbf{c}, \quad(\mathbf{c}+\overline{\mathbf{c}}) \mathbf{c} .
$$

a b c d	$(a+\bar{c})(\mathrm{b}+\mathrm{c})+\mathrm{cd}$	f	Type of hazard.
00 c	$(0+\bar{c})(0+c)+\mathbf{C} 0$	c \bar{C}	Static-0
00 c 1	$0+\bar{c} \quad 0+c \quad c 1$	$\overline{\mathrm{c}} \mathrm{C}+\mathrm{C}$	Dynamic
01 c 1	$0+\bar{c} \quad 1+\mathrm{C} \quad \mathrm{c} 1$	$\overline{\mathrm{c}}+\mathbf{C}$	Static-1
01 c 0	$0+\bar{c} 1+c \quad c 0$	$\overline{\mathbf{c}}$	
10 c 0	$1+\bar{c} \quad 0+c \quad c 0$	c	
10 c 1	$1+\bar{c} \quad 0+\mathrm{C} \quad \mathrm{c} 1$	C+C	
11 c 1	$1+\bar{c} \quad 1+\mathrm{C} \quad \mathrm{c} 1$	1+C	
11 c 0	$1+\bar{c} 1+\mathrm{C} \quad \mathrm{c} 0$	1	

Static-0 hazard when a,b,d=0,0,0,

Dynamic hazard when Static-1 hazard when
$a, b, d=0,0,1$, $a, b, d=0,1,1$.

Same Example With More Organization and Less Writing

Equation.

$$
F=(a+\bar{c})(b+c)+c d
$$

Note only c can have a hazard.
Select c to to be the variable that changes.
Sequentially substitute 1 or 0 for the other letters.
A little thought shows a must be 0 , else $a+\bar{c}=1=>$ no $\overline{\mathbf{c}}=>$ no hazard Set $\mathbf{a}=0$ first.

Locating Hazards; More Complex Exmple

Equation. $\quad F=[(a+b c) d+(\bar{b}+a \bar{c}) \bar{d}] \bar{a} b$
Note which variables do not have both $\overline{\mathrm{x}}$ and x .
Here all variables need further checking.
Select one letter to to be the variable that changes.
Sequentially (one at a time) substitute 1 or 0 for the other letters.
A little thought helps select which letter to make 1 (or 0) first.
abcd $\quad[(a+b c) d+(\bar{b}+a \bar{c}) \bar{d}] \bar{a} b$

abcd	$[(\mathrm{a}+\mathbf{b c}) \mathrm{d}+(\overline{\mathbf{b}}+\mathrm{ac}) \bar{d}] \overline{\mathrm{a}} \mathbf{b}$
Obcd	$[(0+\mathbf{b c}) \mathrm{d}+(\overline{\mathbf{b}}+0 \overline{\mathrm{c}}) \overline{\mathrm{d}}] 1 \mathbf{b}=[\mathbf{b} \mathbf{c} \mathbf{d}+\overline{\mathbf{b}} \cdot \bar{d}] \mathbf{b}$
0 bc 0	$[(\mathbf{b} c 0+\overline{\mathbf{b}} 1] \mathbf{b}=[\overline{\mathbf{b}}] \mathbf{b}$
abcd	$[(\mathrm{a}+\mathrm{bc}) \mathrm{d}+(\overline{\mathrm{b}}+\mathrm{a} \overline{\mathbf{c}}) \overline{\mathrm{d}}] \overline{\mathrm{a}} \mathrm{b}=$
01 cd	$[(0+1 \mathbf{c}) \mathrm{d}+(0+0 \overline{\mathbf{c}}) \mathrm{d}] 11=[\mathbf{c d}]$
abcd	$[(\mathrm{a}+\mathrm{bc}) \mathbf{d}+(\overline{\mathrm{b}}+\mathrm{ac}) \mathbf{d}] \overline{\mathrm{a}} \mathrm{b}=$
01 cd	$[(0+1 c) \mathbf{d}+(0+0 c) \mathbf{d}] 11=[c d]$

\bar{a} must be 1 , or $F \equiv 0$
d must be 0 or no \bar{b}
Static-0 for 0b-0
This hazard is independent of c.
\bar{a}, b must be 1,1 , or $F \equiv 0$
There is no c, hence no hazard
\bar{a}, b must be 1,1 , or $F \equiv 0$
There is no d, hence no hazard

Glitches and Hazards in Digital Circuits \quad -

Graph of the previous hazard search

Locating Hazards; Example three

Equation.

$$
F=\bar{y}(\bar{e}+\bar{b} \cdot \bar{c})+b(c \cdot e+\bar{a} \cdot \bar{c} \cdot \bar{e})+a \cdot c \cdot e \cdot y
$$

Select one letter, call it X, to to be the variable that changes.
Variables which do not have both forms, \bar{X} and X, have no haxards.
If only one \mathbf{X}, set all symbols ANDing \mathbf{X} to $\mathbf{1}$. $\quad+$ a.c.e. $\mathbf{X} \quad$ set $\mathrm{a}, \mathrm{c}, \mathrm{e}$ to $1,1,1$ or no \mathbf{X} If only one \mathbf{X}, set symbols ANDing \mathbf{X} at $\mathbf{1}$, and ORing \mathbf{X} at $\mathbf{0}$. $\overline{\mathrm{y}}(\overline{\mathrm{e}}+\mathbf{X} \cdot \bar{c})$ set $\bar{c}, \bar{e}, \bar{y}$ to $1,0,1$ or no \boldsymbol{X}. If all Xs have a common factor, fix factor at 1 . $\quad b(c \cdot \mathbf{X}+\bar{a} \cdot \bar{c} \cdot \overline{\mathbf{X}})+\mathrm{a} \cdot \mathrm{c} \cdot \mathbf{X} \cdot \mathrm{y} \quad \mathrm{c}$ must be 1 or no \boldsymbol{X} abce y $\quad \overline{\mathbf{y}}(\overline{\mathbf{e}}+\overline{\mathbf{b}} \cdot \overline{\mathbf{c}})+\mathbf{b}(\mathbf{c} \cdot \mathbf{e}+\overline{\mathbf{a}} \cdot \overline{\mathbf{c}} \cdot \overline{\mathbf{e}})+\mathbf{a} \cdot \mathbf{c} \cdot \mathrm{e} \cdot \mathbf{y}$

$$
\begin{aligned}
& \text { abcey } \quad \overline{\mathrm{y}}(\overline{\mathrm{e}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{c}})+\mathrm{b}(\mathrm{c} \cdot \mathrm{e}+\overline{\mathrm{a}} \cdot \overline{\mathrm{c}} \cdot \overline{\mathrm{e}})+\mathrm{a} \cdot \mathrm{c} \cdot \mathrm{e} \cdot \mathrm{y} \\
& \text { ab1ey } \quad \bar{y}(\bar{e}+\bar{b} \cdot 0)+b(1 \cdot e+\bar{a} 0 \bar{e})+a 1 e \cdot y=y \cdot \bar{e}+b \cdot e+a \cdot e \cdot y \\
& \text { abce y } \quad \bar{y}(\bar{e}+\overline{\mathbf{b}} \cdot \bar{c})+\mathbf{b}(c \cdot e+\bar{a} \cdot \cdot \bar{c} \cdot \bar{e})+\mathbf{a} \cdot c \cdot e \cdot y \\
& \mathbf{a} \mathbf{b} 010 \quad 1(0+\overline{\mathbf{b}} \cdot 1)+\mathbf{b}(0 \cdot 1+\overline{\mathbf{a}} \cdot 1 \cdot 0)+\mathbf{a} \cdot 0 \cdot 1 \cdot 0=\overline{\mathbf{b}}+0 \\
& \text { abce y } \quad \overline{\mathrm{y}}(\overline{\mathrm{e}}+\overline{\mathrm{b}} \cdot \overline{\mathbf{c}})+\mathrm{b}(\mathrm{c} \cdot \mathrm{e}+\overline{\mathrm{a}} \cdot \overline{\mathrm{c}} \cdot \overline{\mathrm{e}})+\mathrm{a} \cdot \mathbf{c} \cdot \mathrm{e} \cdot \mathrm{y} \\
& \mathrm{abc} 1 \mathrm{y} \quad \overline{\mathrm{y}}(0+\overline{\mathrm{b}} \cdot \overline{\mathbf{c}})+\mathrm{b}(\mathbf{c} \cdot 1+\overline{\mathrm{a}} \cdot \overline{\mathbf{c}} \cdot \mathbf{0})+\mathrm{a} \cdot \mathbf{c} \cdot 1 \cdot \mathrm{y}=\overline{\mathrm{y}} \cdot \overline{\mathrm{~b}} \cdot \overline{\mathbf{c}}+\mathrm{b} \cdot \mathbf{c}+\mathrm{a} \cdot \mathbf{c} \cdot \mathrm{y} \\
& \text { a } 0 \mathbf{c} 01 \quad=1 \cdot 1 \cdot \overline{\mathbf{c}}+0 \cdot \mathbf{c}+\mathrm{a} \cdot \mathbf{c} \cdot 0 \\
& \text { abce y } \quad \bar{y}(\overline{\mathbf{e}}+\bar{b} \cdot \bar{c})+b(c \cdot e+\overline{\mathrm{a}} \cdot \bar{c} \cdot \overline{\mathbf{e}})+\mathrm{a} \cdot \mathrm{c} \cdot \mathbf{e} \cdot \mathrm{y} \\
& a b 1 e y \quad \bar{y}(\bar{e}+\bar{b} \cdot 0)+b(1 \cdot e+\bar{a} \cdot 0 \cdot \bar{e})+a \cdot 1 \cdot e \cdot y=\bar{y} \cdot \bar{e}+b e+a \cdot e \cdot y \\
& =1 \overline{\mathbf{e}}+\mathrm{be}+\mathrm{a} \cdot \mathrm{e} \cdot 0=\overline{\mathbf{e}}+\mathrm{be} \\
& =\overline{\mathbf{e}}+\mathbf{e} \\
& \text { abce y } \quad \overline{\mathbf{y}}(\overline{\mathrm{e}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{c}})+\mathrm{b}(\mathrm{c} \cdot \mathrm{e}+\overline{\mathrm{a}} \cdot \overline{\mathrm{c}} \cdot \overline{\mathrm{e}})+\mathrm{a} \cdot \mathrm{c} \cdot \mathrm{e} \cdot \mathbf{y} \\
& 1 b 11 \mathbf{y} \quad \overline{\mathbf{y}}(0+\bar{b} \cdot 0)+b(1 \cdot 1+0 \cdot 0 \cdot 0)+1 \cdot 1 \cdot 1 \cdot y=\bar{b}+\mathbf{y} \\
& \text { c must be 1, or no a } \\
& \text { no } \bar{a}=>\text { no hazards in a } \\
& \bar{c}, \bar{e}, \bar{y} \text { must be } 1,0,1 \text { or no } \bar{b} \text {. } \\
& \text { no } b=>\text { no hazards in } b \text {. } \\
& \text { e must be } 1 \text { or no c. } \\
& \bar{y} \cdot \bar{b} \text { must be } 1,1 \text { or no } \bar{c} \\
& \text { no } c \text { => No hazards. } \\
& \text { c must be } 1 \text { or no e } \\
& \bar{y} \text { must be } 1 \text { or no } \bar{e} \\
& \text { b must be } 1 \\
& \text { Static-1 for a11e0 } \\
& \text { a,c,e must be } 1,1,1 \text { or no } \mathrm{y} \text {. } \\
& \text { no } \bar{y}=>\text { No hazards in } \boldsymbol{y} \text {. }
\end{aligned}
$$

Glitches and Hazards in Digital Circuits •

Graph of the previous hazard search

Masking Hazards

Mask a static-1 with an AND gate.

A hazard is between two squares

Since hazard is static-1, the function is 1 in those two squares
Mask it with a function which is guaranteed
1 in those two squares
0 elsewhere
That function is $G=A B$

Masking Hazards Algebraically

Expression $\quad \mathbf{F}=(\mathbf{a}+\overline{\mathbf{c}})(\mathbf{b}+\mathbf{c})+\mathbf{c d}$

$\mathbf{c}+\overline{\mathbf{c}}$	Static-1 for	0	1	\mathbf{c}	1
$\mathbf{c} \cdot \mathbf{c}$	Static-0 for	0	0	\mathbf{c}	0
$\overline{\mathbf{c}} \cdot \mathbf{c}+\mathbf{c}$	Dynamic for 0	0	\mathbf{c}	1	

Masking the static-1 hazard, $\mathbf{c}+\overline{\mathbf{c}}$
The hazard appears when $\mathrm{a}, \mathrm{b}, \mathrm{d}=0,1,1$ and $\mathrm{c} \longleftrightarrow \overline{\mathrm{c}}$.

F was designed to be " 1 " there.
but F actually has a hazard $\sqrt{5}$ there.
Define G:
$G=1$ when $a, b, d=0,1,1$
G=0 anywhere else.
$F+G=F$ Since when G is $1, F$ is 1 .
elsewhere $F+0=F$
But $F+G$ is solidly 1 over the hazard.
Desired $G=\bar{a} b d$
F with $\mathrm{C}+\overline{\mathrm{C}}$ masked is

$$
F+G=F=(a+\bar{c})(b+c)+c d+\bar{a} b d
$$

Expression $\quad \mathrm{F}=(\mathbf{a}+\overline{\mathbf{c}})(\mathbf{b}+\mathbf{c})+\mathbf{c d}$

```
Expression \(\quad \mathbf{F}=(\mathbf{a}+\overline{\mathbf{c}})(\mathbf{b}+\mathbf{c})+\mathbf{c d}\) \(\overline{\mathbf{c}} \cdot \mathbf{c} \quad\) Static-0 for \(00 \mathbf{c} 0\)
Masking the static-0 hazard, \(\overline{\mathbf{c}}\)-c
```

The hazard appears when $\mathrm{a}, \mathrm{b}, \mathrm{d}=0,0,0$ and $\mathrm{c} \longleftrightarrow \overline{\mathrm{c}}$.
F was designed to be " 0 " there.
but F actually has a hazard ___ there.

Define H :

$\mathrm{H}=0$ when $\mathrm{a}, \mathrm{b}, \mathrm{d}=0,0,0$
$\mathrm{H}=1$ anywhere else.
$F \cdot H=F \quad$ Since when H is $0, F$ is 0 . elsewhere F-1 = F

But F.H is solidly 0 over the hazard.
Desired H = (a+b+d)
F with $\mathbf{c} \bar{c}$ masked is

cd ${ }^{\text {ab }} 00001010$				
00	0	1	1	1
+ 01	1	1	1	1
11	1	1	1	1
10	0	1	1	1

F.H

$c d$	00	01	11	10
00	F=0	F	F	F
01	F	F	F	F
11	F	F	F	F
10	$\mathrm{F}=0$	F	F	F

Note it could have been masked as $(a+b)(a+c)(b+c)+c d$

Masking Both Hazards at Once

Combining the masks for static-1 and static-0

F with both $\mathbf{c} \bar{c}$ and $\mathbf{c}+\bar{c}$ masked is

$$
F=(a+b+d[(a+\bar{c})(b+c)+c d]+\bar{a} b d
$$

Prove that the static hazards are both masked.

a bc d	(a+b+d)($(a+$	+ c)		d	F	Type of hazard.
00 c 0	0+0+0 ($0+c$	$0+\mathrm{c}$	c0)	100	$0 \mathrm{c} \overline{\mathrm{c}}$	No more hazard
00 c 1	0+0+1 (0+c)	$0+\mathrm{c}$	c1)	101	$\overline{\mathrm{c}} \mathrm{C}+\mathrm{c}$	Dynamic
01 c 1	0+1+1 ($0+\overline{\text { c }}$	$1+c$	c1)	111	1	No more hazard
01 c 0	$0+1+0 \quad 0+\bar{c}$	$1+c$	c)	110	\bar{c}	

Masking Dynamic Hazards, c $\overline{\mathbf{c}}+\mathbf{c}$

Extract the Static Hazard

Cannot hold F constant over $\mathbf{a , b , d}=\mathbf{0 , 0 , 1}$ because F changes with c.
However-
A static hazard resides inside every dynamic hazard.

$$
\begin{array}{ll}
\mathrm{F}=(\mathrm{a}+\overline{\mathrm{c}})(\mathrm{b}+\mathrm{c})+\mathrm{cd} & \text { this makes static hazard dynamic } \\
\mathrm{f}_{1}=(\mathrm{a}+\overline{\mathrm{c}})(\mathrm{b}+\mathrm{c}) & \text { static-0 hazard, } \bar{c} c, \text { for } a, b=0,0
\end{array}
$$

Make f_{1} the part of F with the embedded static- 0 hazard.

$$
F=f_{1}+c d
$$

f_{1} has a static hazard in c when $a, b=0,0,1$
Define $\mathrm{g}_{1}=0$, when $\mathrm{a}, \mathrm{b}=\mathbf{0 , 0}$
=1, otherwise

$$
f_{1}=f_{1} g_{1}=(a+b)\{(a+\bar{c})(b+c)
$$

has masked the hazard.

$$
\begin{aligned}
F & =f_{1}+c d \\
& =f_{1} g_{1}+c d \\
& =(a+b)\{(a+\bar{c})(b+c)\}+c d
\end{aligned}
$$

This F has masked the embedded static hazard and thus the dynamic hazard.

Masking does not introduce new hazards?

Were new hazards introduced because a and a now appear in F?

This will not happened.

As a check, consider a.
b c d $\quad(a+b)\{(a+c)(b+c)\}+c d+\bar{a} b d \quad F \quad$ Type of hazard.
$101(a+1) \quad\{(a+1)(1+0)\}+01+\bar{a} 11 \quad 1 \quad$ No hazard
$111(a+1) \quad\{(a+0)(1+1)\}+11+\bar{a} 11 \quad 1 \quad$ No hazard

An Example of Locating Hazards

Find all the hazards in FIG. 1-22.
FIG. 1-22 Circuit with a lot of paths for potential hazards.

Cancel inverters using DeMorgan's law graphically.
Write circuit equation.
$F=a(\bar{a}+\bar{b})+b(\bar{a}+\bar{b})+(\bar{a}+\bar{b})$
Potential hazards in both a and b.
Table to expose hazards in \mathbf{b} with \mathbf{a} fixed.

a	$a(\bar{a}+\bar{b})+b(\bar{a}+\bar{b})+a b$	F	Type of hazard.
0	$0(1+\bar{b})+b(1+\bar{b})+0 b$	b	No hazard
1	$1(0+\bar{b})+b(0+\bar{b})+1 b$	$\bar{b}+b \bar{b}+b$	Static-1 hazard

Explanation of $\overline{\mathbf{b}}+\mathbf{b} \overline{\mathbf{b}}+\mathbf{b}$

FIG. 1-23 Explanation the weird hazard

FIGURE 1.24	
$\stackrel{b \bar{b}}{b+\bar{b}}$	
Ideally they cancel	---
Realistically, only the static-1 appears	--.
This could even be a "glitch inside glitch."	$\cdots \square$

A rising glitch $\mathbf{b}+\bar{b}$ is ORed with a falling glitch $\mathbf{b} \bar{b}$.

With very good luck the two glitches to come exactly at the same time and cancel. More likely the rising glitch will be lost in the static 1 signal.
Only the falling glitch will appear.

From symmetry, changes in "a" have the same behavior.

Implementing Hazard Free Circuits

Sum-of-Product Circuits Have No Static-0 Hazards

Sum of products circuits always have an equation of the form
$F=a b c+a b \bar{d}+a b \bar{c} d+\ldots \ldots \ldots+a \bar{b} c \bar{d}$

Static-0 hazards are like c $\bar{c} . \quad\{\mathbf{c}+\bar{c}$ is static-1\}
To get $\bar{c} \bar{c}$ in F as above on must place c and \bar{c} as inputs to the same AND gate.
This is ignorant.

Rule I:

Sum-of-Product Circuits Have No Dynamic Hazards

Σ of Π circuit have equations of the form
F = abc + abs $+a b \bar{c} d+\ldots \ldots \ldots+a b \bar{c} d+a b c \bar{c} d$
Dynamic hazards are of the form $\mathbf{c} \overline{\mathbf{c}}+\mathbf{c}$ or $(\mathbf{c}+\overline{\mathbf{c}}) \mathbf{c}$.
In F , try fixing a, b and d at any combination of 0 or 1 .
A dynamic hazard in c , must have a term containing c \bar{c}.
In F above, one can only get a dynamic hazard by using the "ignorant" term abc $\bar{c} d$.
Thus Rule II is:

Sum-of-Product Circuits Have Only Easily Eliminated Static-1 Hazards

Σ of Π circuits can still have static-1 hazards They are easily found and removed using:
a Karnaugh map, or algebraically.
.
FIG. 1-25 Map of function

$$
F=b \bar{x}+a x
$$

It is Σ of Π
The hazards must all be static-1.
Hazard when $\mathbf{a}, \mathbf{b}=\mathbf{1 , 1}$.
Add term $a b$ to mask the hazard.

$$
F=b \bar{x}+a x+a b
$$

Is shown on the right.

Product-of Sum Circuits Have No Static-1 Hazards

Π of Σ circuit equations are of the form
F = (a+b+c)(a+b+ $\bar{d})(a+b+\bar{c}+d)(\ldots . .).(a+b+\bar{c}+d)$
Static-1 hazards are of the form $\mathbf{c}+\bar{c}$.
To get $\mathbf{c}+\overline{\mathrm{c}}$ in F one must place \mathbf{c} and $\overline{\mathrm{c}}$ as inputs to the same OR gate.
This is ignorant.

Product-of Sum Circuits Have No Dynamic Hazards

Product-of Sum Circuits Have Only Easily Eliminated Static-0 Hazards

Π of Σ circuits can still have static-0 hazards
They are easily found and removed using a Π of Σ Karnaugh map

Example: Single-Variable-Change Hazard-Free Circuit From a Map

A digital function defined by a map; FIG. 1-26(left).
Choose a circling for the map; see FIG. 1-26 (middle),
\longleftrightarrow indicate the hazards.

$$
F=a \cdot b+\bar{b} \cdot c+\bar{b} \cdot \bar{c} \cdot d
$$

Then add circles which cover the arrows; FIG. 1-26(right).
The hazard free equation, on this final map, is -

$$
F=\mathrm{a} \cdot \mathrm{~b}+\overline{\mathrm{b}} \cdot \mathrm{c}+\overline{\mathrm{b}} \cdot \mathrm{~d}+\mathrm{a} \cdot \mathrm{c}+\mathrm{a} \cdot \mathrm{~d}
$$

FIG. 1-26 Left) Example to be implemented as a hazard free circuit. Centre) A possible Σ of Π encirclement showing hazards.
Right) The map with the hazards covered.

	cd			
ab	00	01	11	10
00	0	1	1	1
01	0	0	0	0
11	1	1	1	1
10	0	1	1	1

cd

$$
F=\mathbf{a} \cdot \mathbf{b}+\bar{b} \cdot \mathbf{c}+\bar{b} \cdot \bar{c} \cdot d
$$

ab	00	01	11	10
00	0	1	1	1
01	0	0	0	0
11	1	ad	1	ac
10	0	1	1	1

$\mathbf{F}=\mathrm{a} \cdot \mathrm{b}+\overline{\mathrm{b}} \cdot \mathrm{c}+\overline{\mathrm{b}} \cdot \overline{\mathrm{c}} \cdot \mathrm{d}+\mathrm{a} \cdot \mathrm{c}+\mathrm{a} \cdot \mathrm{d}$

Factoring and Hazards For Σ of Π / Π of Σ

1. Algebraic operations do not create hazards unless they make x interact with $\overline{\mathrm{x}}$.

See "Algebra and Hazards.," p. 12
2. Except the distributive laws can convert static \longleftrightarrow dynamic hazards. They can even convert masked hazards \longleftrightarrow dynamic hazards.)
3. The distributive laws cannot create or destroy static hazards.
4. DeMorgan's law has no effect on hazards.

FIG. 1-27 Distributive Laws
Normal Law
$(a+b) x=b \bar{x}+a x$
Special For Boolean Only
$a b+x=(a+x)(b+x)$

Example: hazard free expression from last page.

$$
F=\mathrm{a} \cdot \mathrm{~b}+\overline{\mathrm{b}} \cdot \mathrm{c}+\overline{\mathrm{b}} \cdot \mathrm{~d}+\mathrm{a} \cdot \mathrm{c}+\mathrm{a} \cdot \mathrm{~d}
$$

Factoring (uses the distributive law) reduces parallel paths.

$$
\begin{aligned}
& \text { Use } \quad \begin{aligned}
x c & +x d=x(c+d) \\
F & =a \cdot b+\bar{b} \cdot(c+d)+a \cdot(c+d) \\
& =a \cdot b+(a+\bar{b})(c+d) \\
& =a \cdot b+u
\end{aligned}
\end{aligned}
$$

No dynamic hazards (or static)
Multiplying out (also uses distributive law) creates parallel paths

$$
\begin{aligned}
& \text { Use } \begin{aligned}
a b+x & =(a+x)(b+x) \\
\quad F & =a \cdot b+u \\
F & =(a+u)(b+u) ; \quad u=(a+\bar{b})(c+d)
\end{aligned}
\end{aligned}
$$

Dynamic hazard when $a=0, c$ or $d=1$

$$
\mathrm{u}=>\overline{\mathrm{b}} \quad \mathrm{~F}=>(0+\overline{\mathrm{b}})(\mathrm{b}+\overline{\mathrm{b}})
$$

We can still guarantee no static hazards
Using Forbidden Algebra That May Insert Hazards

$$
\begin{aligned}
F & =a \cdot b+b \cdot c+\bar{b} \cdot d+a \cdot c+a \cdot d \\
& =a(b+c+d)+\bar{b}(c+d) \\
& =a(b+c+d)+\bar{b}(b+c+d) \\
& =(a+\bar{b})(b+c+d) \\
& \text { Static-0 when a,c,d=0,0,0}
\end{aligned}
$$

$$
=\mathbf{a}(\mathbf{b}+\mathbf{c}+\mathbf{d})+\overline{\mathbf{b}}(\mathbf{b}+\mathbf{c}+\mathbf{d}) \quad \text { Using } \mathbf{b b}=\mathbf{0} \text {. (don't do that!) }
$$

Hazards With Multiple Input Changes

Two-variable-change hazards

Two-variables changes, move two squares on the Karnaugh map.
Some 2-change hazards are maskable. (upper arrow in FIG. 1-28) Many 2-variable hazards are not maskable. (lower arrow)

FIG. 1-28 Start at square $\mathbf{A}, \mathbf{B}, \mathbf{X}=\mathbf{1 , 1 , 0}$ (the tail of the arrows) Change both B and X to move to square $A, B, X=1,0,1$ (the head of the arrows).

If B changes slightly before X, one travels the upper route ∇.
The valley between $\bar{A} \bar{X}$ and $\bar{B} X$ may glitch. A masking term $\mathbf{A} \overline{\mathbf{B}}$ can cover the valley.
It only removes the glitch on the upper path.
If \mathbf{X} changes slightly before \mathbf{B}, one takes the lower path
This will always glitch.
It cannot be covered.
Covering the offending " 0 " changes the function.

Nonmaskable or function hazards

The lower arrow goes through a " 0 ."
This " 0 " is part of the function.
F is supposed to be low for input $A, B, X=1,1,0$.
One cannot fill in the " 0 " to mask the hazard.
It is a nonmaskable or function hazard.

Another 2-variable function hazard.
If B changes first (short path) there is no glitch.
If A changes first (long path) there is a glitch.

Associated Maskable, Single-Variable Hazards

$F=A \bar{X}+A B+\bar{B} X$
When $A B=10=>F=\bar{X}+X$
When $A X=11=>F=B+\bar{B}$
Maskable, single-variable, static-1, hazards.

Maskable, Double-Variable Hazards

See a little later

Example of a 2-Variable Change Hazard

Detect the decay of radon passing through a long thin air duct.
There is a detector on each side of the duct.
A radon decay inside the duct will activate one detector.
Cosmic rays from outside will activate both detectors.
If both detectors respond at the same time, the result is ignored.
The rejection circuit uses an XOR which has a 2-variable hazard.
One cannot reliably exclude the double pulses with XOR.

General Multiple Variable Changes

Definition of Static Multivariable Hazards

Consider a function $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots .$.$) .$
Let P of its variables change at the same time.
There are 2^{P} squares through which this P variable transition may travel.

For static hazards F has the same value before and after the changes.

Conditions to be Hazard Free

F is free of multiple-variable static hazards for the \mathbf{P} changes, if and only if:

1) Condition for no function hazards All 2^{P} squares, that may be travelled through, have the same value.
2) Condition for no maskable hazards Fixing the stationary variables cannot reduce F to one of the forms

$$
\mathbf{a}+\overline{\mathbf{a}}, \quad \mathbf{c}+\overline{\mathbf{c}}, \quad \mathbf{a} \overline{\mathbf{a}}, \quad \mathbf{c} \overline{\mathbf{c}},
$$

or combinations of these like

$$
a+\bar{a}+c+\bar{c}, \quad \bar{a} a \bar{c} c, \quad c+\bar{c}+a \bar{a} .
$$

Example: A Double Change With No Hazard

Two variables changing $A, C,=, 0,0->1,1$. $P=2$ = numper of variables changing at once. The possible transitions cover $2^{P}=4$ squares. There are no hazards for any of the transitions.

Example: A Function Hazard

Two variables changing $A, B=0,0->1,1$
Transitions can move over $2^{P}=4$ squares.
If the transition via the "wrap around," has no hazard. The direct path will cross the gap and give a glitch.

Example: Maskable Hazards

Any transitions between the centre variables, A and C, is a hazard. The hazards can be masked by covering the centre four squares as shown on the right.
If other pairs, such as A and D change, a function hazard results, as shown.

Example; A Real Two-Variable Maskable Hazard

There is a "hole" in the centre.
It may give a glitch when A and C both change at once.
The equation for the function is

$$
F=A B+\bar{A} B D+C D+B \bar{C} D
$$

Fix $B D=11$ to expose the hazard.

$$
F=A+\overline{\mathbf{A}}+\mathbf{C}+\overline{\mathbf{C}}
$$

This is a static-1, two-variable hazard.

Example: A Nonmapable Two-Variable Maskable Hazard

This hazard cannot be mapped onto Σ of Π

$$
\mathrm{F}=\mathrm{BA}+\overline{\mathrm{A}} \mathrm{D}+\overline{\mathrm{C}}(\mathrm{C}+\overline{\mathrm{B}})
$$

Set $B D=11$

$$
F=\mathbf{A}+\overline{\mathbf{A}}+\overline{\mathbf{C}} \mathbf{C}
$$

When Are Hazards Important?

Multiple Variable Change Hazards are Plentiful

Take a synchronous circuit
Let 4 flip-flops change at once.
Then $P=4,2^{P}=16$ possible map squares.
Most paths will have function hazards
FIG. 1-30 The vast number of glitches generated by multiple variable changes

A few of the possible paths for 4-variable changing

With 2 variables changing it is almost impossible not to have hazards. With more variables changing they are like waves in the ocean.

Hazards do not hurt synchronous circuits

In clocked logic, flip-flops only respond to the inputs slightly before the clock edge. See the circles on the waveforms below.
All variables change shortly after the clock edge.
The clock cycle is made long enough so the glitches die out long before the clock edge.

FIG. 1-31 The flip-flops only respond in the circled region on the waveforms below. A glitch at any other time will not influence state of the machine.
The glitches die out long before the clock edge.
The glitches have negligible influence.

Hazards Kill Asynchronous Circuits

By asynchronous circuits, we mean ones with feedback that can latch signals.
A glitch may causes a wrong value to be latched. All hazards must be eliminated, or proven harmless.

Analog simulation can prove it harmless.

Example: Placing an R-S Latch in a Synchronous Circuit
FIG. 1-32 The Russian Roulette of digital design

Example: The Hazard in the Transparent D-Latch

The simple form of D-latch (transparent latch) is just a MUX.
The latch has a hazard when $\mathrm{D}, \mathrm{q}=1,1$.
This glitch can feed back and latch itself.
FIG. 1-33

To mask the hazard Keep $\mathrm{Dq}=11$ across the change in C $Q=D C+\bar{C} q+D q$

Outputs where hazards are of concern

Some displays are very sensitive to glitches.
Light emitting-diode displays will show slight "ghosts" in dim light.
Cathode-ray tube displays will usually show any glitches on their input signals.

Memories
Memory chips are asynchronous latches, and are sensitive to glitches.

Memory control leads must be glitch free.

Glitches in asynchronous inputs to synchronous circuits
Asynchronous inputs to synchronous circuits must be hazard free.

An input glitch on the clock edge, may be captured a valid dan put.

Hazards may hurt bus drivers

In control circuits for tri-state bus drivers.
Hazards on the driver-enable lines may turn on two drivers at once.
If one driver is " 1 " and one " 0 ", a high current will flow.
FIG. 1-34 A bus with several drivers.
The "En" (Enable) signal connects and disconnects the driver.
Normally only one driver is connected at a time.
Only one "En" signals is high at a time.
A hazard may turn on a second driver.
Below, B is high and C is low.
The glitch shorts the power to ground.

a) Tri-state Bus driver showing symbolically how the signal is disconnected.

A short high-current glitch on a bus -

Normally does not damage the gates (at least in the short term).
It causes a dip in the power supply voltage.
This may cause flip-flops or memory cells to change state.

Turn-Off Glitches Don't Bother Bus Drivers

Case: Drivers that connect for $\mathrm{En}=1$, and disconnect (tri-state) for $\mathrm{En}=0$.
These drivers are sensitive only to static-0 hazards, not static-1.
A static-1 glitch may puts opposing signals on the bus.
A static-0 glitch only turns off the "on driver" momentarily.
There is no other bus driver trying to pull the bus the other way.
The bus stray capacitance will maintain the bus voltage during the glitch.
FIG. 1-35 A glitch that turns off a driver momentarily does no damage.
With no connected driver for a short time.
The bus capacitance will not allow significant change in the bus voltage.

Σ of Π logic (NAND followed by NAND) has static-1, but no static-0 hazards.
Preferred for bus control which connects on En=1.
Π of Σ logic (NOR followed by NOR logic) has static-0, but no static-1 hazards Preferred for bus drivers which connects on En=0.

Absorption of Glitches by Gates

Gate Inertia (Inertial Delay)

For a fast pulse to propagate through a gate,
it must be long enough to charge the gate internal capacitance.
Otherwise its energy is too small to change the output.

A rule of thumb
A pulse shorter than the propagation delay of the gate will not pass through it.
This is called gate inertia or inertial delay.

Synchronous circuits would have many many glitches except for inertial delay.
Digital simulator software uses inertial delay to keep simulation waveform displays from being a wasteland of glitches.
Simulators normally suppress glitches shorter that a certain duration.
The default duration is the propagation delay of the gate passing the glitch.

Glitches Increase Power Consumption

Power consumption is very important in:
circuits run from batteries.
circuits that have cooling problems.
CMOS uses power only during variable changes.
Power is used charging and discharging gate capacitances.
One glitch uses little power,
but mega-glitches may happen in a large IC.
Glitches are known to waste significant power.

Masking is not a viable for power saving

- Masking gates add extra capacitance.
 This uses more power than the saving by hazard elimination.
- Most circuit glitches are multi-variable. Most of these are unmaskable.
- Masking glitches creates untestable redundant gates .

Map for \mathbf{z}
$\mathbf{z}=\mathbf{x c}+\overline{\mathbf{C}} \mathbf{w}+\mathbf{x w}$

Map for z with $x w$ stuck-at-zero
$\mathbf{z}=\mathbf{X C}+\overline{\mathbf{c}} \mathbf{w}+\mathbf{0}$

FIG. 1-37 No normal test can find gate $x w$ output stuck-at-0.

Avoiding Glitches by Balancing Delays

Review of Adding Delay to Hazards
Most glitches can be removed by balancing the two paths at the hazard inputs, but it requires good control of propagation delays.

FIG. 1-38 Basic static-1 hazard circuit from FIG. 1-3 (FIG. 1-39 left).
With delays balanced, glitch is eliminated.

- Adding too much delay will make the glitch appear on the opposite input edge.

At the silicon layout level, balanced delays usually suppress glitchs. With standard cells and field-programmable arrays, balancing is hard.

Balancing the path delays can remove most glitches.
A tree structure balances delays.

Balancing May Not Be Too Hard

- Inertial delay allows balance if the two paths are within a gate delay. (more or less)
- A few glitches getting through is not fatal if the objective is power saving.

Summary Of Hazards

Single variable change hazards
Can be found and cured.
Multiple variable change hazards
Can be found
Are very plentiful
Cannot be cured in general, they are part of the logic.
May be reducable to single variable change.
See race-free state assignment in the Section on races and cycles.
Hazards are not important in truly synchronous circuits
Except for power consumption.
Don't mention false-paths.
Hazards are important in
Asynchronous circuits.
Latches and flip-flops
Pulse catchers
Debouncers
Memory interface signals
High speed displays
Bus Control

