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7.1. 1D Crystal Potential

In a crystal, electrons move in a potential V (x) which is produced by
regularly-spaced ion cores. A large number of materials are well de-
scribed by regular atomic spacing and a periodic potential for a crystal
lattice which is like a string of finite wells, as shown in figure 1 .

Figure 1. Crystal Potential a is the lattice constant

To analyze the electron behavior in such a crystal we need to solve
the Schrodinger equation with a periodic V (x) and obtain the wave-
function Ψ(x). Due to periodic nature of V (x), i.e. V (x + a) = V (x)
we are able to use the Fourier series techniques in which V (x) is defined
as a set of spatial frequencies Gn as below:

V (x) =
∞∑
−∞

VG e
jGnx (7.1)

Gn =
2πn

a
n is an integer (7.2)

VG =
1

2πa

∫ a

0

V (x)e−jGnxdx (7.3)

Equation 7.1 is the complex Fourier representation of a
periodic function.

The solution of a periodic version of a wave equation like the SCE is
complicated, however, the basic formulation was worked out by Bloch
and others. Using Bloch’s theorem it can be shown the solution will
be as the following form:

Ψ(x) = U(x)eikx (7.4)

Where we have:
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• A solution very similar to a plane wave for free electron.
• The primary difference is that in free electron case the ampli-

tude is constant whereas with a periodic potential, the ampli-
tude is a periodic function as well.

U(x+ a) = U(x)

• The parameter k is again associated with the momentum of a
quantum state in electron energy. A big difference is that it
can be shown that unique k values lie only between −π/a and
π/a.
• Ψ(k) is periodic over 2π/a.

Now we will go over some special cases.

7.1.1. Free Electrons (V(x) = 0)

This is similar to what we solved before for a free electron, but we will
force a periodic solution. The Bloch solution is as before a parabolic
E(k) as equation however the new solution is multivalued (Eq. 7.5) as
is shown in figure 2.

Ek =
~2(k +Gn)2

2m
(7.5)

Figure 2. Parabolic energies for free electrons

In this solution there are set of solutions denoted by n where:

• Each n provides one parabola for E(k).
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• E is a periodic function of k with periodicity of 2π/a.
• E is multi-valued function.
• E is unique only in the range −π/a < k < π/a

Due to the last point as shown in figure 3 we draw E only in region
−π/a < k < π/a. This region is called 1st Brillouin zone or if it is
symmetrical (as in this case) only from 0 to π/a.

Periodic free electrons will therefore act very much like free elec-
trons. One can form wave-packets form them and they will propagate
in similar manner. However, the wavefunctions are limited to k values
in the 1st Brillouin zone and we have multi allowed energies at a single
momentum value.

Figure 3. Energies in first brillouin zone

7.1.2. A Cosine Potential

The previous example was very artificial as the periodicity was forced
– imposed mathematically but not physically present. A real situation
has an actual periodic potential causing the perodicity in the wave-
function. A simple case when V (x) is a cosine function as in figure 4
is a closer model for a crystal potential.

We have,

V (x) = 2V0 cos(
2πx

a
) = V0e

2πjx/a + V0e
−2πjx/a (7.6)

It is difficult to generally solve the problem, but we can solve it for k =
π/a which is an edge of the brillouin zone. Suppose the wavefunction
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Figure 4. A Cosine Potential function

will be as:

ψ(x) = Cke
jkx + C−ke

−jkx = Cπ/a e
jπx/a + C−π/a e

−jπx/a (7.7)

By substituting the wavefunction 7.7 in the Schrodinger equation we
will have:

(
~2π2

2ma2
− E)Cπ/a + V0C−π/a = 0 (7.8)

(
~2π2

2ma2
− E)C−π/a + V0Cπ/a = 0 (7.9)

From equation 7.8 we have:

C−π/a = − 1

V0
(
~2π2

2ma2
− E)Cπ/a (7.10)

By substitution in equation 7.9 we get:

[−(
~2π2

2ma2
− E)2

1

V0
+ V0]Cπ/a = 0 (7.11)

Then to have Cπ/a 6= 0 we must have V 2
0 = ( ~2π2

2ma2
− E)2 i.e.

E =
~2π2

2ma2
− V0 or E =

~2π2

2ma2
+ V0 (7.12)

So we see that for a cosine potential function, the energy levels split
at the band edge (k = π/a) as is shown in figure 5. Away from the
band edge the solution is close to parabolic and we have free electron
like behavior.

Note: As a general principle, the presence of a peri-
odic potential separates the electron energies into allowed
bands separated by band gaps.
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Figure 5. split of energy levels at the band edge

Figure6 shows a less detailed plot of allowed states of E. This way
of representing band diagram as function of space is often called the
“band structure”. We collapse all the detailed branch information into
just the availability of an energy state and plot the allowable energy
bands as a function of position.

Figure 6. split of energy levels at the band edge

7.2. Kronig-Penny Model

A more realistic model for a metal or semiconductor crystal is a periodic
array of square wells. We can analyze this case in a similar manner as
we did the finite well and it will also produce the band structure.
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Consider the following idealized crystal potential as shown in figure
7 and assume E < V0 :

Figure 7. Idealized crystal potential, Krong-Penny Model

(a) Region 0 ≤ x ≤ a:

d2Ψ

dx2
+

2m

~2
EΨ = 0 (7.13)

(b) Region −b ≤ x ≤ 0:

d2Ψ

dx2
− 2m

~2
(V0 − E)Ψ = 0 (7.14)

As we said before using Bloch’s theorem the solution will be as the
following form:

Ψ(x) = U(x)eikx (7.15)

substituting equation 7.15 into equations 7.13 and 7.14 we see that the
function U(x) must satisfy equations 7.16 and 7.17.

d2u1
dx2

+ 2jk
du1
dx
− (k2 − α2)u1 = 0 0 ≤ x ≤ a (7.16)

d2u2
dx2

+ 2jk
du2
dx
− (k2 − γ2)u2 = 0 −b ≤ x ≤ 0 (7.17)

Notes:

• Where u1(x) and u2(x) represent the value of U(X) respec-
tively in the region I and II in figure 7.
• γ =

√
2m(V0 − E)/~

• α =
√

2mE/~
From equation 7.16 and 7.17 we have the solution as

u1(x) = Aej(α−k)x + Be−j(α+k)x (7.18)

u2(x) = Cej(γ+jk)x + De−j(γ−jk)x (7.19)
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Notes:

• The solution is periodic.
• The barrier has a limited thickness.
• The solution does not continue decaying to zero.
• We have tunneling between the wells.
• Using the boundary conditions and the fact that the wavefunc-

tion and its first derivative must be continuous, we are able to
find the coefficients, A, B, C and D as below.

(a) at x = 0

u1(0) = u2(0) = 0
du1(0)/dx = du2(0)/dx

which leads to equations 7.20 and 7.21

A + B = C + D (7.20)

Aj(α − k) − Bj(α + k) = C(γ + jk) + D(γ − jk) (7.21)

(b) Boundaries ar x = a and x = −b
u1(0) = u2(a+ b) = 0 or u1(a) = u2(−b)

du1(a)/dx = du2(−b)/dx
which leads to equations 7.22 and 7.23

Aej(α−k)a + Be−j(α+k)a = Ce(γ+jk)b + De−(γ−jk)b (7.22)

Aj(α− k)ej(α−k)a − Bj(α + k)e−j(α+k)a = (7.23)

−C(γ + jk)e(γ+jk)b + D(γ − jk)e−(γ−jk)b

The set of equations 7.20 -7.23 has a non trivial solution only if

γ2 − α2

2γα
sin(αa) sinh(γb) + cos(αa) cosh(γb) = cos(k(a+ b)) (7.24)

Now this is still a little hard to analyse so we simplify it further.

7.2.1. Special case – Delta Function Potential

We consider the Delta Function Potential case. Where we have b −→ 0
and V0 −→ ∞ while V0 · b = const. as shown in figure 8
Let P = (maV0b)/~2 then the equation 7.25 we will be as:

P

αa
sin(αa) + cos(αa) = cos(ka) (7.25)

which can be solved graphically. As an example we solve it for P =
3π/2 which corresponds to a high barrier. The left hand side (term1:
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Figure 8. Delta Function Potential

P
αa

sin(αa) + cos(αa)) is plotted as a function of αa in figure 9.

Figure 9. left hand side of equation 7.25

The right hand side of equation 7.25 is a cosine function which limits
the value of left hand side (term1) between +1 and −1, i.e.

P

αa
sin(αa) + cos(αa) ≤ |1| (7.26)

Since αa is a function of the energy, this limitation means that the elec-
trons can only occupy certain allowed energy states (E = ~2α2/2m).
The disallowed region of energy is call the energy gap and again can
be plotted in energy band diagram(see figure 10).
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Figure 10. energy regions
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7.3. Summery of Energies and Wavefunctions in
Various Potentials

7.3.1. Isolated Potential Well

• Only discrete energies (E)are allowed.
• Wavefunction are standing waves.

See figure 11.

Figure 11. an electron in an isolated potential well

7.3.2. Free Electrons

• The wavefunctions are plane waves as

Ψ(x) = Cejkx Ψ(x, t) = Cej(kx−wt)

• E versus k is a parabolic function E = ~2k2/2m as shown in
figure 14. Therefore all the energies are allowed.

7.3.3. Periodic Potential

• Ability of electrons to tunnel between barrier walls spreads out
the discrete energy levels seen for isolated wells into bands
• Only a number of bands of energies are allowed.
• The value of k is restricted i.e. −π/a ≤ k ≤ π/a
• The wavefunctions are Bloch waves as below. Which in fact

are modulated traveling waves

Ψn,k(x) = Un,ke
jkx Ψn,k(x, t) = Un,ke

j(kx−wt)

• Wavefunctions act like free electrons.
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Figure 12. an free electron

Figure 13. an electron in a periodic potential

Figure 14. The transition from a gas to solid

• As atoms coalesce into a solid the individual atomic levels split
into bands.
• The energy diagram is shown in figure 15.
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Figure 15. Simplified Energy Diagram

7.3.4. General Results from the Kroning-Penny model

• For stronger potential barriers between wells, the energy bands
are narrower and more spaced. This corresponds to crystals in
which electrons are tightly bond to ion cores, and wave func-
tions do not overlap much with adjacent cores.
• For weaker potential barrier between wells, energy bands are

wider and less spaced. This is typically situation for metals
with weak bond electrons e.g. alkali metals. Here the nearly
free electron model works well


