Interconnect

Prof. Krishna Saraswat

Department of Electrical Engineering
Stanford University
Stanford, CA 94305
saraswat@stanford.edu

Outline

• Interconnect scaling issues
• Gate electrode
• Aluminum technology
• Copper technology
Why should we look at interconnects?

Basics and Background
- Interconnect Parameters: resistance, capacitance, inductance
- Interconnect Metrics: Delay and Area Calculations

Scaling Related Issues: Delay
- Problems
- Solutions

Scaling Related Issues: Power

Current Interconnect Technology

Scaling of Minimum Feature Size and Chip Area

Scaling of a chip and interconnections

Scaled wires are:
• Longer (chip area scaling)
• Thinner (minimum dimension scaling)

Scaling of global interconnections
On-chip wires are getting slower

Increase in R, L and C

- Why should we look at interconnects?
- Basics and Background
 - Interconnect Parameters: resistance, capacitance, inductance
 - Interconnect Metrics: Delay and Area Calculations
- Scaling Related Issues: Delay
- Scaling Related Issues: Power
- Current Interconnect Technology
Types of Interconnects

- Dimension based
 - Local
 - Intermediate/semiglobal
 - Global
- Function based
 - Signaling
 - Clocking
 - Power/Gnd distribution

Cross Sectional View:
For Height, Width and Spacing

Top View: For Length

Performance Metrics: Signaling Wires

- Delay
- Power dissipation
- Bandwidth
- Area
- Joule heating
- Data reliability (Noise)
 - Cross talk

- Reliability
 - Electromigration

Depend on R and C and L!
Line Resistance and Capacitance

\[R = \rho \frac{L}{WH} \]

\[C_{ILD} = K_{ox} \varepsilon_o \frac{WL}{X_{ox}} \]

\[C_{IMD} = K_{ox} \varepsilon_o \frac{HL}{L_S} \]

- What metrics does Resistance impact????
 - With scaling of technology L increases, X_{ox}, L_S W and H decrease
 - As a result R, C_{ox} and C_t increase

Capacitance in Multilayer Structures

In general

\[C_{intot} = C_{ILD} + C_{IMD} = 2l(\frac{e_{ILD}}{AR} + e_{IMD}AR) \]
Capacitance: Impact on Interconnect Metrics

RC-Delay
\[\tau \propto RC_{\text{inttot}} \]

Power
\[P = \alpha C_{\text{inttot}} V^2 f \propto C_{\text{inttot}} \]

Crosstalk
\[X_{\text{talk}} \propto \frac{C_{\text{IMD}}}{C_{\text{inttot}}} \left(\frac{\epsilon_{\text{ILD}}}{\epsilon_{\text{IMD}}} \right) \]

Higher Packing Density
\[\downarrow \]
Decreased Space Between Interconnects
\[\downarrow \]
Higher RC-Delay, power and crosstalk

Capacitance Reduction is Important for Performance Enhancement

What Capacitance to use for Delay?

Depends on switching condition on adjacent wires

- Nominal
 \[C_{\text{inttot}} = C_{\text{IMD}} + C_{\text{ILD}} \]

- Worst Case
 \[C_{\text{inttot}} = 2C_{\text{IMD}} + C_{\text{ILD}} \]

- Best Case
 \[C_{\text{inttot}} = C_{\text{ILD}} \]

Not only total capacitance plays a role in delay, IMD plays a very important role.

\[C_{\text{IMD}} \approx 70\% \text{ of } C_{\text{inttot}} \]
Interconnect Parameters at High Frequencies

- In general complicated: No dedicated return paths

- **Resistance:** $R(f)$
 - Two components: signal and return path
 - Frequency effects
 - Current distribution in signal (Skin effect)
 - Return path choice, thus resistance

- **Inductance:** $L(f)$
 - **Self:** Area enclosed between signal & return path (larger area \Rightarrow larger L): Can effect delay
 - **Mutual:** Effects crosstalk (long range)

- **Capacitance:** $C(f)$
 - Relatively constant

How is current distribution in signal and its return path determined??

Current Distribution and Return Path

- **Impedance** (Z) is minimized
 \[Z = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \]

- At high frequency minimizes L
 - Return path closer

- At lower frequency minimizes R
 - Return path could be far away if it lowers return resistance

$L \sim 0.3-0.7$ nH/mm

$C \sim 0.15-0.25$ pF/mm

$Z_0 = (L/C)^{1/2} \sim 35-65\Omega$
What About Skin Effect for Resistance?

- Copper

\[\text{Skin Depth} = \frac{1}{\sqrt{2\pi f \mu_0 \sigma}} = \frac{2.1}{\sqrt{f}} \]
 \(f \) in GHz, S.D in \(\mu \text{m} \)

- Be careful when comparing skin depth to dimensions
 - Which dimension?: tall vs. wide
 - Depends on the return path
 - Frequency of interest is not clock freq. But rise time associated freq.

- Example: \(f = 3\text{GHz} \implies \text{skin depth} = 1.2 \mu \text{m} \)

\[\begin{array}{c}
1.2 \mu \text{m} \\
\hline
1 \mu \text{m} \\
\hline
3 \mu \text{m}
\end{array} \]

Case 1: Important (from sides)
Case 2: Not important (from vertical direction)

Summary: R, L and C Parameters

- Can we not model anything because of complexity of R and L?

- No, there is a lot we can predict without frequency dependencies
 Using \(R_{dc} \) and C

 - Most interconnects are still not skin effect limited: \(R_{dc} \) ok
 - L is important for inductive cross talk
 - Not so important for delay
 - Delay and power important for most interconnects

- \(R_{dc} \) we need to model more accurately
The Truth about Interconnect Delay: Don’t neglect the driver!

- **Driver Delay**
 \[Z_{dr} \left(C_{diff} + C_wL + C_L \right) \]

- **Interconnect Delay**
 - **LC regime**
 \[\frac{l}{\nu} = \frac{L_v}{C_v} \left(\frac{L_w}{C_w} = Z_0(C/L) \right) \]
 - **RC regime**
 \[(0.5R_w)(C_wL + C_L) \]

- Total Delay combination of three delays
- Dominant component depends on
 - wire length & cross-sectional dimensions
 - driver size: larger \(Z_{dr} \) & higher \(C_{diff} \)
- Delay RC only under certain conditions !!!

Delay: Local wires

- Driver small, wire length short, cross section small \(Z_{dr} > Z_0 \)
- Inductance (LC) almost never important
- Mostly driver delay dominates \(\Rightarrow \) want low \(C_w \)

\[Delay \sim Z_{dr} \left(C_{diff} + C_wL + C_L \right) \]
Delay: Semiglobal and Global Wires

Case 1 (Small driver)
• $Z_{dr} > Z_0$ (same as local wire case)
• Inductance not important

$$Delay = Z_0 \left(\frac{1}{R} + L + C_{LC}\right) + 0.5 R C_{LC} l^2$$

Case 2a (Large driver)
• $Z_{dr} < Z_0$ and $\frac{L}{R} \cdot \frac{l}{Z_0} < 1$
• Inductance important
• Entire RLC model must be considered

Case 2b (Large driver)
• $Z_{dr} < Z_0$ and $\frac{L}{R} \cdot \frac{l}{Z_0} > 1$
• Inductance not important
• Slow diffused RC signal

• Delay has another component
 – number of round trips needed to ring up the line ($Z_d > Z_{dr}$ desirable)
• Inductance only important for case 2a
• Very long wires => RC delay conservative (diffuse RC transmission line model better)

Delay: When is inductance important? (II)

- Global wires are becoming more RC in terms of delay in future
- However L is still very important in Cross talk (long range) and noise
- L also important in delay for wide global wires

$$l_{crit} = \frac{2.77 L_{w}}{R_w} \sqrt{\frac{1}{C_w}} = \frac{2.77 Z_0}{R_w}$$

J. A. Davis et. al. Proc. IEEE, March 2001
Chip Size

Memory: SRAM, DRAM

• Device Size Limited
• Regular compact structure
• Needs fewer interconnect levels

Logic, e.g., μ-Processors

• Wire Pitch Limited
• Irregular structure
• Needs more interconnect levels
• Performance impacted more by interconnects

Wire-length distribution

• Wire-length distribution (in terms of gate pitches) for a futuristic logic circuit with 180 million gates.
• Metal tiers determined by L_{Loc}, $L_{\text{Semi-global}}$, and L_{Global} boundaries defined by design constraints, such as maximum allowable delay, current density, etc.
• More wires can be accommodated in the lower levels.
• By placing wires in higher levels design constraints can be met but will need more metal levels.
Rent’s Rule

\[T = k N^P \]

- \(T \) = # of I/O terminals
- \(N \) = # of gates
- \(k \) = avg. I/O's per gate
- \(P \) = Rent’s exponent

![Graph showing Rent's Rule](image)

Number of Gates, \(N \)
Number of I/O pins, \(T \)
Rent’s Rule fit
Intel Data
\(T = 2.09 N^{0.36} \)

Determination of Wire-length Distribution

- Conservation of I/O’s
 \[T_A + T_B + T_C = T_{A-to-B} + T_{A-to-C} + T_{B-to-C} + T_{ABC} \]
 \[T_{A-to-B} = T_A + T_B - T_{AB} \]
 \[T_{B-to-C} = T_B + T_C - T_{BC} \]

- Values of \(T \) within a block or collection of blocks are calculated using Rent’s rule, e.g.,
 \[T_A = k (N_A)^p \]
 \[T_{ABC} = k (N_A + N_B + N_C)^p \]

- Recursive use of Rent’s rule gives wire-length distribution for the whole chip

Ref: Davis & Meindl, IEEE TED, March 1998
Why should we look at interconnects?
Basics and Background
Scaling Related Issues: Delay
- Problems
- Solutions
Scaling Related Issues: Power
Current Interconnect Technology

Future Problems (Delay)

Simple Scaling Scenarios
- **Local**: Wires whose length shrinks
 - \(S_1 \): AR maintained (3D shrink)
 - \(R \) up by \(\alpha \) (worse) where \(\alpha = \text{scaling factor} \)
 - \(C \) down by \(\alpha \) (geometrical effect)
 - \(C \) down by low-k material
 - RC delay down as low-k
 - Delay going up compare to gate delay
- **Semiglobal/Global**: Length does not shrink
 - Much worse than local

All types of signal wires delays are deteriorating wrt gate delay with scaling even with new low-k materials!
Scaling of Interconnect Cross Section Dimensions

ITRS ‘99 dimensions: local, semi-global, global wires

Solutions to Mitigate the Interconnect Problems

- **Technological Solutions**
 - Material Solutions: Lower resistivity materials and lower-dielectric constant (Existing Paradigm)
 - Future Solutions: 3-D integration and Optical Interconnects

- **Circuit Solutions**
 - Repeaters (Existing Paradigm)
 - Future Solutions: Low-swing signaling and near speed of light electrical interconnects

- **Architectural/Combination Solutions**
Impact of Interconnect Resistivity

- Will superconductors really improve the circuit speed?
- Is Cooling conventional conductors to 77°K sufficient?

Interconnect and gate delay vs chip area and minimum feature sizes for various interconnect materials

Delay calculated for the longest interconnect on a chip

\[L = \sqrt{\frac{\text{Chip area}}{2}} \]
Limits of 4 Commonly Used Materials for Interconnections

Maximum length limited by $\tau_G = \tau_I$

Why Cu and Low-k Dielectrics?

Reduced resistivity and dielectric constant results in reduction in number of metal layers as more wires can be placed in lower levels of metal layers.
Low Dielectric Constant (Low-k) Materials

Oxide Derivatives
- F-doped oxides (CVD) \(k = 3.3-3.9 \)
- C-doped oxides (SOG, CVD) \(k = 2.8-3.5 \)
- H-doped oxides (SOG) \(k = 2.5-3.3 \)

Organics
- Polyimides (spin-on) \(k = 3.0-4.0 \)
- Aromatic polymers (spin-on) \(k = 2.6-3.2 \)
- Vapor-deposited parylene; parylene-F \(k \approx 2.7; k \approx 2.3 \)
- F-doped amorphous carbon \(k = 2.3-2.8 \)
- Teflon/PTFE (spin-on) \(k = 1.9-2.1 \)

Highly Porous Oxides
- Xerogels \(k = 1.8-2.5 \)

Air \(k = 1 \)

Repeater As a SOLUTION

![Repeater Diagram]

Propagation delay of a long interconnect line is

\[
\tau_L = \frac{3.56 \cdot K_{\text{ox}} \varepsilon_0 \rho}{k^2} L^2
\]

By breaking the long line into \(n \) smaller lines the delay of each line is reduced quadratically

\[
\frac{\tau_L}{n} = \frac{3.56 \cdot K_{\text{ox}} \varepsilon_0 \rho}{k^2} \left(\frac{L}{n} \right)^2
\]

The total wire delay is thus reduced significantly as \(\tau_G \) reduces with scaling

\[
\left(\frac{\tau_L}{n} + \tau_G \right) n = \frac{3.56 \cdot K_{\text{ox}} \varepsilon_0 \rho}{k^2} \left(\frac{L}{n} \right)^2 + m \tau_G
\]

However, repeaters have Power and Area penalties.
Repeaters: How Good Is It?

- Even with repeaters, 7.5X Clock at 35nm node 8X increase compared to 180nm node
- By increasing the distance between the repeaters power can be reduced at the expense of delay

Number of Repeaters Required

- ITRS wire dimensions: justified based on barely enough metal levels to fit the wires
- Separation of memory and logic area because different wire length distributions
- Rent’s rule based distribution for logic area
 - A fraction of the chip area would be occupied by repeaters
 - Additional power will be consumed by repeaters
Repeater Area Penalty

- Significant area occupied by repeaters in future
- Via blockage non-negligible for wire-limited chips

Why should we look at interconnects?
- Basics and Background
- Scaling Related Issues: Delay

Scaling Related Issues: Power
- Power Dissipation
- Power Removal (thermal Problem)
- Power Distribution
- Current Interconnect Technology
Chip Power: Breakdown

- Dynamic Power: CV^2f
- Leakage power: devices
- Short circuit power during switching
- Analog components (sense amps etc.): static power

Dynamic Power

- Clocking
 - Latches
 - Clocking Interconnects
- Signaling
 - Devices
 - Signaling Interconnects
- I/O
 - Buffers
 - Off-chip load

- Interconnect power
 - Due to C_{int}: dissipated in devices
 - Due to R_{int}: Joule heating (makes things worse)

Power breakdown at the 180nm node

- Clock (36%)
- Signaling Interconnects (46%)
- Local lines (29%)
- Repeaters (4%)
- Global lines (4%)
- Semi-global lines (9%)
- Latches (13%)
- Logic (Dynamic power) (15%)
- Memory (Dynamic power) (23%)
- Memory (leakage power) (4%)
Power breakdown at the 50nm node

- Logic (27%)
- Signaling Interconnects (27%)
- Memory (17%)
- Clock (28%)
- Local lines
- Repeater
- Global lines
- Distribution (Interconnects)
- Semi-global lines
- Logic (leakage power)
- Memory (leakage power)
- Latches
- Logic (Dynamic power)
- Memory (Dynamic power)

μprocessor Power Projections

ITRS projections for total power dissipation on chip
Total power dissipation on chip

- Power dissipation rising to exorbitant proportions !!!
- Need to come up with novel schemes to reduce power in each department

Thermal problem

- Higher T ⇨
 - higher R
 - lower reliability
- Better circuit design techniques needed to reduce power
- Better cooling techniques needed
The problems Caused by Increased Power

>100A will flow on these wires

RELIABILITY
Electromigration induced hillocks and voids

PERFORMANCE
As $T \uparrow$, $R \uparrow$, RC delay \uparrow
10°C \uparrow, Speed \downarrow 5%

Mean time to failure

$$MTF = \frac{A}{r^m J^n} \exp\left(\frac{E_a}{kT}\right)$$

10°C \uparrow, MTF \downarrow 50%

Impact of Vias on the Thermal Characteristics of low-k Interconnects

- Vias have much higher thermal conductivity than the dielectric materials (ILD)
- Can be efficient thermal dissipation paths
Simulation of Wire Temperature: Role of Vias

- Commonly used case 1 model overestimates interconnect temperature
- Case 3 represents the most realistic worst case condition

3D Thermal Analysis of Interconnects

THERMAL-ELECTRICAL ANALOGY

<table>
<thead>
<tr>
<th>Thermal</th>
<th>Electrical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature T [K]</td>
<td>Voltage V [V]</td>
</tr>
<tr>
<td>Heat flux q [W]</td>
<td>Charge Q [C]</td>
</tr>
<tr>
<td>Thermal resistance R [K/W]</td>
<td>Electrical resistance R [V/A]</td>
</tr>
<tr>
<td>Thermal capacitance C [J/K]</td>
<td>Electrical capacitance C [C/V]</td>
</tr>
<tr>
<td>Heat diffusion</td>
<td>RC transmission line</td>
</tr>
<tr>
<td>∇²T = RC_1 \frac{dT}{dt}</td>
<td>∇²V = RC \frac{dV}{dt}</td>
</tr>
</tbody>
</table>

3-D THERMAL CIRCUIT

EFFECT OF VIAS

Polymer, ANSYS
Polymer, HSPICE
SiO₂, ANSYS
SiO₂, HSPICE

ILD: SiO₂
polymer
air

Chiang and Saraswat, VLSI Symp., June 2001
Wire Temperature vs. Low-k ILD

- Temperature of global interconnects rise sharply for low-k ILD materials.
- Embedded low-k approach, e.g., air-gap shows excellent results

Chiang, Shieh and Saraswat, VLSI Symp, June 2002

Embedded Low-k Dielectric Approach

Why embed Low-k dielectric only between metal lines?
- Capacitance is dominated by C_{IMD}
- Use a low-k dielectric as IMD
- Heat flows vertically
- Use a high thermal conductivity material \Rightarrow SiO$_2$

Source: Y. Nishi
Impact of Joule Heating on RC Delay

- RC delay is strong function of current density because of Joule Heating
- Greater RC degradation for lower-k materials

Temperature in Multilevel Metal Layers

- With the help of vias as efficient thermal paths, the wire temperature can be significantly lower than that predicted from overly simplified 1-D thermal model.
- Therefore, the thermal problem associated with low-k insulators is not as bad as it appears.
- Beyond 45nm node closer packing of vias will alleviate the temperature rise problem.
Global Signaling Wire: Repeater Power Minimization With Delay Tradeoff

- Tolerable delay penalty depends on architecture
- Still 20W of power dissipation due to repeaters at 50nm node
- With about 20% more delay power dissipation by global wires with repeaters on them is now \(\sim 60+20=80 \text{W} \) at 50nm node

Current Interconnect Technologies

- Current Al technology (Courtesy of Motorola)
- Current Cu technology (Courtesy of IBM)
DC Resistance Modeling with Scaling: Technology Impact (I)

Diffusion barrier
- Consumes progressively larger fractional area
 - Barrier thickness (BT) doesn't scale
 - Higher AR => larger barrier area
- Technology dictates
 - Minimum thickness: reliability constraints
 - Profile: deposition technology

Electron surface scattering
- Reduced electron mobility with scaling
- Depends on
 - Ratio of λ_{mfp} to thickness
 - Interface quality: Roughness
- Technology dictates
 - Temperature
 - Copper/barrier interface quality (P)

Cu effective ρ increases in future

Problems in Scaling of Interconnections

AS λ DECREASES
- Resistivity increases as grain size decreases
- Resistivity increases as main conductor size decreases but not the surrounding film size
• Aspect ratio increase tradeoffs:
 ▪ Better delay and electromigration
 ▪ Worse power and cross talk

• In future increasing aspect ratio may not help

• Explains why AR dropped when Al to Cu switch

• Pay attention to different metrics simultaneously rather than just delay
• Design window quite complex

Requirements of the interconnection materials

Electrical
 • Low resistivity of conductors
 • Low capacitance => low dielectric constant
 – Low RC delay
 – Low power dissipation (CV^2f loss)
 – Low cross talk
 • Low contact resistance

Processing
 • Ability to contact shallow junctions
 • Ease of deposition of thin films of the material
 • Ability to withstand the chemicals and high temperatures required in the fabrication process
 • Ability to be thermally oxidized
 • Ability to be defined into fine patterns - dry etching

Reliability
 • Resistance to electromigration
 • Good adhesion to other layers - low physical stress
 • Stability of electrical contacts to Si and other layers
 • Good MOS properties
Outline

• Interconnect scaling issues
• Silicide Gate technology
• Aluminum technology
• Copper technology