Conclusion: A top-down design methodology for CPTL circuits has been shown and applied to logic circuit design. The simulation results proved that the method can be applied to digital VLSI circuits efficiently. This design method has the silicon area, delay and low power advantages of PTL. It has also been used for digital signal processing (DSP) chips. It has the simplest way of coding, realisation and simplification with respect to existing methods. The coding can be applied to the 123 DD technique if PTL-based design is required. The simplification process of the 123 DD is more complex to apply than the proposed one. The simplicity and effectiveness advantages of the proposed method make it one of the most efficient CPTL circuit design methods.

Jingcheng Zhuang, Qingiin Du and T. Kwasniewski

References

Fig. 1 System block diagram of clock synthesiser

Lock detector and window generator: The lock detector of this synthesiser is to prevent the DLL from locking to multiple cycles or zero cycle and to set initial voltage at power on. The operating principle of the lock detector and window generator is shown in Fig. 2, where

\[S_1 = \sum_{i=0}^{n} P_i + \bar{P}_{i+1} \]
\[S_2 = \bar{P}_{n+1} \]

It produces two signals, \(V_{\text{under}} \) and \(V_{\text{over}} \) for the total delay time smaller than \(T - (n - 1)/n \) or larger than \(T - n/2 \), where \(T \) is the period of the reference signal. Otherwise, the window generator outputs a negative pulse \(P_{\text{win}} \) at each rising edge of the delayed signal \(P_n \) as shown in Fig. 2, which is used in the phase comparator and charge pump.

Fig. 2 Operating principle of lock detector and window generator

Phase comparator and charge pump: To minimise the in-lock error, the phase comparator and charge pump use a new technique, in which paths from \(P_0 \) and \(P_n \) to \(L_{\text{up}} \) (the output of the charge pump) are short, symmetric and matched. The resolution of this circuit can thus be higher than that of conventional circuits. The operating principle is shown in Fig. 3. The circuit acts on rising edges of \(P_0 \) and \(P_n \). A pulse generator (PG) provides two negative pulses at these rising edges. The phase error can be obtained by comparing the output of two

Reduced in-lock error DLL-based clock synthesiser with novel charge pump phase comparator

Jingcheng Zhuang, Qingiin Du and T. Kwasniewski

A reduced in-lock error and low jitter delay-locked loop (DLL)-based clock synthesiser employing a novel phase comparator and charge pump is proposed. HSPICE simulation results show the performance of this DLL-based synthesiser to be significantly better than that of other reported circuits. In particular, it has smaller in-lock error and lower output jitter.

Introduction: Delay-locked loops (DLLs) are preferred for many applications because of their unconditional stability and ability to lock rapidly [1]. Since the noise in the voltage-controlled delay line (VCML) does not accumulate over many clock cycles, DLLs usually can offer jitter performance superior to that of phase-locked loops (PLLs) [2]. However, the jitter performance of DLL-based synthesisers depends strongly on the in-lock error, the error between the reference clock and the delayed clock when the loop is in lock. In this Letter we propose a DLL-based clock synthesiser which uses a novel phase comparator and charge pump to greatly minimise this in-lock error. It also includes a lock detector to eliminate the need for initialising the control voltage and it automatically recovers when the DLL loses lock.

System operating principle: The system block diagram of the clock synthesiser is shown in Fig. 1. A VCDL includes multiple identical delay cells, each having two delay stages within and able to generate one pulse the width of which is one half of its delay time upon application of the rising edge of the input signal. When the total delay of these cells \((D_1 + D_2)\) is exactly equal to one period of the reference signal, the signal combiner generates an output signal the frequency of which is an integer multiple of the frequency by combining pulses coming from each of the delay cells. In addition, there are two extra delay cells, one working as an input buffer and another at the end of the delay chain to provide load balance. Except for variance of delay among these delay cells, most output jitter is due to the in-lock error between \(P_0 \) and \(P_n \).
The integrators, IntU and IntD, placed at the output of the pulse generator. The integrators are reset by the rising edge of V_{out} and kept at zero until V_{out} returns to a low voltage in the next cycle. There is no need to make the widths of P_0 and P_0 wide to solve the dead-zone problem as is necessary in conventional circuits. The width ratio of pulses P_0 to P_0 is therefore larger, easing the requirements for the phase comparator. A pulse control feedback (PCFB) adjusts the amplitudes and widths of P_0 and P_0 pulses to ensure two integrators and the voltage comparator work correctly, and it makes the circuit insensitive to process parameter variation, temperature variation, and so on.

![Fig. 3 Operating principle of phase comparator and charge pump](image)

The schematic diagram of the pulse generator is shown in Fig. 4. P_0 and P_0 are applied to the gates of transistors M_2 and M_3, respectively, thus M_2 or M_3 can be turned on when P_0 or P_0 goes high. Transistors M_2, M_3, and M_2 form two current mirrors to ensure that currents through M_2 and M_3 are same as the bias current through M_2. The M_2 bias current is controlled by V_{diss} and P_0- P_0. V_{diss}, coming from the pulse control feedback circuit, adjusts the widths and amplitudes of P_0 and P_0 pulses. This is achieved by tuning the bias current flowing through M_2. Following a falling edge of V_{out}, M_2 provides a bias voltage for M_2 and M_3. Next, the circuit waits for the rising edge of P_0 or P_0, which pulls down P_0 or P_0 separately. Once both P_0 and P_0 are high, P_0 and P_0 return to a high state simultaneously.

A schematic diagram of integrators, feedback, and voltage comparator circuits is shown in Fig. 5. The two pulses P_0 and P_0 are integrated to obtain signals V_0 and V_0. The voltage comparator obtains the error signal between the two pulses, or between P_0 and P_0. A pulse control feedback circuit dynamically adjusts the voltage of V_{out} (the control signal of the pulse generator as shown in Fig. 4). With this feedback circuit, the high level amplitudes of V_0 and V_0 are slightly higher than the threshold voltage of NMOS when the loop is in lock.

![Fig. 4 Schematic diagram of pulse generator](image)

Simulation results: To demonstrate the performance of the synthesizer described above, a 9-time $(n = 9)$ clock synthesizer was designed in a CMOS 0.18 μm technology and simulated using HSPICE. Its input frequency is 200 MHz and the output frequency is 1.8 GHz. In lock, in-lock errors between P_0 and P_0 were obtained as shown in Fig. 6a, and the calculated output jitter is shown in Fig. 6b. The RMS value of the in-lock error is 0.1 ps and that of the output jitter is 0.7 ps, indicating far better performance than that of other reported circuits [1].

References

High quality 80 Gbit/s InP DHBT selector and its use for NRZ-RZ conversion

A. Konczykowska, Ph. André, F. Jorge and J. Godin

A high speed selector IC fabricated in self-aligned InP DHBT technology is presented. Circuit measurements at 80 Gbit/s (measurement setup limitations) show very good eye opening (0.56 ps RMS time jitter, low rise and fall times). Circuit operation at 40 Gbit/s NRZ to RZ converter was also characterised.