Lab 5: Programming a Micro-Controller Using C
In this lab you will familiarize yourself with the Microchip Machatronic Demo Board, DM163029. This board has several mechanical devices, sensors, and LEDs. Refer to www.microchip.com under applications for full details.
Objective
This lab teaches you how to turn an LED on the board on and off by compiling C codes using three mechanisms: a) delay loop, b) polling a timer, and c) acknowledging an interrupt from a timer.
Procedure
Follow the instructions in the course website to get the board safely connected and running. Then, perform the following three experiments.
A. Delay Loop

In Part A, you will make one of the 8 Red LEDs flash on/off. You should write a code for a delay loop that counts down from an integer smaller than 32767. When the counter reaches zero, the LED turns on, and the counting starts again. The LED turns off when the counter hits zero again. You use one of the bits in Port D to achieve this. Port D has eight bits that can be used as inputs and outputs. First, Select a bit in Port D and make it an output by writing a “0” to it. Then write a value into the output port pin connected to an LED pin. Port D pins are labelled RD0 – RD7, where RD0 indicates Port D0 and RD7 indicates Port D7. The LED Pins are labelled R36, R35, R34, R33, R26, R38, R37, and R39. For help, read Section 3.6: PORTD and TRISD Registers in the “Reference Manual.” This is a sample code you need to compile and run.
// Lab 5 Part A Code

#include <htc.h> //header file

//Delay Function

void delay(int time){
int temp=time; // integer variable can store up to 32767

 while (temp>0) {

temp--;
}

//Main Program

void main(void){

TRISD = 0x70; //configure PortD tristate buffer bit 7 to output

PORTD = 0x0f; //Drive 0 to Port D bit 7
 while(1){

delay(30000); //simple loop that counts down and does nothing else

PORTD = PORTD ^ 0x80; //alternate value driven to Port D bit 7
 }

}
Change the code to switch on/off 3 LEDs connected to bits 3, 5, and 7 of PortD. Code to switch on Bit 3 first, followed by Bit 5, then Bit 7. Then turn off the bits in the same order. Demonstrate the running circuit to a TA.

B. Polling a Timer
Like Part A, turn on/off the same LED by polling an internal timer, Timer1. Read Section 6.0 for information on Timer1. Timer1 has two bytes, TMR1L and TMR1H. You will write a code that initializes the timer bytes to zero, enables counting, and breaks when the timer reaches the highest value. Note that Register accesses take time. So poll TMR1L before checking TMR1H. The timer has a configuration byte, T1CON. To ensure the longest delay, set the prescale value to its maximum. The prescale value is the number of clock cycles per one count. Complete the following code skeleton, test it, and demonstrate to a TA.

//Lab 5 Part B Code

#include <htc.h> //header file

void poll_func(void){

 … complete this part …

}

//Main Program

void main(void){

T1CON = write a value ; //Disable Timer1

TRISD = write a value; //Configure PortD bit 7 to output

PIE1 = 0x00; //Disable Timer1 Interrupt

PIR1 = 0x00; //Clear Timer1 Interrupt Flag

TMR1H = write a value; //Clear Timer1

TMR1L = write a value; //Clear Timer1

PORTD = write a value; //Drive 0 to PortD bit 7 - Turn off LED

T1CON = write a value; //Enable Timer1 and set timer pre-scale value to

highest so that the timer increments by 1 for every 8 clock ticks

while(1){

 … complete this part …

 }

}
C. Receiving Interrupt from a Timer
Accomplish the same results as Part A and B, but use Interrupts to do so. You should enable interrupts through INTCON. The timer sends an interrupt when finished counting. When you receive this interrupt, the ISR should clear the timer values and the Timer1 interrupt flag. Complete the following code skeleton, test it, and demonstrate to a TA.

// Lab 5 Part C Code
#include <htc.h> //header file

interrupt void PIR1Interrupt(void){

int temp;

temp = PIR1 & 0x01; //Mask the bits to obtain first bit

if(temp == 1){

//Check if Timer1 interrupt is asserted

 … complete this part …

}

//Main Program

void main(void){

T1CON = Fill in a Value;
//Disable Timer1

TRISD = Fill in a Value;
//Configure PortD bit 7 to output

PIR1 = Fill in a value;
//Clear Timer 1 Interrupt Flag

PIE1 = Fill in a value;
//Enable Timer 1 Interrupt

INTCON = Fill in a value;
//enable interrupt

TMR1H = Fill in a value;
//Clear Timer 1 MSB

TMR1L = Fill in a value;
//Clear Timer 1 LSB

T1CON = Fill in a value;
//Enable Timer

PORTD = Fill in a value;
//Drive 0 to PortD bit 7 - Turn off LED

while(1){

 //Do Nothing

 }

}
Deliverables
1. Submit the three pieces of codes and answer the following questions.
2. In the polling and interrupt cases, after how many clock cycles (counts) the LED switches?

3. In your code, the microcontroller is continuously polling the timer. What do you think the optimum polling rate should be?

4. If more than one device is communicating with the microcontroller, how polling works?

5. If more than one device is communicating with the microcontroller, how interrupt works?

