Microprocessor Systems

97.461

Maitham Shams

Course Slide Presentations

Department of Electronics Carleton University

History of Computation

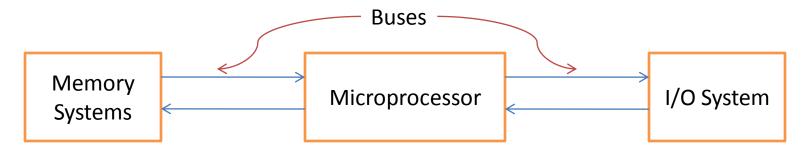
- Mechanical Age: B.C. to 1800s
 - 500 B.C. Babylonians invented abacus, first mechanical calculator
 - 1642 Blaise Pascal invented calculator using wheels and gears
 - 1823 Charles Babbage created Analytical Engine capable of storing data using punch cards
- Electrical Age: 1800s to 1970s
 - Triggered by advent of electric motor (conceived by Faraday)
 - Motor driven adding machines based on Pascal's idea

- 1896 Hollerith formed Tabulating Machine Company (Today's IBM)
- 1946 ENIAC (Electronics Numerical Integrator and Calculator First general purpose programmable electronic machine Used 17000 vacuum tubes, 500 miles of wires, weighed 30 tons. Performed 100K operations/second, programmed by rewiring)
- Integrated Circuits Age: 1960s to present
 - Triggered by development of transistor at Bell Labs, 1948
 - 1958 IC technology invented by Jack Kibly of Texas Instruments
 - 1971 World's first microprocessor, Intel 4004, 4-bit bus 4K 4-bit(nibble) memory, 50 KIPs, 2300 transistors, 10 μm technology
 - 1972 first 8-bit μP, Intel 8008, 16K bytes, 50 KIPs

- 1973 Intel 808, 64K bytes, 500 KIPS, 6000 transistors, 6 μm followed by other 8-bit μPs lke Motorola MC6800 (1974) and Z-8
- 1978 Intel 8086, 16-bit µP, 1M bytes, 2.5 MIPs
 Used 4-byts instruction cache to speed up execution time

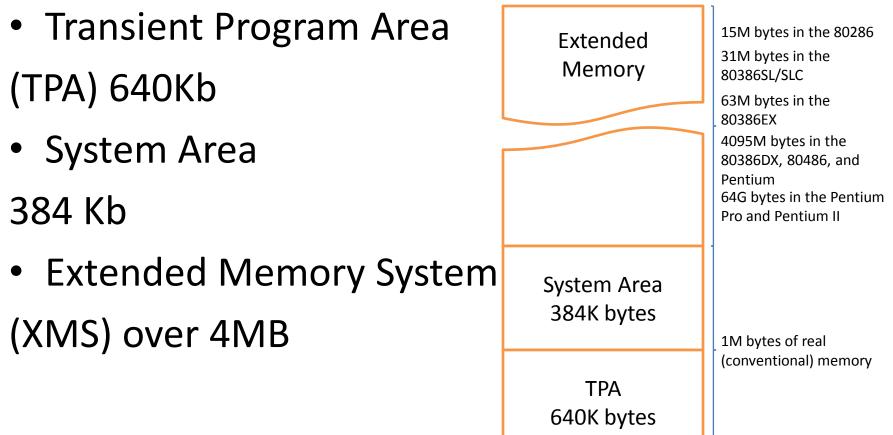
Base for 80286 µP, also 16-bit with 16M bytes

 – 1986 Intel 80386, 32-bit μP, 32-bit data and address busses

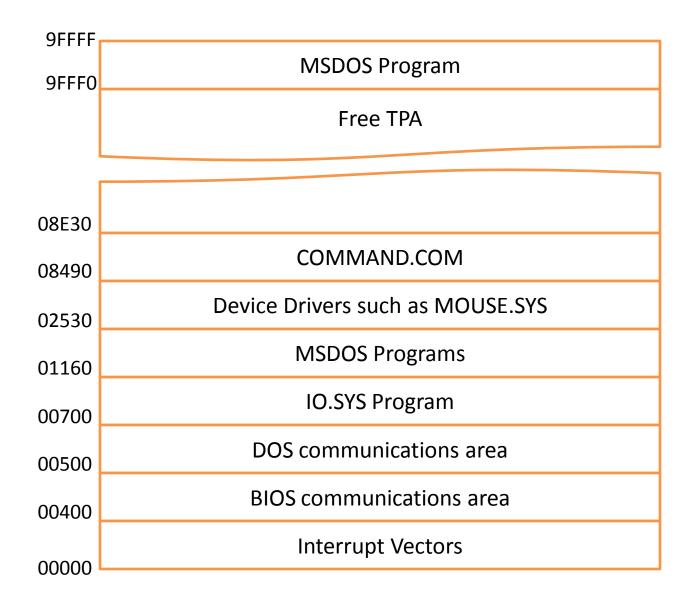

4G bytes, 16 to 33 MHz, 275000 transistors, 1 μm

- 1989 Intel 80486, like 80386 with numeric coprocessor. 4G bytes + 8Kb cache, 25 to 50 MHz, 1.2M transistors, 1 and 0.8 μm
- Advancement continues with Intel, AMD, Motorola, and other μPs

Reasons Behind µP Technology

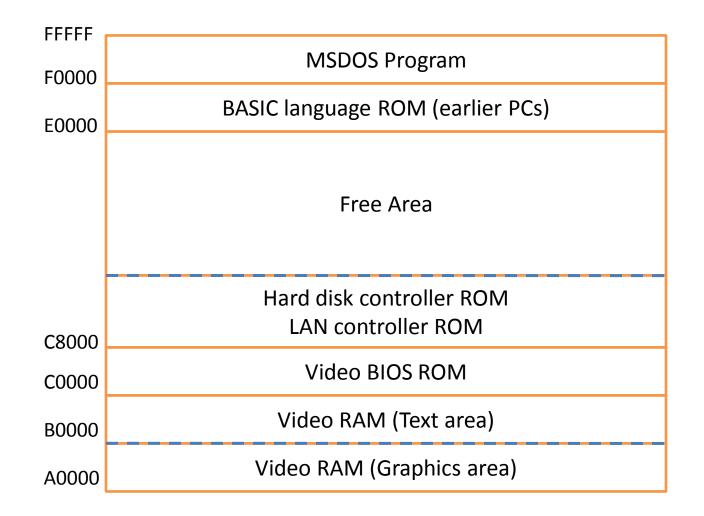

- Speed
 - Graphics, Numerical Analysis, CAD, and Signal Processing applications
- Convenience
 - Large memory, smaller size, and lower weight
- Power Dissipation
 - Portable computers and wireless services
- Reliability
 - Noise tolerance in adverse environments and temperatures
- Cost
 - Get more done for the money

µP BASED Computer Systems

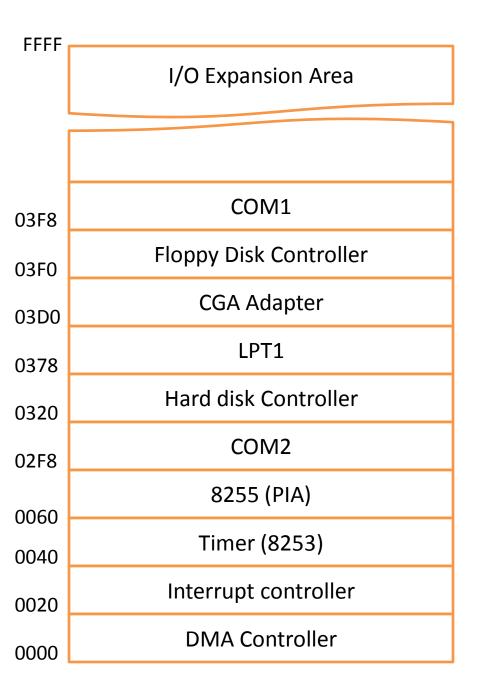


Dynamic RAM (DRAM) Static RAM (SRAM) Cache Read-Only (ROM) Flash Memory EEPROM 8086 8088 80186 80286 80386 80486 Pentium Pentium Pro Pentium II Printer Hard disk drive Mouse CD-ROM Drive Keyboard Monitor Scanner

Memory

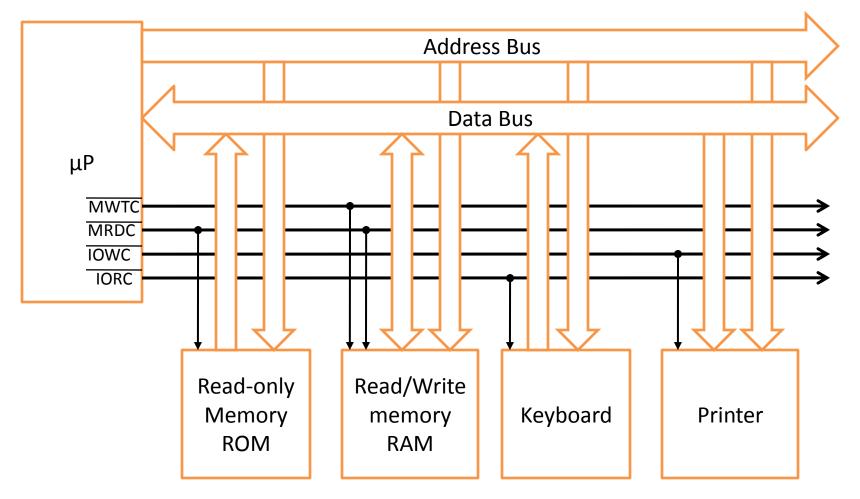


• Transient Program Area (TPA)


- Programs that control computer system (Operating Systems)
- Also contains data, drivers, and application programs
- Consists of RAM, ROM, EEPROM, and Flash Memory
- DOS controls memory organization and some I/O devices
- Interrupt Vectors contain addresses of interrupt service procedures
- BIOS (Basic I/O system) area controls I/O devices
- IO program allows use of keyboard, video display, printer, etc.
- Command program controls operation of computer through keyboard

System Area

• I/O Space


- Addresses I/O ports
- Up to 64K 8-bit devices

Microprocessor

- Data transfer between itself and memory or I/O system
 - Using data, address, and control buses
- Simple arithmetic and logic operations
 - Add, Sub, Mul, Div, AND, OR, NOT, NEG, Shift, Rotate
 - Data width: byte (8-bit), word (16-bit), and double word (32-bit)
- Program flow via simple decisions
 - Zero, Sign, Carry, Parity, Overflow
- Why is it so important?

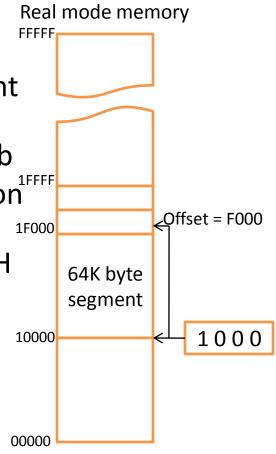
Computer System Block Diagram

- Bus is a common group of wires for interconnection
- Address Bus: 16-bit for I/O and 20 to 36-bit for memory
- Data Bus: 8 to 64-bit, the wider the bus, the more data can be transferred
- Control Bs: contains lines that selects the memory or I/O to perform a read or write operation
 - Four main control lines
 - MRDC' (memory read control)
 - MWTC' (memory write control)
 - IORC' (I/O read control)
 - IOWC' (I/O write control)

Intel Microprocessor Architecture

- Operation Modes
 - Real: uses 1st M byte of memory in all versions
 - Protected: uses all parts of memory in 80286 and above
- Register Types
 - Program Visible: used during application programs
 - Program Invisible: not directly addressable, but used by system
- Program Visible Registers
 - 4 Data Registers, 4 Pointer/Index Registers, 4-6
 Segment Registers, Instruction Pointer, and Flags

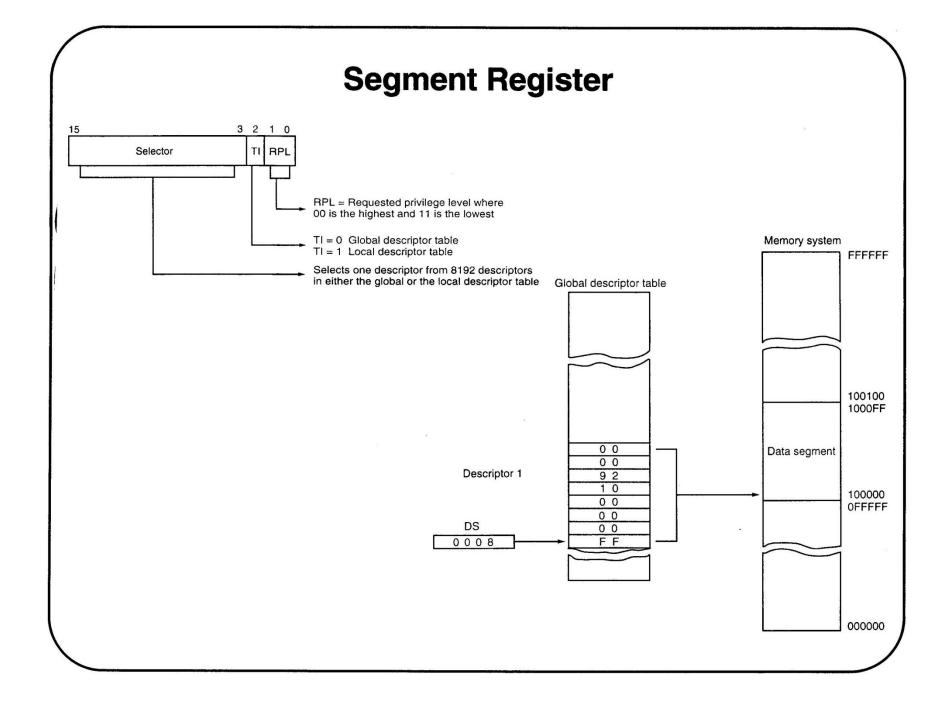
		Accumulator	Base index	Count	Data	Stack pointer	Base pointer	Destination index	Source index		Instruction pointer	Flags	Code	Data	Extra	Stack			
8-bit names		AL	BL	CL	DL		1123	 			2:2-8	8794)							
	16-bit names	-X-	- <u>8</u> -	-ŏ-	-ă-	SP	ВР	ā	SI	1.00	₫	FLAGS	 CS	DS	ES	SS	FS	GS	
	-	AH	BH	ъ	Н					20									
Special pur pose	For Mul										1993) 1994 1997 1997 1997 1997 1997 1997 1997		aperation y	add ress of	R	Heine	Segment Register	add-Pentium	
	Holds memory names	off set EAX	Count in EBX	Loop ECX	Used in Muly DivEDX	special reg.	~ -	points co memory location EDI	string ESI		Adresses next	Code Segment EFLAGS	candition of MP and control its a	ies Starting	Cade Cade	ber a pragram	Additional data	Additioned segment registers for 326)


- Compatibility is a successful strategy
 - Register A may be used as 8-bit (AH and AL), 16-bit
 (AX), and 32-bit (EAX) fir the later Pentium processors
 - e.g. ADD AL, AH; ADD DX, CX; ADD ECX, EBX
 - Instructions only affect the intended part of a register
 - Later μP versions support earlier version codes
- Some registers are Multipurpose, some are Special Purpose
 - Segment Registers generate memory addresses

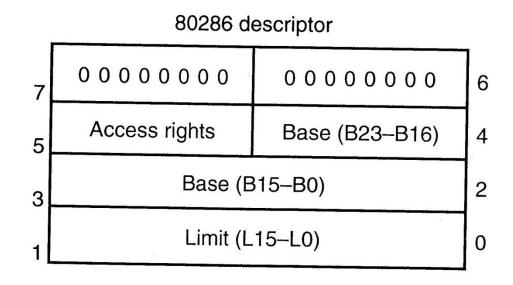
Nat Used	ID Flag, chuidicates	6 Virtual Interrupt Pending / 6 Virtual Interrupt Flag	B Alignment Check (486SX PP)	Virtual Ma	0 Resume execution after debugging	F Nested task (software) BI	E Highest = 00, Lawet = 11 B	12 I/O privilege level	I overflow for signed operation 6	5 Direction Plag, For DI/SI register S	© Interrupt flag, enable/disable INTR	» Trap Flag for debugging	L Sign flag, 1= '-', Ø= '+`		result = \$ > 2=1, result \$ \$ > 2=\$	+ Auxiliary carry	halds he carry	N & For odd parity, 1 for even parity	Parity = number of ones	O Holds Carry/borrow & indicates errors	
		VIP VIF	T	VMF		NT	IOP 1	IOP 0	0	D	1	т	S	Z		А		Р		с	
	-		•	4							· · ·		8	——8 038 —80	3028 6/89 486	86D	x	38			

Real Mode Memory Addressing

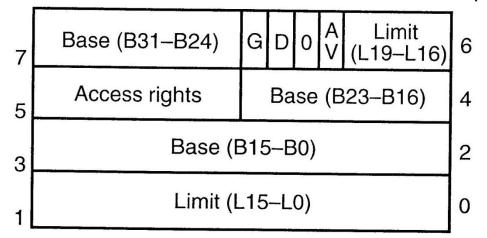
- Segment address located in a segment register; always appended with 0H
- Segments always have length of 64 Kb
- Offset or displacement selects location
 within 64 Kb of segment
 1F000
- e.g. 1000:2000 gives location 12000H
- Default Segment and Address Registers
 - e.g. code segment and instruction pointer CS:IP and stack segment and stack pointer SS:SP

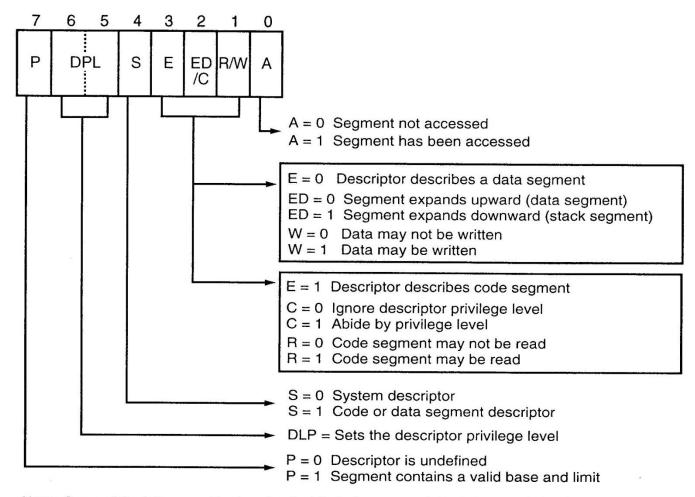


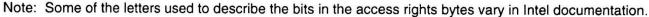
CS SS DS H 0001 H of L 200 H ω L Щ N 0 0 4 4 σ 1 1 Stack 0 0 0 Data Code DOS and drivers Memory Stack Code Data 00000 0A480 0A47F 0A0F0 0A0EF 090F0 0908F 0A280 0A27F FFFFF segment overlap Imaginary side view detailing OODO a ta D Sto B to X


Protected Mode Memory Addressing

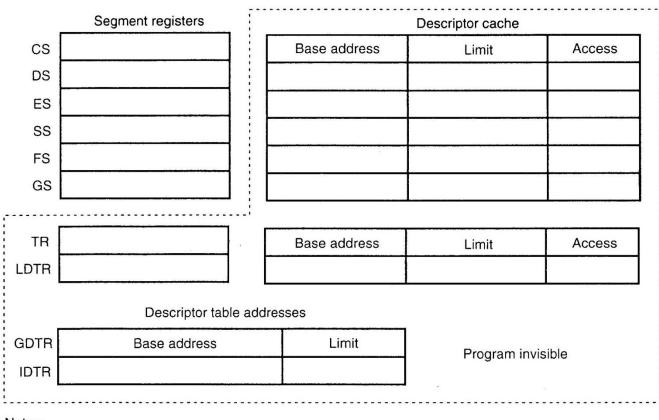
- Accessed via segment and offset address, but
 - Segment register contains a selector
 - Selector selects a descriptor from descriptor table
 - Descriptor: memory segment location, length, and access right
- Two types of descriptor tables
 - Global/system descriptors used for all programs
 - Local/application descriptors used for applications
 - Each descriptor is 8 bytes


- 16-bit segment register contains 3 parts
 - Left most 13 bits address a descriptor
 - TI bit access global (0) or local descriptor (1) table
 - Right most 2 bits select priority for memory segment access
- How many global and local descriptors in a table?
- How large is a global and a local descriptor table?
- How many memory segments are allowed?

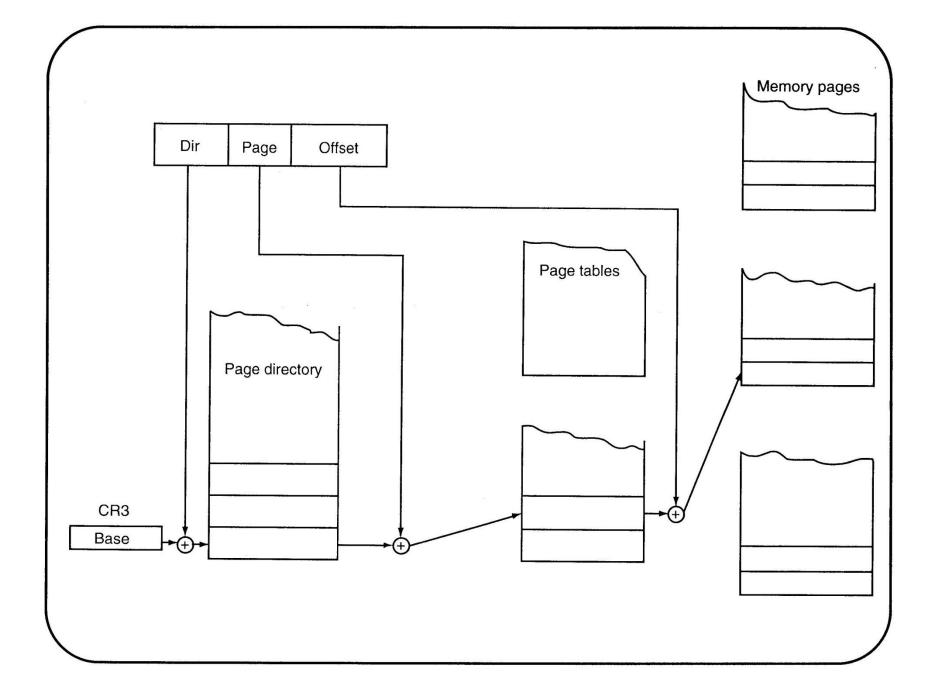

Descriptor Formats



80386/80486/Pentium/Pentium Pro/Pentium II descriptor


Access Right Byte

Program-Invisible Registers


- Each segment register contains a program-invisible portion
 - This register is re-loaded when segment register change
 - Contains base-address, limit, and access information
 - These registers also called descriptor cache
- Other program-invisible registers
 - GDTR (global descriptor table register) contain base address and limit for descriptor table
 - Location of local descriptor table is selected from global descriptor table using the selector held in LDTR (local descriptor table register)

- Notes:
 - 1. The 80286 does not contain FS and GS nor the program-invisible portions of these registers.
 - 2. The 80286 contains a base address that is 24-bits and a limit that is 16-bits.
 - 3. The 80386/80486/Pentium/Pentium Pro contain a base address that is 32-bits and a limit that is 20-bits.
 - 4. The access rights are 8-bits in the 80286 and 12-bits in the 80386/80486/Pentium.

Memory Paging

- Memory paging changes a linear address to physical
 - Linear address is produced by software
 - Page directory base is held in a control register (CR3)
 - Linear address is broken into 3 sections: directory, page table, offset
 - Page directory contains 1024 entries of 4 bytes each which addresses a page table that contains 1024 entries of 4 bytes each
 - Each memory page is 4K bytes
 - TLB (table look aside buffer) is a cache which contains the 32 most recent page translation addresses

Addressing Modes

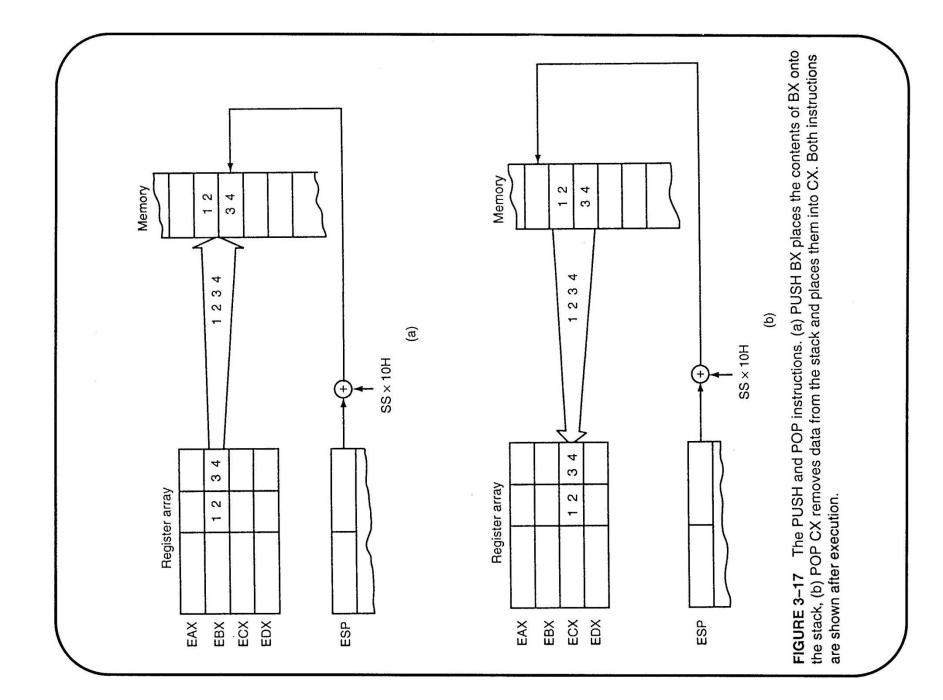
Data Addressing Modes

- Intel family supports 8 data addressing modes
- Modes differ in the location of data and address calculations
- All modes involve physical address generation
- Consider MOV opcode as example: MOV AX, BX
 - Opcode or operation code tells μP which operation to perform
 - Source operand is to the right
 - Destination operand is to the left

- Register Addressing: MOV CX, DX
 - Copy content of source register to destination register
 - Source and destination must be of the same size
- Immediate Addressing: MOV AL, 22H
 - Transfer the immediate data into destination register
 - This is called constant data, but data transferred from a register is a variable data
- Direct Addressing: MOV CX, LIST
 - Move a byte or word between a memory location and a register
 - Memory address, instead of data, appears in the instruction

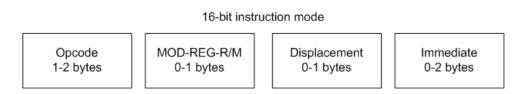
- Register Indirect Addressing: MOV AX, [BX]
 - Transfer data between a register and a memory location addressed by a register
 - Sometimes need using special assembler directives BYTE PTR, WORD PTR, DWORD PTR, when size is not clear
 - FOR example MOV DWORD PTR [DI], 10H instead of MOV [DI], 10H
- Base-plus-index Addressing: MOV [BX+DX], CL
 - Transfer data between a register and a memory location addressed by a base register and an index register
- Register Relative Addressing: MOV AX, [BX+4]
 - Move data between a register and a memory location addressed specified by a register plus a displacement

- Base relative-plus-index Addressing: MOV AX, ARRAY[BX+DI]
 - Transfer data between a register and a memory location specified by a base and index register plus a displacement
 - Another example is MOV AX, [BX+DI+4]
- Scaled-index Addressing: MOV EDX, [EAX+4*EBX]
 - Address in the second register is modified by a scale factor
 - Scale factor are 2, 4, or 8, word, double-word, and quad-word access, respectively
 - Only available in 80386 through μP
 - Other examples: MOV AL, [EBX+ECX] and MOV AL, [2*EBX]


Address Generation Type Instruction Destination Source Register Register Register MOV AX, BX вx ĂX Data Register MOV CH,3AH Immediate **3AH** ČН Memory Register Direct MOV [1234H],AX DS × 10H + DISP address 11234H ÂX 10000H + 1234H Memory Register **Register indirect** MOV [BX],CL $DS \times 10H + BX$ address CL 10000H + 0300H 10300H Memory address Register SP Base-plus-index MOV [BX+SI],BP $DS \times 10H + BX + SI$ 10000H + 0300H + 0200H 10500H Memory Register **Register relative** DS × 10H + BX + 4 _ 10000H + 0300H + 4 MOV CL,[BX+4] address 10304H CL Memory Register MOV ARRAY[BX+SI],DX Base relative-plus-index DS × 10H + ARRAY + BX + SI address ĎX 11500H 10000H + 1000H + 0300H + 0200H 1 Memory Register MOV [EBX+2 × ESI],AX $DS \times 10H + EBX + 2 \times ESI$ Scaled index address AX 10000H + 00000300H + 00000400H 10700H Notes: EBX = 00000300H, ESI = 00000200H, ARRAY = 1000H, and DS = 1000H

Program Memory-Addressing Modes

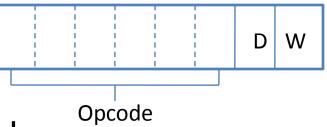
- Three forms, used with JMP and CALL instructions
- Direct Program Memory Addressing: LMP Label
 - Like GOTO or GOSUB in BASIC language
 - Allows going to any location in memory for next instruction
- Relative Program Memory Addressing: JMP [2]
 - Jump relative to instruction pointer (IP)
- Indirect Program Memory Addressing: JMP AX
 - Jump to current code segment location addressed by content of AX
 - Other examples: JMP [DI+2[] and JMP [BX]


Stack Memory-Addressing Modes

- Stack is a LIFO (last-in, first-out memory)
- Data are place by PUSH and removed by POP
 - Stack memory is maintained by stack segment register (ss) and stack pointer (sp)
 - When a word is pushed, high 8 bits are stored at SP-1
 low 8 bits are stored at SP-2, the SP is decremented by
 2
 - When a word is poped, low 8 bits are removed from location addressed by SP, high 8 bits are removed from location addressed by SP+1, then SP is incremented by 2

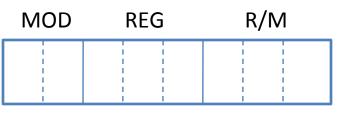
Instruction Encoding

- Assembler translates assembly code into machine language
- Machine language is the native binary code μP understands


32-bit instruction mode (80386, 80486, Pentium, Pentium Pro, or Pentium II only)

,, ,,					
Address Size Operand Size	Opcode	MOD-REG-R/M	Scaled Index	Displacement	Immediate
0-1 bytes 0-1 bytes	1-2 bytes	0-1 bytes	0-1 bytes	0-4 bytes	0-4 bytes

- Override Prefixes
 - First two bytes in 32-bit instructions:


Address size-prefix (67H) and Register size-prefix (66H)

 They toggle size of register and operand address from 16-bit to 32-bit or vice versa

- First byte of instruction: opcode
 - First 6 bits of instruction are the binary opcode
 - Direction bit (D) determines the direction of data flow
 - Width bit (W) determines data size: 0 for byte, 1 for word and double word

Second byte of instruction: MOD-REG-R/M

- MOD specifies addressing mode for instruction and whether displacement is present
- If MOD=11, then register addressing mode, else memory addressing mod
- In register addressing mode, R/M specifies a register
- In memory addressing mode, R/M selects a mode from table
- If D=1, data flow to REG from R/M, if D=0 data flow to R/M from REG

TABLE 4–1 MOD field for the 16-bit instruction mode.

Function

00 No displacement

MOD

01 8-bit sign-extended displacement

10 16-bit displacement

11 R/M is a register

TABLE 4–2MOD field forthe 32-bit instruction mode(80386–Pentium II only).

MOD	Function
00	No displacement
01	8-bit sign-extended displacement
10	32-bit displacement
11	R/M is a register

TABLE 4–3 REG and R/M (when MOD = 11)

assignments.

Code	W = 0 (Byte)	W = 1 (Word)	W = 1 (Doubleword)
000	AL	AX	EAX
001	CL	CX	ECX
010	DL	DX	EDX
011	BL	BX	EBX
100	AH	SP	ESP
101	СН	BP	EBP
110	DH	SI	ESI
111	BH	DI	EDI

TABLE 4-4 16-bit R/M memory-addressing modes.

R/M Code	Addressing Mode		
000	DS:[BX+SI]		
001	DS:[BX+DI]		
010	SS:[BP+SI]		
011	SS:{BP+DI]		
100	DS:[SI]		
101	DS:[DI]		
110	SS:[BP]*		
111	DS:[BX]		
	and the second		

*Note: See text section, Special Addressing Mode.

TABLE 4-5 32-bit addressing modes selected by R/M.

R/M Code	Function
000	DS:[EAX]
001	DS:[ECX[
010	DS:[EDX]
011	DS:[EBX]
100	Uses scaled-index byte
101	SS:[EBP]*
110	DS:[ESI]
111	DS:[EDI]

*Note: See text section, Special Addressing Mode.

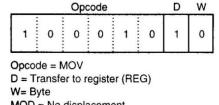
TABLE 4-6 Segment register selection.

Code	Segment Register
000	ES
001	CS*
010	SS
011	DS
100	FS
101	GS

*Note: MOV CS,R/M(16) and POP CS are not allowed by the microprocessor. The FS and GS segments are only avail-able to the 80386–Pentium II microprocessors.

FIGURE 4-8 The scaledindex

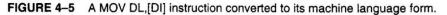
ЭX	byte.	
ЭX	byte.	


S S	Index	Base
ss 00 = × 1 01 = × 2		
$10 = \times 4$ $11 = \times 8$		

Examples

		Ор	co	de			D	•	W	N	IOD		F	REG			R/	M
1	 0	 0		0	 1	0	1		1	1	1	1		0	1	1	0	

D = Transfer to register (REG) W = WordMOD = R/M is a register REG = BP R/M = SP


FIGURE 4-4 The 8BEC instruction placed into Byte 1 and 2 formats from Figures 4–2 and 4–3. This instruction is a MOV BP,SP.

MOD	REG	R/M
0 0	0 1 0	1 0 1

0 0

MOD = No displacement REG = DL R/M = DS:[DI]

Intel Family Instruction Set

- PUSH and POP for stack operations
- Load Effective Address
 - LEA loads a 16- or 32-bit register with offset address
 - LDS, LES, LFS, LGS, and LSS load a 16- or 32-bit register with offset address and a corresponding segment register DS, ES, FS, GS, or SS with a segment address
- String Data Transfer
 - Uses destination index (DI) and source index (SI) registers
 - Two modes: auto-increment (D=0) and auto-decrement (D=1)

- By default DI access data in extra segment and SI in data segment
- LODS loads AL, AX, or EAX with data addressed by SI in data segment and increments or decrements SI
- STOS stores AL, AX or EAX at the extra segment addressed by DI and increments or decrements DI
- REPS STOS repeats the instruction the number of times stored in CX, i.e. terminates when CX=0
- MOVS is the only instruction that transfers data between memory locations
- INS transfers data from I/O device into extra segment addressed by DI; I/O address is in DX register
- OUTS transfers data from data segment memory addressed by SI to an I/O device addressed by DX

- For inputting or outputting a block of data INS and OUTS are repeated
- Miscellaneous Data Transfer Instructions
 - XCHG exchange contents of a register with any other register or memory location
 - IN and OUT instructions perform I/O operations
 - Two I/O addressing modes: fixed-port and variable port
 - In fixed-port addressing the port address appears in instructions, e.g. when using ROM
 - In variable-port addressing I/O address in a register
 - MOVSX is move and sign extend; MOVZX is move and zero-extend

- CMOV new to Pentiums moves data only if condition is true; conditions are checked for some prior instruction results
- Segment Override Prefix
 - May be added to any instruction to deviate from default segment
- Arithmetic and Logic Instructions
 - ADD simply adds two numbers and sets the flags
 - ADC adds also the carry flag (C)
 - INC adds one to a register or memory location
 - SUB subtracts two and sets the flags
 - SBB subtract-with-borrow also subtracts (C) from difference

- DEC subtracts one from a register or memory location
- CMP is a subtract that only changes the flag bits; this is normally followed by a conditional jump instruction
- Multiplication can be unsigned (MUL) or signed (IMUL)
- Division can also be unsigned (DIV) or signed (IDIV)
- Basic logic instructions are AND, OR, XOR, NOT
- TEST is like CMP, but for bits zero flag Z=1 if bit is 0 and Z=0 if bit is 1
- TEST performs AND operation, so TEST AL,1 tests the first bit and TEST AL,128 tests the last bit of a byte in AL
- NOT is logical inversion or one's complement

– NEG is arithmetic sign inversion or two's complement

- Shift and Rotate Instructions
 - SHL and SHR are logical shift left and right that insert 0 and put one bit in the carry flag C
 - SAL and SAR are arithmetic shift operations; SAL is similar to SHL, but SAR is different than SHR because it inserts the sign bit instead of 0
 - Rotate instructions rotate data from one end to another, ROL (rotate left) and ROR (rotate right), or through the carry flag (RCL and RCR)
- String Data Comparing
 - String scan instruction SCAS compares register A with memory
 - Compare string instruction CMPS compares two memory locations

Symbolic	Example	Note
PUSH reg16 PUSH reg32 PUSH mem16 PUSH mem32 PUSH seg PUSH imm8 PUSHW imm16 PUSHD imm32 PUSHA PUSHA PUSHAD PUSHF PUSHF	PUSH BX PUSH EDX PUSH WORD PTR [BX] PUSH DWORD PTR [EBX] PUSH DS PUSH ',' PUSHW 1000H PUSHD 20 PUSHA PUSHAD PUSHF PUSHFD	16-bit register 32-bit register 16-bit pointer 32-bit pointer Segment register 8-bit immediate 16-bit immediate 32-bit immediate Save all 16-bit registers Save all 32-bit registers Save flags Save EFLAGs

4

Example	•	Note
POPCX	16-bit	register
POP EBP	32-bit	register
POP WORD PTR[BX+1]	16-bit	pointer
POP DATA3	32-bit	memory address
POP FS	Segm	ent register
POPA	Pop a	Il 16-bit registers
POPAD	Pop a	all 32-bit registers
POPF	Pop f	lags
POPFD		EFLAGs
	POP CX POP EBP POP WORD PTR[BX+1] POP DATA3 POP FS POPA POPAD POPF	POP CX 16-bit POP EBP 32-bit POP WORD PTR[BX+1] 16-bit POP DATA3 32-bit POP FS Segm POPA Pop a POPAD Pop a POPF Pop f

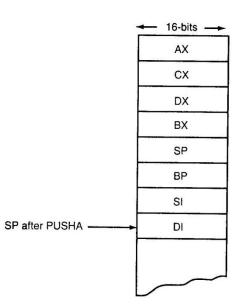
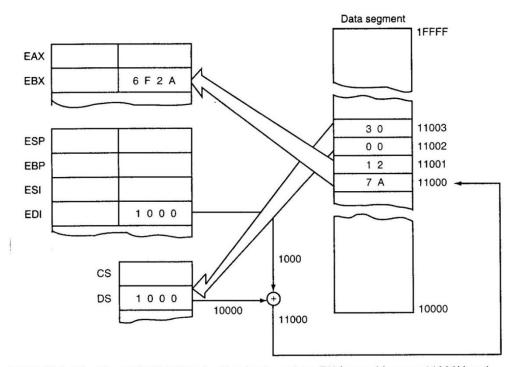



FIGURE 4–12 The operation of the PUSHA instruction, showing the location and order of stack data. TABLE 4-9 Load-effective address instructions.

Assembly Language	Operation
LEA AX,NUMB	Loads AX with the address of NUMB
LEA EAX,NUMB	Loads EAX with the address of NUMB
LDS DI,LIST	Loads DS and DI with the 32-bit contents of data segment memory location LIST
LDS EDI,LIST	Loads DS and EDI with the 48-bit contents of data segment memory location LIST
LES BX,CAT	Loads ES and BX with the 32-bit contents of data segment memory location CAT
LFS DI, DATA1	Loads FS and DI with the 32-bit contents of data segment memory location DATA1
LGS SI, DATA5	Loads GS and SI with the 32-bit contents of data segment memory location DATA5
LSS SP,MEM	Loads SS and SP with the 32-bit contents of memory location MEM

FIGURE 4–15 The LDS BX,[DI] instruction loads register BX from addresses 11000H and 11001H and register DS from locations 11002H and 11003H. This instruction is shown at the point just before DS changes to 3C00H and BX changes to 127AH.

TABLE 4–10Forms of theLODS instruction.

Assembly Language	Operation					
LODSB LODSW LODSD LODS LIST LODS DATA1 LODS FROG	$\begin{array}{l} AL = DS:[SI]; SI = SI \pm \mathbf{\hat{1}} \\ AX = DS:[SI]; SI = SI \pm 2 \\ EAX = DS:[SI]; SI = SI \pm 4 \\ AL = DS:[SI]; SI = SI \pm 1 \ (\text{if LIST} \\ AX = DS:[SI], SI = SI \pm 2 \ (\text{if DAT} \\ EAX = DS:[SI]; SI = SI \pm 4 \ (\text{if FR} \\ \end{array}$	A1 is a word)			Data segment	1FFFF
Note: The segment can be LODS ES:DATA4.	overridden with a segment override prefix	x as in]
	EAX	AC	3 2	A 0 3 2	A 0 3 2	11001 11000 -
	ESP]
	EBP					
	ESI	1 0	0 0	-		
	EDI					10000
		CS DS 1 0	0 0	1000 ► (†) 1100	00	

FIGURE 4–16 The operation of the LODSW instruction if DS = 1000H, D = 0, 11000H = 32, and 11001H = A0. This instruction is shown after AX is loaded from memory, but before SI increments by 2.

TABLE 4–11Forms of theSTOS instruction.

Assembly Language	Operation
STOSB	ES:[DI] = AL; DI = DI ± 1
STOSW	$ES:[DI] = AX; DI = DI \pm 2$
STOSD	$ES:[DI] = EAX; DI = DI \pm 4$
STOS LIST	$ES:[DI] = AL; DI = DI \pm 1$ (if list is a byte)
STOS DATA3	ES:[DI] = AX; DI = DI ± 2 (if DATA3 is a word)
STOS DATA4	ES:[DI] = EAX; DI = DI \pm 4 (if DATA4 is a doubleword)

TABLE 4-12 Common operand operators.

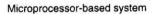
Operator	Example	Comment
+	MOV AL,6+3	Copies 9 into AL
_	MOV AL,8-2	Copies 6 into AL
*	MOV AL,4*3	Copies 12 into AL
1	MOV AX.12/5	Copies 2 into AX (remainder is lost)
MOD	MOV AX, 12 MOD 7	Copies 5 into AX (quotient is lost)
AND	MOV AX.12 AND 4	Copies 4 into AX (1100 AND 0100 = 0100)
OR	MOV AX,12 OR 1	Copies 13 into AX (1100 OR 0001 = 1101)
NOT	MOV AL,NOT 1	Copies 254 into AL (0000 0001 NOT equals 1111 1110 or 254)

TABLE 4–13 Forms of the MOVS instruction.

Assembly Language	Operation
MOVSB	ES:[DI] = DS:[SI]; DI = DI \pm 1; SI = SI \pm 1 (byte transferred)
MOVSW	ES:[DI] = DS:[SI]; DI = DI ± 2 ; SI = SI ± 2 (word transferred)
MOVSD	ES:[DI] = DS:[SI]; DI = DI ± 4 ; SI = SI ± 4 (doubleword transferred)
MOVS BYTE1, BYTE2	ES:[DI] = DS:[SI]; DI = DI \pm 1; SI = SI \pm 1 (if BYTE1 and BYTE2 are bytes)
MOVS WORD1,WORD2	ES:[DI] = DS:[SI]; DI = DI ± 2 , SI = SI ± 2 (if WORD1 and WORD2 are words)
MOVS DWORD1, DWORD2	ES:[DI] = DS:[SI]; DI = DI \pm 4; SI = SI \pm 4 (if DWORD1 and DWORD2 are doublewords)

TABLE 4–14 Forms of the INS instruction. .	Assembly Language	Operation
	INSB	$ES:[DI] = [DX]; DI = DI \pm 1$ (byte transferred)
	INSW	$ES:[DI] = [DX]; DI = DI \pm 2$ (word transferred)
	INSD	$ES:[DI] = [DX]; DI = DI \pm 4$ (doubleword transferred)
	INS LIST	$ES:[DI] = [DX]; DI = DI \pm 1$ (if LIST is a byte)
	INS DATA4	$ES:[DI] = [DX]; DI = DI \pm 2$ (if DATA4 is a word)
	INS DATA5	ES:[DI] = [DX]; DI = DI \pm 4 (if DATA5 is a doubleword)
	<i>Note:</i> [DX] indicates that D available on the 8086/808	DX contains the I/O device address. These instructions are not 8 microprocessors.
TABLE 4–15 Forms of the OUTS instruction.		
	available on the 8086/808	8 microprocessors. Operation
	available on the 8086/808 Assembly Language	8 microprocessors. <i>Operation</i> [DX] = DS:[SI]; SI = SI ± 1 (byte transferred)
	Available on the 8086/808	8 microprocessors. Operation
	Assembly Language	8 microprocessors. Operation [DX] = DS:[SI]; SI = SI ± 1 (byte transferred) [DX] = DS:[SI]; SI = SI ± 2 (word transferred)
	Assembly Language OUTSB OUTSW OUTSD	B microprocessors. Deration [DX] = DS:[SI]; SI = SI ± 1 (byte transferred) [DX] = DS:[SI]; SI = SI ± 2 (word transferred) [DX] = DS:[SI]; SI = SI ± 4 (doubleword transferred)

Note: [DX] indicates that DX contains the I/O device address. These instructions are not available on the 8086/8088 microprocessors.


TABLE 4–16 Forms of the XCHG instruction.

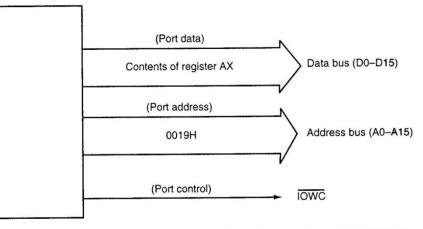

Operation
Exchanges the contents of AL with CL
Exchanges the contents of CX with BP
Exchanges the contents of EDX with ESI
Exchanges the contents of AL with data segment memory location DATA2

TABLE 4-17	IN and OUT
instructions.	

Assembly Language	Operation		
IN AL,p8	8-bits are input to AL from I/O port p8		
IN AX,p8	16-bits are input to AX from I/O port p8		
IN EAX,p8	32-bits are input to EAX from I/O port p8		
IN AL,DX	8-bits are input to AL from I/O port DX		
IN AX,DX	16-bits are input to AX from I/O port DX		
IN EAX.DX	32-bits are input to EAX from I/O port DX		
OUT p8,AL	8-bits are output from AL to I/O port p8		
OUT p8,AX	16-bits are output from AX to I/O port p8		
OUTp8,EAX	32-bits are output from EAX to I/O port p8		
OUT DX,AL	8-bits are output from AL to I/O port DX		
OUT DX.AX	16-bits are output from AX to I/O port DX		
OUT DX.EAX	32-bits are output from EAX to I/O port DX		

Note: p8 = an 8-bit I/O port number and DX = the 16-bit port address held in DX.

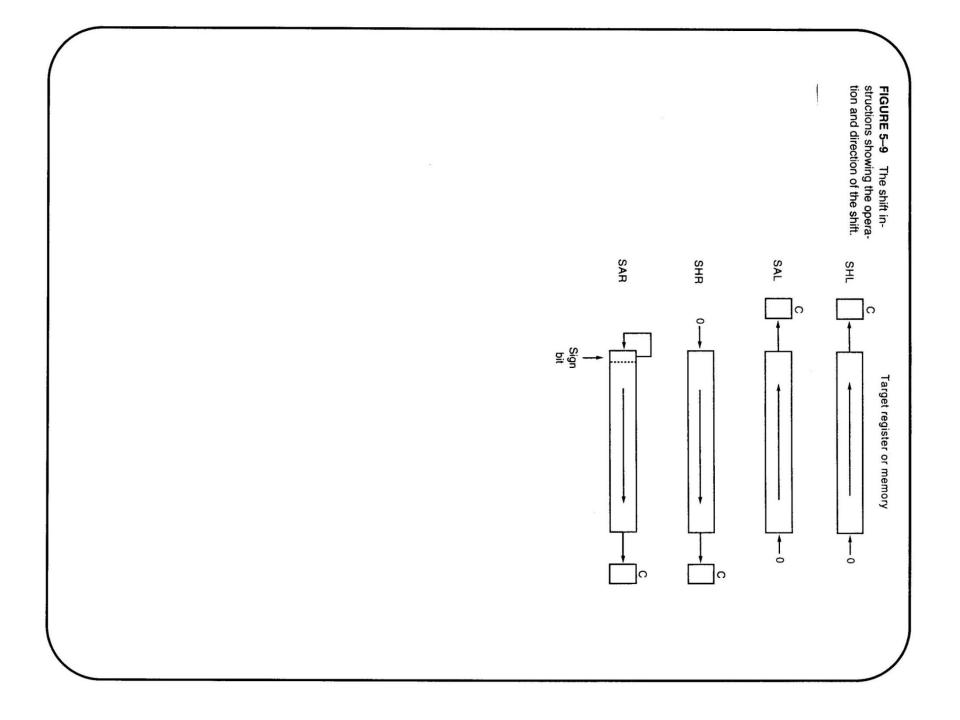
FIGURE 4–18 The signals found in the microprocessor-based system for an OUT 19H,AX instruction.

and MOVZX instructions.	Assembly Language	Operation
	MOVSX CX,BL	Sign-extends BL into CX
	MOVSX ECX,AX	Sign-extends AX into ECX
	MOVSX BX, DATA1	Sign-extends the byte at DATA1 into BX
	MOVSX EAX,[EDI]	Sign-extends the word at the data segment memory location addressed by EDI into EAX
	MOVZX DX,AL	Zero-extends AL into DX
	MOVZX EBP,DI	Zero-extends DI into EBP
	MOVZX DX,DATA2	Zero-extends the byte at data segment memory location DATA2 into DX
	MOVZX EAX, DATA3	Zero-extends the word at data segment memory location DATA3 into EAX

TABLE 4-19 The conditional move instructions.

Assembly Language	Condition Tested	Operation			
CMOVB	C = 1	Move if below			
CMOVAE	C = 0	Move if above or equal	1		
CMOVBE	Z = 1 or C = 1	Move if below or equal	TAB	LE 4–20 Instructions	
CMOVA	Z = 0 and $C = 0$	Move if above	that	include segment override	
CMOVE or CMOVZ	Z = 1	Move if equal or set if zero	prefi	xes.	
CMOVNE or CMOVNZ	Z = 0	Move if not equal or set if not zero			
CMOVL	S <> 0	Move if less than	A		
CMOVLE	Z = 1 or S <> 0	Move if less than or equal	Assembly Language	Segment Accessed	Default Segment
CMOVG	Z = 0 and $S = 0$	Move if greater than	MOV AX, DS:[BP]	Data	Stack
CMOVGE	S = 0	Move if greater than or equal	MOV AX, ES:[BP]	Extra	Stack
CMOVS	S = 1	Move if sign (negative)	MOV AX,SS:[DI]	Stack	Data
CMOVNS	S = 0	Move if no sign (positive)	MOV AX,CS:LIST	Code	Data
CMOVC	C = 1	Move if carry	MOV AX, ES:[SI]	Extra	Data
CMOVNC	C = 0	Move if no carry	LODS ES:DATA1	Data	Extra
CMOVO	O = 1	Move if overflow	MOV EAX, FS: DATA2	Data	FS
CMOVNO	O = 0	Move if no overflow	MOV BL, GS: [ECX]	Data	GS
CMOVP or CMOVPE	P = 1	Move if parity or set if parity even		Jula	45
CMOVNP or CMOVPO	P = 0	Move if no parity or set if parity odd			

	Operation
ADD AL, BL	AL = AL + BL
	CX = CX + DI
ADD EBP,EAX	EBP = EBP + EAX
ADD CL,44H	CL = CL + 44H
ADD BX,245FH	BX = BX + 245FH
ADD EDX,12345H	EDX = EDX + 00012345H
ADD [BX],AL	AL adds to the contents of the data segment memory location addressed by BX with the sum stored in the same memory location
ADD CL,[BP]	The byte contents of the stack segment memory location addressed by BP add to CL with the sum stored in CL
ADD AL,[EBX]	The byte contents of the data segment memory location addressed by EBX add to AL with the sum stored in AL
ADD BX,[Si + 2]	The word contents of the data segment memory location addressed by the sum of SI plus 2 add to BX with the sum stored in BX
ADD CL,TEMP	The byte contents of the data segment memory location TEMP add to CL with the sum stored in CL
ADD BX,TEMP[DI]	The word contents of the data segment memory location addressed by TEMP plus DI add to BX with the sum stored in BX
ADD [BX + DI],DL	DL adds to the contents of the data segment memory location addressed by BX plus DI with the sum stored in the same memory location
ADD BYTE PTR [DI],3	A 3 adds to the byte contents of the data segment memory location addressed by DI
ADD BX,[EAX + 2*ECX]	The word contents of the data segment memory location addressed by the sum of 2 times ECX plus EAX add to BX with the sum stored in BX
TABLE 5-3 Add-	Add-with-carry instructions.
Assembly Language	e Operation
ADC AL,AH	AL = AL + AH + carry
ADC CX, BX	CX = CX + BX + carry
ADC EBX, EDX	EBX = EBX + EDX + carry
ADC DH,[BX]	The byte contents of the data segment memory location addressed by BX add to DH with carry with the sum stored in DH
ADC BX,[BP + 2]	The word contents of the stack segment memory location addressed by BP plus 2 add to BX with carry with the sum stored in BX
ADC ECX,[EBX]	The doubleword contents of the data segment memory location addressed by EBX add to ECX with carry with the sum stored in ECX


Assemi INC BL INC SP INC EAX INC BYTI	Assembly Language	Oneration
INC BL INC SP INC EAX INC BYT		Aprimius
INC SP INC EA INC BYT INC WO		BL = BL + 1
INC EAX INC BYT		SP = SP + 1
INC BYT		EAX = EAX + 1
INC WO	INC BYTE PTR [BX]	Adds 1 to the byte contents of the data segment memory location addressed by BX
	INC WORD PTR [SI]	Adds 1 to the word contents of the data segment memory location addressed by SI
INC DW	INC DWORD PTR [ECX]	Adds 1 to the doubleword contents of the data segment memory location addressed by ECX
INC DATA1	A1	Increments the contents of data segment memory location DATA1
TABLE 5-4	5-4 Subtraction instructions.	istructions.
Assemt	Assembly Language	Operation
SUB CL, BL	-,BL	CL = CL - BL
SUB AX,SP	<,SP	AX = AX - SP
SUB E(SUB ECX, EBP	ECX = ECX – EBP
SUB DH,6FH	H,6FH	DH = DH – 6FH
SUB A)	SUB AX,0CCCCH	AX = AX - CCCCH
SUB E	SUB ESI,2000300H	ESI = ESI - 2000300H
SUB [DI],CH	I),CH	Subtracts the contents of CH from the contents of the data segment memory location addressed by DI
SUB CH,[BP]	H,[BP]	Subtracts the byte contents of the stack segment memory location addressed by BP from CH
SUB A	SUB AH, TEMP	Subtracts the byte contents of the data segment memory location TEMP from AH
SUB DI	SUB DI,TEMP[ESI]	Subtracts the word contents of the data segment memory location addressed by TEMP plus ESI from DI
SUB E	SUB ECX,DATA1	Subtracts the doubleword contents of the data segment memory location addressed by DATA1 from ECX
TABLE 5-5	5-5 Decrement instructions.	structions.
Assen	Assembly Language	Operation
DEC BH		BH = BH - 1
DECCX		CX = CX - 1
DEC EDX	×	EDX = EDX - 1
DECBY	DEC BYTE PTR [DI]	Subtracts 1 from the byte contents of the data segment memory location addressed by DI
DEC W(DEC WORD PTR[BP]	Subtracts 1 from the word contents of the stack segment memory location addressed by BP
DEC DV	DEC DWORD PTR[EBX]	Subtracts 1 from the doubleword contents of the data segment memory location addressed by EBX
DEC NUMB	MB	Subtracts 1 from the contents of the data segment memory location NUMB

Assembly Language Corration CMP CL,BL CL - BL CMP EX,SP XX - SP CMP EX,SP XX - SP CMP FX,SD0H XX - SP CMP EX,SD0H XX - SP CMP FX,SD0H XX - SP CMP FX,SD0H XX - SP CMP PX,FIENP XP experiments from the contents of the data segment memory location addresses by BP subtract from CL. CMP DI,TEMP[BX] The word contents of the data segment memory location addresses by SP subtract from AL. CMP DI,TEMP[BX] The word contents of the data segment memory location addresses by VP the sum of EDI plus ESI subtract from AL. CMP DI,TEMP[BX] The word contents of the data segment memory location addresses by VP the sum of EDI plus ESI subtract from AL. CMP LI,EDI + ESI The sum of EDI plus ESI subtract from AL. CMP LL, EDI + ESI The sum of EDI plus ESI subtract from AL. CMP LL, EDI + ESI The sum of EDI plus ESI subtract from AL. CMP L, EDI + ESI AL, EDI + ESI MUL CL AL, EDI + ESI MUL DH AL is multiplied by PL; the signed product is in AX. MUL DH AL is multiplied by PL; the unsigned product is in AX. MUL DH AL is multiplied by DF; the unsigned product is in AX. </th <th>TABLE 5-7 Compariso</th> <th>Comparison instructions.</th>	TABLE 5-7 Compariso	Comparison instructions.
SL SP SP SP SP CH ESI EDI + ESI EDI + ESI ESI ESI ESI ESI ESI ESI ESI ESI ESI	Assembly Language	Operation
SP 2000H CH CH EMP[BX] EMP[BX] EDI + ESI] EDI + ESI] EDI + ESI] anguage anguage anguage o 32-bit multiplica in ultiplica anguage ABPTR[SI] PTR[SI] PTR[SI] PTR[SI] PTR[SI]	CMP CL,BL	CL – BL
FESI EDI + ESI EDI + ESI EDI + ESI EDI + ESI EDI + ESI EDI + ESI anguage anguage 16-bit multiplica 16-bit multiplica	CMP AX,SP	AX – SP
2000H AX CH CH CH EMP[BP] Th EMP[BX] Th EMP[BX] Th by EDI + ESI] by by anguage anguage AX 16-bit multiplicatio 16-bit multiplicatio AX AX AX AX AX AX AX AX AX AX AX AX AX	CMP EBP, ESI	EBP – ESI
CH EMP[BX] EMP[BX] EDI + ESI] EDI + ESI] EDI + ESI] anguage anguage anguage anguage o 32-bit multiplica 'Language 'Language 'Language	CMP AX,2000H	AX – 2000H
BPJ Th EMP[BX] by EDI + ESI] by by EDI + ESI] Th by by anguage anguage anguage A A A A A A A A A A A A A A A A A A A	CMP [DI],CH	CH subtracts from the contents of the data segment memory locatic addressed by DI
TEMP EMP Th su EMP[BX] Th by by BEDI + ESI] by by anguage anguage anguage A A A A A A A A A A A A A A A A A A A	CMP CL,[BP]	The byte contents of the stack segment memory location addressed by BP subtract from CL
EMP[BX] Th EDI + ESI] by by anguage anguage anguage A thultiplicatic 16-bit multiplicatic 16-bit multiplicatic 16-bit multiplicatic 16-bit multiplicatic 16-bit multiplicatic A A A A A A A A A A A A A A A A A A A	CMP AH, TEMP	The byte contents of the data segment memory location TEMP subtract from AH
EDI + ESI) Th by anguage anguage 16-bit multiplicatio 16-bit multiplicatio A A A A A A A A A A A A A A A A A A A	CMP DI,TEMP[BX]	The word contents of the data segment memory location addressed by the sum of TEMP plus BX subtract from DI
 8 -bit multiplicatio anguage 16-bit multiplicatio 16-bit multiplicatio 16-bit multiplicatio 0 32-bit multiplica 10 0 10 10 0 10 10 10 0 11 10 10 0 12 10 10 10 0 14 10 10 0 15 10 10 0 15 10 10 0 16 10 10 0 17 10 10 0 16 10 10 0 17 10 10 0 18 10 0 18	CMP AL,[EDI + ESI]	The byte contents of the data segment memory location addressed by the sum of EDI plus ESI subtract from AL
anguage E PTR[BX] 16-bit multiplicatio 16-bit multiplicatio A A A A A A A A A A A A A A A A A A A	i	cation instructions.
E PTR[BX] 16-bit multiplicatio 16-bit multiplicatio A A A A A A A A A A A A A	Assembly Language	Operation
E PTR[BX] 16-bit multiplicatic anguage PTR[SI] A) A) A) A) A) A) A) A) A) A)	MUL CL	AL is multiplied by CL; the unsigned product is in AX
E PTR[BX] 16-bit multiplicatio 16-bit multiplicatio anguage A A A A A A A A A A A A A	IMUL DH	AL is multiplied by DH; the signed product is in AX
16-bit multiplicatio anguage A) A A) A A) A A) A A) A A) A A) A A)	IMUL BYTE PTR[BX]	AL is multiplied by the byte contents of the data segment memon location addressed by BX; the signed product is in AX
16-bit multiplication anguage AX AX AX AX AX AX AX Incation AX Incation AX Incation AX AX AX AX AX AX AX AX AX AX AX AX AX	MUL TEMP	AL is multiplied by the byte contents of the data segment memory location addressed by TEMP; the unsigned product is in AX
anguage AX AX AX AX AX AX AX Ioca Ioca Ioca Ioca Ioca Ioca Ioca Ioca		cation instructions.
AX AX AX AX AX AX CX]	Assembly Language	
AX AX AX AX AX CX Boce ECX		
AX loca	IMUL DI	AX is multiplied by CX; the unsigned product is in DX–AX AX is multiplied by DI; the signed product is in DX–AX
32-bit multiplicati anguage D PTR[ECX]	MUL WORD PTR[SI]	AX is multiplied by the word contents of the data segment memory location addressed by SI; the unsigned product is in DX-AX
Jy Language DRD PTR[ECX]	1	blication instructions.
ORD PTR[ECX]	Assembly Language	Operation
DRD PTR[ECX]	MUL ECX	EAX is multiplied by ECX; the unsigned product is in EDX-EAX
	IMUL EDI	EAX is multiplied by EDI; the signed product is in EDX-EAX
	MUL DWORD PTR[ECX]	EAX is multiplied by the doubleword contents of the data segment memory location addressed by ECX; the unsigned product is in EDX-EAX

Assen	Assembly Language	Operation
DIV CL	۲.	AX is divided by CL; the unsigned quotient is in AL and the remainder is in AH
IDIN BI	В	AX is divided by BL; the signed quotient is in AL and the remainder is in AH
DIVE	DIV BYTE PTR[BP]	AX is divided by the byte contents of the stack segment memory location addressed by BP; the unsigned quotient is in AL and the remainder is in AH
TABL	TABLE 5-12 16-bit divi	16-bit division instructions.
Asser	Assembly Language	Operation
	DIV CX	DX-AX is divided by CX; the unsigned quotient is in AX and the
-	IDIV SI	DX-AX is divided by SI; the signed quotient is in AX and the remainder is in DX
J	DIV NUMB	AX is divided by the contents of the data segment memory location NUMB; the unsigned quotient is in AX and the remainder is in DX
TABLE	TABLE 5-13 32-bit divis	32-bit division instructions.
Asse	Assembly Language	Operation
DIV ECX	×	EDX-EAX is divided by ECX; the unsigned quotient is in EAX and the remainder is in EDX
DIV DATA2	ATA2	EDX-EAX is divided by the doubleword contents of data segment memory location DATA2; the unsigned quotient is in EAX and the remainder is in EDX
d vidi	IDIV DWORD PTR[EDI]	EDX-EAX is divided by the doubleword contents of the data
TABLE 5-14	AND instructions.	is in EAX and the remainder is in EAX
Assembly Language	age	Operation
AND AL, BL	AL =	AL = AL AND BL
AND CX,DX	CX =	CX = CX AND DX
AND ECX,EDI	ECX	ECX = ECX AND EDI
AND CL,33H	CL =	CL = CL AND 33H
AND DI,4FFFH		
AND ESI,34H	ESI	ESI = ESI AND 00000034H
AND AX,[DI]	AX is locati	AX is ANDed with the word contents of the data segment memory location addressed by DI
AND ARRAY[SI],AL		The byte contents of the data segment memory location addressed by the sum of ARRAY plus SI is ANDed with AL; the result moves to memory
AND [EAX].CL	CL is locati	CL is ANDed with the byte contents of the data segment memory

embly Language AH,BL SI,DX EAX,EBX DH,0A3H SP,990DH EBP,10 DX,[BX] DATES[DI + 2],AL DATES[DI + 2],AL BTC BTC BTC BTC BTR TIN SO BTR TIN SO BTR TIN SO BTR SO		
embly Language AH,BL SI,DX EAX,EBX DH,0A3H SP,990DH EBP,10 DX,[BX] DATES[DI + 2],AL DATES[DI + 2],AL BT BT BT BT BT BT BTR BTS BTR BTS BTS BTR BTS BTS BTS BTS BTS BTS BTS BTS BT BT BT <t< td=""><td>Complemented The byte contents of the data segment memory location addressed by BX is one's complemented</td><td>NOT BYTE PTR[BX]</td></t<>	Complemented The byte contents of the data segment memory location addressed by BX is one's complemented	NOT BYTE PTR[BX]
embly Language AH,BL SI,DX EAX,EBX DH,0A3H SP,990DH EBP,10 DX,[BX] DATES[DI + 2],AL DATES[DI + 2],AL EBP,10 DX,[BX] DATES[DI + 2],AL EBT BTC BTC BTC BTC BTC BTC BTC BTC BTC B	The contents of the data segment memory location TEMP is one's	NOT TEMP
embly Language AH,BL SI,DX EAX,EBX DH,0A3H SP,990DH EBP,10 DX,[BX] DATES[DI + 2],AL DATES[DI + 2],AL EBP,10 DX,[BX] DATES[DI + 2],AL EBT BTC BTC BTC BTC BTC BTC BTC BTC BTC B	ECX is two's complemented	NEG ECX
5-15 OR instruct BL BL DX X,EBX ,0A3H 990DH P,10 ,[BX] ,[BX] FES[DI + 2],AL TES[DI + 2],AL TES[DI + 2],AL 5-18 Bit test inst bly Language BTC BTC BTC BTR BTS BTS V Language	EBX is one's complemented	NOT EBX
5-15 OR instruct BL BL BL SX, EBX ,0A3H 990DH P,10 IES[DI + 2],AL FES[DI + 2],AL FES[DI + 2],AL FES[DI + 2],AL BT BT BT BTC BTR BTC BTR BTS BTS BTS V Language V Language	AX is two's complemented	NEG AX
S OR instruct anguage B Bit test inst B Bit test inst S NOT and NE	CH is two's complemented	NEG CH
5 OR instruct anguage HH DH H DH H DH H DH H B H B H S S S S S S S S S S S S S S	CH is one's complemented	NOT CH
5 OR instruct anguage HH HH Bit test inst 8 Bit test inst 8 NOT and NE	Operation	Assembly Language
5 OR instruct Anguage H H H DH H Bit test inst 8 Bit test inst 8 Bit test inst 8 Bit test inst	EG instructions.	TABLE 5-19 NOT and N
5 OR instruct Anguage H H H DH H DH H DH H A H A A S A anguage anguage		
5 OR instruct Anguage H H H H H H H H H H H H H H H H H H H	μ	RTS
5 OR instruct anguage H H H H H H H H H H H H H H H H H H H	Tests and resets a bit in the destination operand specified by the source operand	BTR
5 OR instruct anguage H H H H H H H H H H H H H H H H H H H	Tests and complements a bit in the desuriation operation specification the source operand	BTC
5 OR instruction anguage H DH + 2],AL -17 TEST ns. 8 Bit test instruc	Tests a bit in the destination operand specified by the source operand	BT
5 OR instruction anguage H DH 2],AL [DI + 2],AL -17 TEST ns. 8 Bit test instruc	Operation	Assembly Language
5 OR instruction Anguage H H H H H H H H H H H H H H H H H H H	tructions.	
5 OR instruction anguage H H DH DH DH H H H H H H H H H H H H H	56 CX	1
5 OR instruction H H DH DH DH DH DH		7
5 OR instruction X H DH DH DH DH DH		I
5 OR instruction H H H H	The byte contents of the data segment memory location addresss by the sum of DATES, DI, and 2 are ORed with AL	OR DATES[DI + 2],AL
5 OR instruction	DX is ORed with the word contents of the data segment memory location addressed by BX	OR DX,[BX]
OR instructions. Juage AH = AH OR BL SI = SI OR DX EAX = EAX OR EBX DH = DH OR A3H SP = SP OR 990DH	EBP = EBP OR 0000000AH	OR EBP,10
OR instructions. guage AH = AH OR BL SI = SI OR DX EAX = EAX OR EBX DH = DH OR A3H	SP = SP OR 990DH	OR SP,990DH
OR instructions. <i>iguage</i> AH = AH OR BL SI = SI OR DX EAX = EAX OR EBX	DH = DH OR A3H	OR DH,0A3H
-15 OR instructions. Language AH = AH OR BL SI = SI OR DX	EAX = EAX OR EBX	OR EAX,EBX
15 OR instructions. Language AH = AH OR BL	SI = SI OR DX	OR SI,DX
OR instructions. nguage	AH = AH OR BL	OR AH,BL
	Operation	Assembly Language
	stions.	

SHL AX,1 SHR BX,12 SHR ECX,10 SAL DATA1,CL SAR SI,2 SAR EDX,14	TABLE 5-20 Shift in: Assembly Language	FIGURE 5-10 The rotate instructions showing the direction and operation of each rotate.	Assembly Language ROK SI,14 ROL BL,6 ROL ECX,18 RCR AH,CL ROR WORD PTR[BP],2
AX is logically shifted left 1 place BX is logically shifted right 12 places ECX is logically shifted right 10 places The contents of the data segment memory location DATA1 is arithmetically shifted left the number of places specified by CL SI is arithmetically shifted right 2 places EDX is arithmetically shifted right 14 places	ROR	RCL	<i>Operation</i> SI rotates left 14 places BL rotates left through carry 6 places ECX rotates left 18 places AH rotates right through carry the number of places specified by CL The word contents of the stack segment memory location addressed by BP rotate right 2 places

Intel 8086 Hardware

- Similar to 8088 but has 16-bit data bus instead of 8-bit
- Power Supply Requirements
 - Requires 5V with 10% tolerance
 - Maximum supply current of 360 mA
 - Operates between 32 to 180 degrees F
 - CMOS version uses only 10mA and operates in -40 to 225 degrees F
- Noise Immunity
 - Difference between logic 0 output and logic 0 input voltages (= 0.35V)

TABLE 9-4 Function of Fan Out status bits S3 and S4. S4 S3 Function • Maximum logic gate load at the output (=10) 0 0 Extra segment 0 1 Stack segment Code or no segment 1 0 TABLE 9-5 Bus cycle 10/M DT/R SS0 Data segment Function 1 1 status (8088) using SSO. Interrupt acknowledge 0 0 0 Memory read 0 1 0 Memory write 1 0 0 TABLE 9-1 Input charac-Halt 0 1 1 teristics of the 8086 and 8088 0 0 Opcode fetch 1 microprocessors. 0 1 I/O read 1 1 0 I/O write 1 Passive 1 1 Logic Level Voltage 1 ±10 μA maximum 0.8 V maximum 0 TABLE 9-6 Bus control 2.0 V minimum ±10 µA maximum 1 51 SO S2 Function functions generated by the bus controller (8288) using 0 Interrupt acknowledge

I/O read

I/O write

Halt

0

0

0

0

1

1

1

QS1

0

0

1

1

S2, S1, and S0.

bits.

TABLE 9–7 Queue status

0

0

1

1

0

0

1

1

QS0

0

1

0

1

1

0

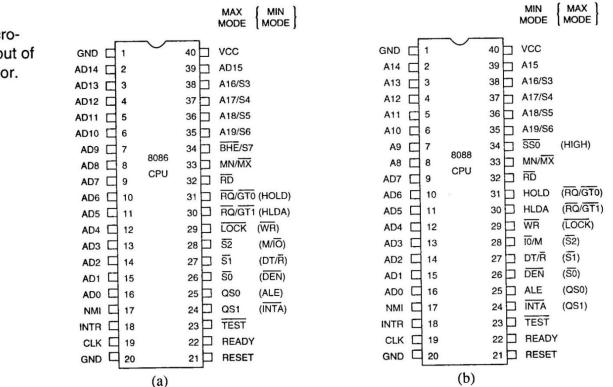
1

0

1

0

1


TABLE 9-3 Recommended fan-out from any 8086/8088 pin connection.

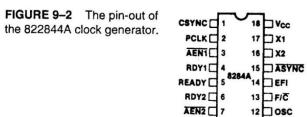
Current

Opcode fetch					
	Memory vrite	Family	Sink Current	Source Current	Fan-out
	Passive	TTL (74)	-1.6 mA	40 µA	1
-		TTL (74LS)	-0.4 mA	20 µA	5
		TTL (74S)	-2.0 mA	50 µA	1
		TTL (74ALS)	–0.1 mA	20 µA	10
	Function	TTL (74AS)	–0.5 mA	25 μΑ	10
~		TTL (74F)	–0.5 mA	25 μΑ	10
	ieue is idle	CMOS (74HC)	-10 μA	10 µA	10
	st byte of opcode	CMOS (CD4)	-10 µA	10 µA	10
Queue is empty Subsequent byte of opcode		NMOS	–10 μ	10 μA	10
		<i>A</i> .			

Pin-Outs and Pin Functions

FIGURE 9–1 (a) The pin-out of the 8086 microprocessor; (b) the pin-out of the 8088 microprocessor.

- AD15-AD0: multiplexed address/data pins
- A19/S6-A16/S3: multiplexed address/status pins
 S6 always remains 0, S5 is related to Flags, S4 and
 S3 show which segment in memory is accessed
- RD : Read Signal (0 when receiving data from memory or I/O)
- READY: for inserting wait states in μ P timing (0)
- INTR: for requesting hardware interrupt if IF=1
- TEST: works with WAIT instruction
- NMI: Non-maskable interrupt (regardless of IF bit)
- Reset: causes reset and disables interrupts

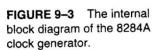

- CLK: clock input pin of μP with 1/3 duty cycle
- Vcc: power supply input
- GND: two ground connections
- MN/MX: minimum/maximum operation mode
- BHE/S7: bus high enable used to enable D15-D8
- Minimum Mode Pins
 - IO/M: selects memory or I/O for address bus
 - WR: indicates μP is outputting data
 - INTA: interrupt acknowledge responds to INTR input

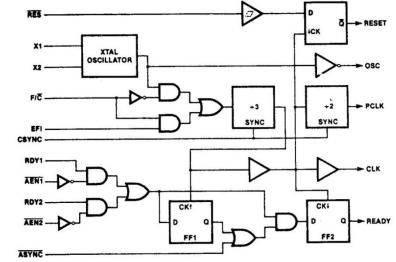
- ALE: address latch enable shows μP bus contains address
- DT/R: data transmit/receive shows that μP is transmitting
 (1) or receiving data (0)
- DEN: data bus enable activates external data bus buffers
- HOLD: requests direct memory address (DMA) if 1; another bus master wants to control the bus
- HOLA: hold acknowledge indicates the μP is in hold state and all buses are floating
- SSO: used with IO/M and DT/R to detect function of current bus cycle
- Maximum Mode Pins for use with a co-processor
 S2, S1, S0: status bits indicate function of current bus cycle

- R0/GT0 and R0/GT1: request/grant bi-directional pins request and grant DMA
- LOCK: lock output locks peripherals off the system
- QS1 and QS0: queue status pins indicate the internal instruction queue for numeric co-processor

Clock Generator

- Provides 5 MHz for μP and 2.5 MHz for peripherals
- Uses an external clock for 15 MHz crystal
- Provides a system reset signal




CLK

GND

11 AES

10 RESET

