
Microprocessor Systems

97.461

Maitham Shams

Course Slide Presentations

Department of Electronics

Carleton University

History of Computation

• Mechanical Age: B.C. to 1800s
– 500 B.C. Babylonians invented abacus, first mechanical

calculator
– 1642 Blaise Pascal invented calculator using wheels and

gears
– 1823 Charles Babbage created Analytical Engine capable of

storing data using punch cards

• Electrical Age: 1800s to 1970s
– Triggered by advent of electric motor (conceived by

Faraday)
– Motor driven adding machines based on Pascal’s idea

– 1896 Hollerith formed Tabulating Machine Company
(Today’s IBM)

– 1946 ENIAC (Electronics Numerical Integrator and
Calculator First general purpose programmable electronic
machine Used 17000 vacuum tubes, 500 miles of wires,
weighed 30 tons. Performed 100K operations/second,
programmed by rewiring)

• Integrated Circuits Age: 1960s to present
– Triggered by development of transistor at Bell Labs, 1948
– 1958 IC technology invented by Jack Kibly of Texas

Instruments
– 1971 World’s first microprocessor, Intel 4004, 4-bit bus 4K

4-bit(nibble) memory, 50 KIPs, 2300 transistors, 10 μm
technology

– 1972 first 8-bit μP, Intel 8008, 16K bytes, 50 KIPs

– 1973 Intel 808, 64K bytes, 500 KIPS, 6000 transistors,
6 μm followed by other 8-bit μPs lke Motorola
MC6800 (1974) and Z-8

– 1978 Intel 8086, 16-bit μP, 1M bytes, 2.5 MIPs
Used 4-byts instruction cache to speed up execution
time
Base for 80286 μP, also 16-bit with 16M bytes

– 1986 Intel 80386, 32-bit μP, 32-bit data and address
busses
4G bytes, 16 to 33 MHz, 275000 transistors, 1 μm

– 1989 Intel 80486, like 80386 with numeric co-
processor. 4G bytes + 8Kb cache, 25 to 50 MHz, 1.2M
transistors, 1 and 0.8 μm

– Advancement continues with Intel, AMD, Motorola,
and other μPs

Reasons Behind μP Technology

• Speed
– Graphics, Numerical Analysis, CAD, and Signal Processing

applications

• Convenience
– Large memory, smaller size, and lower weight

• Power Dissipation
– Portable computers and wireless services

• Reliability
– Noise tolerance in adverse environments and

temperatures

• Cost
– Get more done for the money

μP BASED Computer Systems

Memory
Systems

Microprocessor I/O System

Buses

Dynamic RAM (DRAM)
Static RAM (SRAM)
Cache
Read-Only (ROM)
Flash Memory
EEPROM

8086
8088
80186
80286
80386
80486
Pentium
Pentium Pro
Pentium II

Printer
Hard disk drive
Mouse
CD-ROM Drive
Keyboard
Monitor
Scanner

Memory
• Transient Program Area

(TPA) 640Kb

• System Area

384 Kb

• Extended Memory System

(XMS) over 4MB

Extended
Memory

System Area
384K bytes

TPA
640K bytes

15M bytes in the 80286

31M bytes in the
80386SL/SLC

63M bytes in the
80386EX

4095M bytes in the
80386DX, 80486, and
Pentium
64G bytes in the Pentium
Pro and Pentium II

1M bytes of real
(conventional) memory

• Transient Program Area (TPA)

Free TPA

MSDOS Program

COMMAND.COM

Device Drivers such as MOUSE.SYS

IO.SYS Program

DOS communications area

BIOS communications area

Interrupt Vectors

9FFFF

9FFF0

08490

08E30

01160

02530

00500

00700

00400

MSDOS Programs

00000

• Programs that control computer system (Operating
Systems)

• Also contains data, drivers, and application programs

• Consists of RAM, ROM, EEPROM, and Flash Memory

• DOS controls memory organization and some I/O
devices

• Interrupt Vectors contain addresses of interrupt service
procedures

• BIOS (Basic I/O system) area controls I/O devices

• IO program allows use of keyboard, video display,
printer, etc.

• Command program controls operation of computer
through keyboard

• System Area

MSDOS Program

Free Area

Hard disk controller ROM
LAN controller ROM

Video BIOS ROM

Video RAM (Text area)

Video RAM (Graphics area)

FFFFF

F0000

E0000

C8000

B0000

C0000

A0000

BASIC language ROM (earlier PCs)

• I/O Space
– Addresses I/O ports

– Up to 64K 8-bit devices

I/O Expansion Area

COM1

Floppy Disk Controller

LPT1

Hard disk Controller

COM2

8255 (PIA)

FFFF

03F8

03D0

03F0

0320

0378

02F8

CGA Adapter

0060

Timer (8253)

Interrupt controller

DMA Controller

0040

0020

0000

Microprocessor

• Data transfer between itself and memory or I/O
system
– Using data, address, and control buses

• Simple arithmetic and logic operations
– Add, Sub, Mul, Div, AND, OR, NOT, NEG, Shift, Rotate

– Data width: byte (8-bit), word (16-bit), and double
word (32-bit)

• Program flow via simple decisions
– Zero, Sign, Carry, Parity, Overflow

• Why is it so important?

Computer System Block Diagram

µP

Address Bus

Read-only
Memory

ROM

Read/Write
memory

RAM
Keyboard Printer

MWTC

MRDC

IOWC

IORC

Data Bus

• Bus is a common group of wires for
interconnection

• Address Bus: 16-bit for I/O and 20 to 36-bit for
memory

• Data Bus: 8 to 64-bit, the wider the bus, the more
data can be transferred

• Control Bs: contains lines that selects the
memory or I/O to perform a read or write
operation
– Four main control lines
– MRDC‘ (memory read control)
– MWTC’ (memory write control)
– IORC’ (I/O read control)
– IOWC’ (I/O write control)

Intel Microprocessor Architecture

• Operation Modes
– Real: uses 1st M byte of memory in all versions
– Protected: uses all parts of memory in 80286 and

above

• Register Types
– Program Visible: used during application programs
– Program Invisible: not directly addressable, but used

by system

• Program Visible Registers
– 4 Data Registers, 4 Pointer/Index Registers, 4-6

Segment Registers, Instruction Pointer, and Flags

• Compatibility is a successful strategy

– Register A may be used as 8-bit (AH and AL), 16-bit

(AX), and 32-bit (EAX) fir the later Pentium processors

– e.g. ADD AL, AH; ADD DX, CX; ADD ECX, EBX

– Instructions only affect the intended part of a register

– Later µP versions support earlier version codes

• Some registers are Multipurpose, some are Special
Purpose

– Segment Registers generate memory addresses

Real Mode Memory Addressing

• Location = Segment + Offset
– Segment address located in a segment

register; always appended with 0H
– Segments always have length of 64 Kb
– Offset or displacement selects location

within 64 Kb of segment
– e.g. 1000:2000 gives location 12000H

• Default Segment and Address
Registers
– e.g. code segment and instruction

pointer CS:IP and stack segment and
stack pointer SS:SP

64K byte
segment

Real mode memory
FFFFF

1FFFF

1F000

10000

00000

1 0 0 0

Offset = F000

Protected Mode Memory Addressing

• Accessed via segment and offset address, but
– Segment register contains a selector

– Selector selects a descriptor from descriptor table

– Descriptor: memory segment location, length, and
access right

• Two types of descriptor tables
– Global/system descriptors used for all programs

– Local/application descriptors used for applications

– Each descriptor is 8 bytes

• 16-bit segment register contains 3 parts

– Left most 13 bits address a descriptor

– TI bit access global (0) or local descriptor (1) table

– Right most 2 bits select priority for memory
segment access

• How many global and local descriptors in a
table?

• How large is a global and a local descriptor
table?

• How many memory segments are allowed?

Descriptor Formats

Access Right Byte

Program-Invisible Registers

• Each segment register contains a program-invisible
portion
– This register is re-loaded when segment register change

– Contains base-address, limit, and access information

– These registers also called descriptor cache

• Other program-invisible registers
– GDTR (global descriptor table register) contain base

address and limit for descriptor table

– Location of local descriptor table is selected from global
descriptor table using the selector held in LDTR (local
descriptor table register)

Memory Paging

• Memory paging changes a linear address to
physical
– Linear address is produced by software
– Page directory base is held in a control register (CR3)
– Linear address is broken into 3 sections: directory,

page table, offset
– Page directory contains 1024 entries of 4 bytes each

which addresses a page table that contains 1024
entries of 4 bytes each

– Each memory page is 4K bytes
– TLB (table look aside buffer) is a cache which contains

the 32 most recent page translation addresses

Addressing Modes

Data Addressing Modes
• Intel family supports 8 data addressing modes
• Modes differ in the location of data and address

calculations
• All modes involve physical address generation
• Consider MOV opcode as example: MOV AX, BX

– Opcode or operation code tells µP which operation to
perform

– Source operand is to the right
– Destination operand is to the left

• Register Addressing: MOV CX, DX

– Copy content of source register to destination register

– Source and destination must be of the same size

• Immediate Addressing: MOV AL, 22H

– Transfer the immediate data into destination register

– This is called constant data, but data transferred from
a register is a variable data

• Direct Addressing: MOV CX, LIST

– Move a byte or word between a memory location and
a register

– Memory address, instead of data, appears in the
instruction

• Register Indirect Addressing: MOV AX, [BX]
– Transfer data between a register and a memory

location addressed by a register
– Sometimes need using special assembler directives

BYTE PTR, WORD PTR, DWORD PTR, when size is not
clear

– FOR example MOV DWORD PTR [DI], 10H instead of
MOV [DI], 10H

• Base-plus-index Addressing: MOV [BX+DX], CL
– Transfer data between a register and a memory

location addressed by a base register and an index
register

• Register Relative Addressing: MOV AX, [BX+4]
– Move data between a register and a memory location

addressed specified by a register plus a displacement

• Base relative-plus-index Addressing:
MOV AX, ARRAY[BX+DI]
– Transfer data between a register and a memory

location specified by a base and index register plus a
displacement

– Another example is MOV AX, [BX+DI+4]

• Scaled-index Addressing: MOV EDX, [EAX+4*EBX]
– Address in the second register is modified by a scale

factor
– Scale factor are 2, 4, or 8, word, double-word, and

quad-word access, respectively
– Only available in 80386 through μP
– Other examples: MOV AL, [EBX+ECX] and MOV AL,

[2*EBX]

Program Memory-Addressing Modes

• Three forms, used with JMP and CALL instructions
• Direct Program Memory Addressing: LMP Label

– Like GOTO or GOSUB in BASIC language
– Allows going to any location in memory for next

instruction

• Relative Program Memory Addressing: JMP [2]
– Jump relative to instruction pointer (IP)

• Indirect Program Memory Addressing: JMP AX
– Jump to current code segment location addressed by

content of AX
– Other examples: JMP [DI+2[] and JMP [BX]

Stack Memory-Addressing Modes

• Stack is a LIFO (last-in, first-out memory)

• Data are place by PUSH and removed by POP
– Stack memory is maintained by stack segment register

(ss) and stack pointer (sp)

– When a word is pushed, high 8 bits are stored at SP-1
low 8 bits are stored at SP-2, the SP is decremented by
2

– When a word is poped, low 8 bits are removed from
location addressed by SP, high 8 bits are removed
from location addressed by SP+1, then SP is
incremented by 2

Instruction Encoding

• Assembler translates assembly code into
machine language

• Machine language is the native binary code μP
understands

• Override Prefixes

– First two bytes in 32-bit instructions:

Address size-prefix (67H) and Register size-prefix (66H)

– They toggle size of register and operand address from
16-bit to 32-bit or vice versa

• First byte of instruction: opcode

– First 6 bits of instruction are the binary opcode

– Direction bit (D) determines the direction of data flow

– Width bit (W) determines data size: 0 for byte, 1 for
word and double word

WD

Opcode

• Second byte of instruction: MOD-REG-R/M

– MOD specifies addressing mode for instruction and
whether displacement is present

– If MOD=11, then register addressing mode, else
memory addressing mod

– In register addressing mode, R/M specifies a register

– In memory addressing mode, R/M selects a mode
from table

– If D=1, data flow to REG from R/M, if D=0 data flow to
R/M from REG

MOD REG R/M

Intel Family Instruction Set

• PUSH and POP for stack operations

• Load Effective Address
– LEA loads a 16- or 32-bit register with offset address

– LDS, LES, LFS, LGS, and LSS load a 16- or 32-bit register with
offset address and a corresponding segment register DS,
ES, FS, GS, or SS with a segment address

• String Data Transfer
– Uses destination index (DI) and source index (SI) registers

– Two modes: auto-increment (D=0) and auto-decrement
(D=1)

• By default DI access data in extra segment and SI in
data segment

• LODS loads AL, AX, or EAX with data addressed by SI in
data segment and increments or decrements SI

• STOS stores AL, AX or EAX at the extra segment
addressed by DI and increments or decrements DI

• REPS STOS repeats the instruction the number of times
stored in CX, i.e. terminates when CX=0

• MOVS is the only instruction that transfers data
between memory locations

• INS transfers data from I/O device into extra segment
addressed by DI; I/O address is in DX register

• OUTS transfers data from data segment memory
addressed by SI to an I/O device addressed by DX

– For inputting or outputting a block of data INS and
OUTS are repeated

• Miscellaneous Data Transfer Instructions
– XCHG exchange contents of a register with any other

register or memory location

– IN and OUT instructions perform I/O operations

– Two I/O addressing modes: fixed-port and variable
port

– In fixed-port addressing the port address appears in
instructions, e.g. when using ROM

– In variable-port addressing I/O address in a register

– MOVSX is move and sign extend; MOVZX is move and
zero-extend

– CMOV new to Pentiums moves data only if condition
is true; conditions are checked for some prior
instruction results

• Segment Override Prefix
– May be added to any instruction to deviate from

default segment

• Arithmetic and Logic Instructions
– ADD simply adds two numbers and sets the flags
– ADC adds also the carry flag (C)
– INC adds one to a register or memory location
– SUB subtracts two and sets the flags
– SBB subtract-with-borrow also subtracts (C) from

difference

– DEC subtracts one from a register or memory location

– CMP is a subtract that only changes the flag bits; this
is normally followed by a conditional jump instruction

– Multiplication can be unsigned (MUL) or signed
(IMUL)

– Division can also be unsigned (DIV) or signed (IDIV)

– Basic logic instructions are AND, OR, XOR, NOT

– TEST is like CMP, but for bits zero flag Z=1 if bit is 0 and
Z=0 if bit is 1

– TEST performs AND operation, so TEST AL,1 tests the
first bit and TEST AL,128 tests the last bit of a byte in
AL

– NOT is logical inversion or one’s complement

– NEG is arithmetic sign inversion or two’s complement

• Shift and Rotate Instructions
– SHL and SHR are logical shift left and right that insert 0 and

put one bit in the carry flag C
– SAL and SAR are arithmetic shift operations; SAL is similar

to SHL, but SAR is different than SHR because it inserts the
sign bit instead of 0

– Rotate instructions rotate data from one end to another,
ROL (rotate left) and ROR (rotate right), or through the
carry flag (RCL and RCR)

• String Data Comparing
– String scan instruction SCAS compares register A with

memory
– Compare string instruction CMPS compares two memory

locations

Intel 8086 Hardware

• Similar to 8088 but has 16-bit data bus instead of
8-bit

• Power Supply Requirements
– Requires 5V with 10% tolerance
– Maximum supply current of 360 mA
– Operates between 32 to 180 degrees F
– CMOS version uses only 10mA and operates in -40 to

225 degrees F

• Noise Immunity
– Difference between logic 0 output and logic 0 input

voltages (= 0.35V)

– AD15-AD0: multiplexed address/data pins

– A19/S6-A16/S3: multiplexed address/status pins

S6 always remains 0, S5 is related to Flags, S4 and
S3 show which segment in memory is accessed

– RD : Read Signal (0 when receiving data from
memory or I/O)

– READY: for inserting wait states in μP timing (0)

– INTR: for requesting hardware interrupt if IF=1

– TEST: works with WAIT instruction

– NMI: Non-maskable interrupt (regardless of IF bit)

– Reset: causes reset and disables interrupts

– CLK: clock input pin of μP with 1/3 duty cycle

– Vcc: power supply input

– GND: two ground connections

– MN/MX: minimum/maximum operation mode

– BHE/S7: bus high enable used to enable D15-D8

• Minimum Mode Pins

– IO/M: selects memory or I/O for address bus

– WR: indicates μP is outputting data

– INTA: interrupt acknowledge responds to INTR
input

– ALE: address latch enable shows μP bus contains address

– DT/R: data transmit/receive shows that μP is transmitting
(1) or receiving data (0)

– DEN: data bus enable activates external data bus buffers

– HOLD: requests direct memory address (DMA) if 1;
another bus master wants to control the bus

– HOLA: hold acknowledge indicates the μP is in hold state
and all buses are floating

– SS0: used with IO/M and DT/R to detect function of
current bus cycle

• Maximum Mode Pins for use with a co-processor
– S2, S1, S0: status bits indicate function of current bus cycle

– R0/GT0 and R0/GT1: request/grant bi-directional
pins request and grant DMA

– LOCK: lock output locks peripherals off the system

– QS1 and QS0: queue status pins indicate the
internal instruction queue for numeric co-
processor

Clock Generator

• Provides 5 MHz for μP and 2.5 MHz for
peripherals

• Uses an external clock for 15 MHz crystal

• Provides a system reset signal

