
 Two Outputs Connected Together

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 85

Multiple Assignments

Two Outputs Connected Together

always @(posedge Clk)
begin
if (En1) Q<=D1;
end

xz
always @(posedge Clk)
begin
if (En2) Q<=D2;
end

Multiple Assignment

• Mutually exclusive means that Q<=D1
and Q<=D2 could never happen
together.

• If they were both in one if-else
statement the compiler would know
they could never happen together.

• Here both EN1 and EN2 might be true
together.

Possible Simulation Results
• The simulator will choose one to do

first. No one knows which. The lasting
result will be the final one.

Possible Synthesis Results
• The compiler chooses one result.

• The compiler generates two flip-flops
and ANDs the result.

• All outputs my be disconnected.

Slide 44

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 86

 Multiple Assignments

Multiple Assignments
If both statements are in the same procedure, the En2 would replace the En1 result in zero time.
In synthesis this would mean the En2 result would take priority over En1.

always @(posedge Clk)
begin

if (En1) Q=D1;
if (En2) Q=D2;

end

Blocking was used for flip flops, to ensures Q=D2 is done after Q=D1 and hence replaces Q=D1.

If delays are put on the statements simulation could give a glitch. Synthesis would not. It would generate a
circuit which would give EN2 priority.
always @(posedge Clk)

begin
if (En1) #2 Q<=D1;
if (En2) #3 Q<=D2;

end

20.• PROBLEM
What happens here?
 always @(posedge Clk)

begin
if (En1) Q=D1;

end
 always @(posedge Clk)

begin
if (~En1) Q=D1;

end

EN1
EN2

D2

D1

1D

C1

Clk

Q

EN2 has priority over EN1

Comment on Slide 43

 Demux Inference from case

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 87

Using Case Statements

Demux Inference from case

wire [2,0] in;
reg [7:0] Y;

always @(in) begin
 case(in)

3’d0: Y=8’b00000001;
3’d1: Y=8’b00000010;
3’d2: Y=8’b00000100;
3’d3: Y=8’b00001000;
3’d4: Y=8’b00010000;
3’d5: Y=8’b00100000;
3’d6: Y=8’b01000000;
3’d7: Y=8’b10000000;

endcase

Full Case
• All cases are covered.

It avoids latches

Parallel Case (Mutually Exclusive)

• No two cases can be active at once.
 It can be implemented as a mux.

No undefined or parallel cases

• The compiler can statically determine
that all possible cases are covered.

• The compiler can statically determine
that no two cases are active at once.

0
1 G 0

7

DEMUX

0

6

4

7

2 1

5

2
3

Y [7:0]in

1

Comment on Slide 1Slide 45

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 88

 Multiple Assignment Race (cont from

Comment on Slide 44

Multiple Assignment Race (cont from previous page)

21.• PROBLEM

 What common simulation problem might be caused by
this code?

wire clok, x, y;
reg m,q;

always @(posedge clok)
begin: storage

q <= m;
end

always @(clok or x or y)
begin: mux

 if (clok) m = x;
else m = y;

end;

Using Case
There are several problems that can happen with case statement synthesis.

1. If the case is known to cover all the possibilities the input condition can assume it is said to be a full case.
Unfortunately the synthesizer will not know this unless case covers all 2N possibilities for an N bit
condition. If the synthesizer does not know it is a full case, it will insert latches.

2. If two different conditions may happen at once, they will activate two different outputs at the same time.
This is called a nonparallel case.

1

0

clok

x

y

m

q
1D
C1

m

This is a subtle simulation race. Both the
mux and the flip flop respond to clok. The flip
flop, as per the rule uses nonblocking assigns.
The mux, as per the rule uses blocking assigns.

However on posedge clok the simulator
might choose the mux first. Then the mux code
would block the flip flop until the mux had
switched.
The actual circuit would capture the mux value
before the clock switched it.

 Latch Inference in Case

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 89

Latch Inference in Case

Not Obvious Full-Case,
Case with a restricted input

reg [6:1] Y;

always @(a or b or c)
 begin

// if a,b,c = 1,1,1 make c1=0
c1 = (a&b&c) ? 0 : c

 case({a,b,c1})
3’d0: Y=000000;
3’d1: Y=000001;
3’d2: Y=000010;
3’d3: Y=000100;
3’d4: Y=001000;
3’d5: Y=010000;
3’d6: Y=100000;

endcase
 end

Apparent undefined cases

3’d7: Y=000000;

a,b,c = 1,1,1 cannot occur.
Synthesis does not know that.
Thus synthesis will infer 7 latches.

To avoid latches

Put in default

3’d5: Y=010000;
3’d6: Y=100000;
default: Y=000000;

Better default

A better default is:

default: Y=xxxxxx;

It gives the synthesizer more choice.

Slide 46

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 90

 Not Obvious Full-Case

Comment on Slide 45

Not Obvious Full-Case
If a case contains all 2n cases no latches will be generated.

If it contains less than 2n cases, latches will be generated unless it is very obvious all cases are covered.
Synthesizers do not look back very far to determine if all cases are covered.

Use Default

The default statement does no harm if it is used and not needed.

Place xxxx as a the Default Output

If you know the default will never be selected by the case, then you can put in anything you want.
The logic that is easiest to minimize is x (don’t care). Requiring the default to take some particular value, like
zero, can greatly increase the size of the circuit.

Always put in a default, whether you need it or not, unless you want the latches.

 Nonparallel Case

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 91

Nonparallel Case

NOT Mutually Exclusive

always @(x or y or z) begin

 case(1’b1)
x: Y=2’b01;
y: Y=2’b10;
z: Y=2’b11;
default: Y=2’bxx;

endcase

FORCE Mutually Exclusive (Parallel)

always @(x or y or z) begin

 case({x,y,z})
3'b100: Y=2’b01;
3'b010: Y=2’b10;
3'b100: Y=2’b11;
default: Y=2’bxx;

endcase

Not Mutually Exclusive (nonparallel) Case

• Two cases can be active at once.
 Priority encoder generated.

Synopsys Compiler Directive

Simulater treats as comments
Tells Synopsys x, y and z can never
happen at the same time.

 Designer must enforce this!

Force Parallel Case

// synopsys parallel_case
avoids creating a priority encoder

case(1’b1) // synopsys parallel_case
x: Y=2’b01;
y: Y=2’b10;
z: Y=2’b11;
default: Y=2’bxx;

endcase

2
1

 HPRI / BIN

1
2
3

Y[0]

Y[1]x

y

z

0

Not

 Re
com

men
ded

Slide 47

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 92

 Parallel-Case

Comment on Slide 46

Parallel-Case
Whenever two or more lines of the case statement may be selected at once, the simulation executes the first line
encountered in the listing. This is like a priority encoder.

 In a parallel case, the synthesizer assumes some other circuit keeps two lines from being selected at once.

//synopsis directives can be used to tell the synthesizer to force a parallel-case but one can also write the code
to explicitly say what is desired. This latter method is synthesizer independent and keeps the simultation and
synthesis in agreement. Such code may require the casex (or casez) command described on the next slide.

 Coding for full decoding, priority encoder, or parallel case
Y[1]

Y[2]

Y[3]

Y[1]

Y[2]

Y[3]

Y[1]

Y[2]

Y[3]

always @(x or y or z)

 case({x,y,z})
 3’b100 : Y=3’b100;
 3’b010 : Y=3’b010;
 3’b001 : Y=3’b001;
 default: Y=3’b000;
 endcase

 begin
always @(x or y or z)

 casex({x,y,z})
 3’b1xx : Y=3’b001;
 3’b01x : Y=3’b010;
 3’b001 : Y=3’b001;
 default: Y=3’b000;
 endcase

 begin
always @(x or y or z)

 casex({x,y,z})
 3’b1xx : Y=2’b100;
 3’bx1x : Y=2’b010;
 3’bxx1 : Y=2’b001;
 default: Y=2’bxxx;
 endcase

 begin

Full decoding:
Assumes more than one
of x, y, z can be 1 and
removes those cases.

 Priority decoder
Assumes more than one
of x, y, z can be 1 but
takes the first one as
correct

 Parallel case
Assumes only one of
x, y, z can be 1 at a time.
Depends on some other
circuit to enforce this.

 Using casez

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 93

Using casez
Allows Don’t Cares In Case-items

wire [3,1] in;
reg [1:0] Y;

always (in) begin
 casez(in) //or casex (in)

3’bxx1: Y=2’b01;
3’bx10: Y=2’b10;
3’b100: Y=2’b11;
default Y=2’b00;
endcase

Don’t Cares In Right-Hand Side
always @(x or y or z) begin
 case({x,y,z})

3’b001: Y=2’b01;
3’b010: Y=2’b10;
3’b100: Y=2’b11;
default Y=2’bxx;

endcase

Generates a priority encoder

• xx1 has the highest priority.

Default

• Covers only 3’b000.

Don’t Cares Can Simplify Logic

• Don’t force the defaults to zero if
you don’t care.
It makes the logic larger.

• Casez not necessary for output
don’t cares.

• casez slightly prefered over
casex.

2
1

 HPRI / BIN

1
2
3

Y[0]

Y[1]

in[1]
in[2]

1n[3]

0

Slide 48

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 94

 Casex/casez

Comment on Slide 47

Casex/casez
For simulation

Case treats a bit in a variable as having four possible values {0, 1, x, z}, thus x only matches x, not 1 or 0.
Casex treats x, z or ? as a don’t care which can match 0, 1, x or z.
Casez treats z or ? as a don’t care which can match 0, 1, x or z, but x cannot match 0 or 1.

For example: Given- aa = 3b'1x0;
case (aa)

3’b110: ...// No match because 1 does not match x with a case statement.
3’b1x0: ... // Matches

casex (aa)
3’b110: ... // Matches aa because 1 does match x with a casex statement.
3’bx10: ...// Matches aa.

casez (aa)
3’bxx0: ... // x does not match 1 with a casez statement, although x matches x.
3’bzz0: ...// Matches aa.

For synthesis
No x values ever propagate in synthesis. However x values in the simulation cause an unex pected match with
casex. Using casez will avoid those problems.

Don’t cares in the outputs are fine for case, casez or casex.

 case casex casez

case\data 0 1 x z case\data 0 1 x z case\data 0 1 x z
0 1 0 0 0 0 1 0 1 1 0 1 0 0 1

1 0 1 0 0 1 0 1 1 1 1 0 1 0 1

x 0 0 1 0 x 1 1 1 1 x 0 0 1 1

z,? 0 0 0 1 z,? 1 1 1 1 z,? 1 1 1 1

 Confusion Between Reg and Integer

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 95

Negative Numbers

Confusion Between Reg and Integer

Integers are 2’s Complement

Integers declarations default to a 32-bit 2’s complement number.
The compiler will eventually decide how many bits are needed.

Reg numbers are nonzero integers

The length of registered numbers is given in the declaration.

 Value of X
X will hold a 5-bit -7
-00111 ⇒ 11000 +1⇒ 11001 {-7 in 2's complement}

Reg numbers are never negative,
Hence 11001 is taken as 25.

B will hold 000. . . 00001010 (32 or less bits)

B + X = 00001010+11001 = 000100011

Did you want 35 or 3?

integer B,C;
reg [4:0] X;

always @(B,C,X)

X = -5'd7;
B = 10;
C = B + X;

end

 begin

25 10 35

Slide 49

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 96

 Negative Numbers

Comment on Slide 48

Negative Numbers
Two’s Complement

To change a binary number to its two’s complement

Change the exchange the ones and zeros, then add 1, ignore any off-end carries from the add.

-10 ⇒ −001010 ⇒ 110101 +1 ⇒ 110110 {-10 in 2's complement}

Sign Extension
All two’s compliment numbers of different lengths must be sign extended when added. Thus:

reg [4:0] x ; reg [5:0] y, z;

 z = {x[4], x} +y ; // sign extend x to 5 bits.

If the bits represent unsigned numbers, then do not sign extend.

 Confusion Between Reg and Integer

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 97

Using For Loops For Building Iterative Hardware

Build an 5-bit ripple-carry adder.
reg [4:0] A, B, S;
reg c, c_out; wire c_in; // S is the sum, c the carry

always @(c_in or A or B)
begin
c = c_in;
for(i=0; i <=4; i=i+1)

begin
{c, S[i]} = A[i] + B[i] + c; // Concatenate the outputs into a 2-bit vector.
end

c_out = c;
end

c

S2

c

 B2 A2

∑c

S3

c

 B3 A3

∑c

S4

c

 B4 A4

∑ c

S1

c

 B1 A1

∑ c

S0

c

 B0 A0

∑c_out c_in

Slide 50

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 98

 Hardware Loops

Comment on Slide 49

Hardware Loops1

Loops give multiple copies of a basic instance.

The code in the loop will be synthesized, a different instance for each iteration.
Output leads from one block, with the same name as an input lead, will connect between iterations.
See the variable “c” in the program.

While loops are partially supported for synthesis. They represent a conditional branch. All while loops must be
broken by an @(posedge clock) statement. Thus:-

always @(posedge clock)

begin
while (b >9)
begin

@ (posedge clock); // break the zero delay loop
b <= b+2;

end
end

1. Palnitakar, Verilog, Prentice Hall, 1998, p..285

bΣ

CLK

Register2

<
9

b

Add

Compare

 Confusion Between Reg and Integer

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 99

An Iterative Comparator Hardware

Build an 5-bit comparator from blocks.
reg [4:0] A, B;
reg x, y; // S is the sum, c the carry

always @(A or B)
begin
x=0; y=0; // Above the highest order bit, the two are equal
for(i=0; i <=4; i=i+1)

begin
x=(A[i] > B[i]) | x; // A is larger at this bit or at a higher order bit.
y=(B[i] > A[i]) | y; // B is larger at this bit or at a higher order bit.
end

end

At the output:
 x,y = 0,0 means A=B, x,y = 1, 0 means A > B, x,y = 0,1 means A < B,

X

S2

X
 B2 A2

X

S3

X
 B3 A3

= == =
X

S4

X
 B4 A4

= == =
X

S1

X
 B1 A1

X

S0

X
 B0 A0

= == = = == = = == =
Y Y Y Y Y Y Y Y Y Y

0

0

Slide 51

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 100

 Loops to Generate Iterative Circuits

Comment on Slide 50n

Loops to Generate Iterative Circuits
This is an iterative comparator used as a lab in the Switching Circuits course at Carleton.

It only compares non-negative integers, where the number with the leftmost “1” is the largest.

22.• PROBLEMS

a. Write a for loop to calculate the parity of a 6-bit number. It should include-
 if (data[i]) OddPar= ~OddPar;

b. One way to change a binary number to its two’s complement is:
Start at the right hand side.
Leave all bits unchanged until after the first “1” is found.
Invert all bits to the left of the initial “1”.

Thus: 1001_1000 has complement 0110_1000

Write a loop to generate such a circuit.

 Confusion Between Reg and Integer

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 101

Complier Directives

Tell The Synthesizer What To Do

• Written like comments
// synopsys . . .

• The simulator will ignore them

• Directs synthesis.

• Simplifies some language problems.
However it is nearly always possible
to avoid them by proper coding.

• Thus simulation will agree with synthesis
only if it was coded properly.

• Limits you to one compiler.

• Makes formal verification difficult.

• There are many of these compiler
directives.

Check the Synopsys Manual

Example

 Force Asynchronous Reset

module latch(Q,D,C,R);
input D,C,R;
output Q; reg Q;

// synopsys asynch_set_reset
“R”
always @(C or R)
begin:

if (R)
 Q = 0;
else if (C)
 Q = D;

end

Slide 52

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 102

 Compiler Directives

Compiler Directives
Other Compiler Directives

// synopsys async_set_reset

// synopsys sync_set_reset

//synopsys async_set_reset_local applies directive to specified signals in a named block

//synopsys one_hot indicates only one of a list of signals is true at a time.
Useful to show set and rest are never both applied at once.

One of the more useful compiler directives is used to force a particular library module for arithmetic operations
(next slide).

Formal verification

This is where the logic of a program is compared weith the logic of another program. This is often done after
inserting special structures only used for testing, or after had optimizations on a compiled circuit.

The verification programs have trouble with compilier assertions.

Comment on Slide 51

 Forcing Specific Synopsys Designware

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 103

Forcing Specific Synopsys Designware
Synopsys uses designware to implement counters, adders, comparators, etc.

Control the type of function used by inserting compiler directives into your code.

Example:

 Library DWO1 has two increments, ripple carry “rpl” and carry look-ahead “cla.”

 Force the named block bill to use a carry look-ahead incrementer.

always @(count)
begin : bill //named procedure

 /* synopsys resource billspecial:
 map_to_module = "DW01_inc",
 implementation = "cla",
 ops = "greasedIncr";
 */
 count = count + 1; //synopsys label greasedIncr
 end

• Must insert only in a nonclocked, named procedure or function.
i.e not after @(posedge. . .,

• billspecial will be the name given this instantiation.

• "DW01_inc" and "cla" are from the Synopsys library DW01

• The label applies to the most recently parsed function.
count = count + 1 // synopsys label greasedIncr

Slide 53

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 104

 Mapping to a Specific Library Module

Mapping to a Specific Library Module
Named Procedures

pecifically map an operation it must be inside a named procedure. named by writing the name after begin.

always @(a or ...
begin: bill

...

Meanings of the mapping labels

// synopsys label greasedIncr labels the + operation with name greasedIncr.
This label is bound to the instantiation named billspecial by the ops =”greasedInc”; statement.

The resource is module DW01_inc, in the designware library DW01

The specific implementation in the library is cla.

Libraries are fairly automatic

The simulator will automatically choose an implementation for your criteria.

Experience with Adders

The DW01 library has (1999) had five adders. For a 4 to 7 bit adds in a Viterbi decoder, a Carleton graduate
student, Youxing Zhao found:

The conditional sum adder (csa) was the fastest1.
The ripple carry adder (rpl) was second and significantly slower.
The fast carry look-ahead (clf) was third.
The Brent-Kung (bk) and the carry look-ahead adder (cla) were last and about the same.

1. A. Bellaouar and M Elmasary, Low-powered Digital VLSI Design Circuits and Systems, Kluwer 1995, p.424 has a good summary
of the csa. Each full adder calculates (S1,C1) and (S0, C0) which are the sum and carry for a carry-in of 1 and 0 respectively. Then
muxs are used to select the appropriate answer.

Comment on Slide 52

 Guidelies:

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 105

Summary

Guidelies:
• Partition FSMs into next-state calc, outputs and registers.

Use <= in the register procedure; use = in the others.

• In procedures:
 Feed all right-hand side variables through the trigger list (unless also on the left side.)
 Make all branches evaluate all left-hand side variables.

• If you are using negative numbers, add/sub only registers of equal length, and do sign
extensions.

• Do not have the same left-hand side variable stored in two different procedures.

• For case statements:
Always use a default at the end.
Use casez if there are don’t cares in the control.
Use x for don’t care outputs to minimize logic.

• Flip-flops procedures must start @(...edge clk) or @(...edge clk or ...edge reset)

Slide 54

 Printed; 13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg p. 106

 Mapping to a Specific Library Module

Comment on Slide 53

