
CARLETON UNIVERSITY
 Deparment of Electronics

97.350 Digital Electronics November 1, 2002
.

1.0 The Game
 The players of this game see a row of 7 LEDs represented by the numbers L2 through R2 in FIGURE 1

After pushing reset, all the LEDs should come on for a second and then go off. This is the get ready signal. After a
random time the middle LED comes on again. Then each player will try to push his button before the other player does.
The position of the lit LED will move toward the fastest button pusher.

Thus if player 2 is fastest, LED 0 will go out and LED R1 will come on. This is the end of round one. After a sec-
ond the LEDs will all go out. This is the get ready signal for round two. After a random time LED R1 will come on (as-
suming player 2 won the first round). Again each player will try to push his button first, and again the light will shift
toward the fastest button pusher. The game is won when one player makes the position of the lit LED move off the end of
the display.

If a player jumps the light, i.e. he pushes his button while the LED is off, then the light will come on immediately
and it will be shifted one position away from him.

The FAVOR-THE-LOSER circuit gives a slow starter a chance. When a player is about to win (the R3 or L3) po-
sition) the light will jump back Three spaces (to position 0) if he loses, but only one position if he jumps-the-light.

The circuit must be able to distinguish the winner within two gate delays (a few nanoseconds). Further the design
must be fair. For example, the design should not assign ties to one of the players.

2.0 The Field Programmable Gate Array (FPGA)
These are a collection of several hundred flip-flops, and several thousand gates, all collected in one integrated cir-

cuit. Also in the integrated circuit are a large number of wires which run across different parts of the integrated circuit.
There are also many electrically controlled switches which connect the flip-flops and gates to the wires, and the wires to
each other. By opening and closing the switches, one can build almost any digital circuit unless the circuit needs more
gates or flip-flops than there are in the FPGA.

Setting theses connection switches might be quite a job, Fortunately there is a computer program that does all the
work. Just connect the FPGA to the serial port of a PC, run the program, and in about five seconds, your circuit is built. It
sure beats stripping wires!

Rev 11.

The Tug-of-War Game

FIGURE 1.
 The tug of war machine.
It contains 3 push-buttons, 7
light-emitting diodes (LEDs)
and 1 field-programmable gate
array (FPGA)

BL BR

RESET

L2 L1 0 R1 R2
Player 2Player 1 LEDs

CLOCK

R3L3
/home/twkwan/97.350/97350labmanual/good_copy/tugofwr.fm5 DIGITAL ELECTRONICS J.Knight, 1/3/94 1

Elec

Carleton University 97.350, The Tug-of-War Game Good Design Practice,
Your assignment is to design a Field-Programmable Gate Array (FPGA) to perform the tug-of-war game or an
alternate game approved by the professor. All the logic will be on one IC. Only the push buttons, LEDs, LED drivers
and the oscillator will be external.

3.0 Good Design Practice
 The following practices shall be followed in your design:

a. Do not gate the clock. The gate will cause the flip-flops controlled by the gated clock to flip later than the ones
directly connected. Use enabled flip-flops, and gate the enable instead of the clock.

b. Use only ONE clock for all timing. Divide its output to get slower timing signals. Then use a pulse fed into the
clock-enable (CE) flip-flop input to give a lower effective clock rate.

c. Two related (passing through common logic) asynchronous input signals must be stable near the clock edge on
which they are read.

d. Do not allow one asynchronous input to change two state variables (flip-flops) together. If the clock changes just
as the input changes you get a race. Instead clock the input into a single D flip-flop. This makes the input into a
synchronous signal which can safely initiate multiple-variable state changes.

e. Do not use asynchronous preset or clear in counters and shift registers. The clear signal may clear itself before
clearing all the flip-flops. Asynchronous clear may, and should, be used to clear all flip-flops during power-on re-
start.

f. Any asynchronous circuit which latches, i.e. your push button circuit, must be checked for hazards and races.

g. Any unclocked latches in your circuit are asynchronous. If you place cross coupled NAND gates in the synchro-
nous part of your circuit, you have created an asynchronous island in a supposedly synchronous circuit. You
must then check for hazards, races and essential hazards at all latch inputs.1

4.0 Initial Planning
As with most specifications, there are a lot of subspecifications buried in the design document. You should read

through the complete document and list these before you start serious design. See the section on deliverables.

FIGURE 2. A possible block diagram for the game. The blocks are completely synchronous and run from a
common clock, except for the PUSH BUTTON LATCH which is asynchronous.

.

1. There is another reason for not placing any of the above asynchronous concepts into a synchronous circuit. The testing method
(Scan Testing) used for modern digital circuits will not work with embedded asynchronous elements.

BL

RESET

L2 L1 0 R1 R2

CLOCK

BR

PUSH
BUTTON
LATCH

R(H)/L(L)

PUSH
SYNCH
PULSE

R'(H)/L'(L)

WINRND

PSEUDO
RANDOM

BIT
GEN.

MASTER
CONTROLROUTBY

≅ 128

SLOWENABLE

FASTCLEAR

LEDS_ON

SCORER

FAVOR

LOSEROPP

THE

Don’t type brackets “(“, “)” or single quotes “ ' ” or slash
“/” into VIEW logic. For example use R_H or for R(H).

SLOWCLEARFAST
CLEAR

SyPush

DIVIDE

LIGHTS
L3 R3
tronic Engineering November 1, 2002 Tug Lab page 2, of 20

Carleton University 97.350, The Tug-of-War Game Initial Planning, Clock and Clock Divider
4.1 Clock and Clock Divider
The master clock should be about 500 Hz. This is fast enough so hu-

mans will not see appreciable delay, but it is slow enough so a divide by
256 can give the 1/2 second timing humans can see. The divide by 256
gives a pseudo-clock, a pulse one-clock-cycle wide every 28 or 256 clock
cycles., called SLOWENABLE. . This pulse can enable/disable the flip-flops so
they can only change at a 1/2 sec rate, even though they are clocked at 500 Hz.

You may use the laboratory square wave generator for the 500 Hz clock if one is not built onto the LCA board.

4.2 Push Button Latch
This must be asynchronous since it must tell which button was pushed first with-

in a couple of gate delays. It debounces the buttons by merely latching on the first
contact of the first button pushed. It should hold the signal until reset by the FAST-
CLEAR input. It has three inputs: BL, BR and FASTCLEAR.

4.3 The FAVOR-THE-LOSER circuit
When a player is in the L3 or R3 LED positions and the other player wins, the lights will jump back two posi-

tions to LED position 0. The block diagram above seems to suggest that this is a separate block. Another, probably
better, way is to build it into the scorer. Note it only shifts back one position if the winner jumps-the-light.

4.4 The SCORER
 It is suggested that the SCORER have three inputs:
WinRnd.............. a one clock-cycle pulse which comes after a button push. It tells that somebody has won the round.
R(H)/L(L) ≡ R/L. tells which button was pushed first. Right if high , left if low.
LEDS_ON............ tells if a LED is lit and thus can be used to tell if a player pushes his button ahead of time

(jumps the light) The score will move left or right according to the formula

 Right = WinRnd⋅MR.

 Left = WinRnd⋅MR

 Where MR............move right = 1; if R/L,LEDS_ON =1, 1, or 0,0
0; if R/L,LEDS_ON =0, 1, or 1,0.

Thus MR signifies a right move
if (the right button was pressed) and (the player did not jump the light),
or (the left button was pressed) and (the player jumped the light).

You may want to separate the the scorer into two parts as in FIGURE 2.

4.5 The Synchronizer Circuit
The output from the PUSH BUTTON LATCH is asynchronous, that is it may change at any time including on the

clock edge. The SCORER may not count correctly if its inputs change very near the clock edge.

As you will learn in the lectures, inputs to an FSM’s D flip-flops must never
change near the clock edge. Near means inside the fli-flops setup and hold times.
If the D inputs changes near the clock edge, one does not know whether the flip-
flops will capture the old D value, the new D value, or some will capture the old
and some the new. For much more detail, see Appendix A.

The PBL output must be synchronized, so it cannot change on the clock
edge. This is done by passing it through a D flip-flop. The clock-to-output delay,
tCHQV, inside the flip-flop will delay Q till after the clock edge. Thus Q acts as a slightly delayed synchronous D.
FIGURE 3 shows how this happens.

CLOCK

BY
≅ 128

DIVIDE
SLOWENABLE

CE
D

CE
D

BL

RESET

BR

PUSH
BUTTON
LATCH

FASTCLEAR

PUSH

R(H)/L(L)

L2 L1 0 R1 R2

SCORER

winRnd

R(H)/L(L)
LEDS_ON

CLK

R3L3

R(H)/L(L)

PUSH
SYNCH
PULSE

SyPush

R'(H)/L'(L)
Electronic Engineering November 1, 2002 Tug Lab page 3, of 20

Carleton University 97.350, The Tug-of-War Game Initial Planning, The Synchronizer Circuit
The tentative design suggests two input signals:
PUSH(H)....is latched true as soon as any button is pushed.
R(H)/L(L)...tells which button was pushed first, the right button or the left. .

While one asynchronous signal can be synchronized by passing it through a D flip-flop, two logically related asyn-
chronous signals cannot. They will appear to be properly synchronized until they both change on the same clock
edge. Then one may be captured by its D flip-flop but the other may not.

The problems can be seen by looking at PUSH and R(H)/L(L) in FIGURE 4 The two input signals PUSH and R(H)/
L(L) are logically related and change at about the same time. Suppose PUSH and R(H)/L(L) both change inside the
setup and hold time. Then the Synchronizer circuit might latch the correct PUSH and old incorrect value of R(H)/
L(L). On the next clock cycle R’(H)/L’(L) would be correct but it is too late! The SCORER has already moved to the
wrong light.

The cure is simple. Latch only PUSH; do not latch R(H)/L(L). See FIGURE 6 on page 5. We know when
PUSH goes high, R(H)/L(L) is at worst nanoseconds behind it. The SCORER reacts, not to the clock edge where
PUSH is captured, but on the next (2nd) clock edge. By that time R(H)/L(L) will be correct for sure

Alternately, PUSH might not be captured and then SyPush would be delayed a clock cycle. See FIGURE 5. Then the
SCORER would not react until the 3rd clock edge. By that time R(H)/L(L) will have been correct for two cycles..

D (asynch)

C

Q1

Q2

Setup & hold times

tCHQV

tCHQV

1DD

C

Q1 or Q2

1D

1D

COMPLEX
SYNCHRONOUS
MACHINE

C1
C1

C1

C1

1D

FIGURE 3. How a D flip-flop synchronizes a signal.
If the D input changes inside the flip-flop setup or
hold times, the signal may:
i) be captured, in which case it appears as the Q1

output, rising a safe distance after the clock edge.
ii) have the capture delayed until the next clock

edge. Then it will appear as Q2, which is delayed,
but still a safe distance from the active clock edge.
Either Q1 or Q2 is a safe, synchronized signal to
 feed to multiple flip-flops in a synchronous
 machine.

iii) go metastable which is not a problem with very
 slow clocks like this one.

(i)
(ii)

FIGURE 4. The signals
PUSH and R(H)/L(L) are
logically related and occur
only nanoseconds apart.
Suppose PUSH is captured
on one cycle, but R(H)/L(L)
is not captured until the
next cycle. Then left will
appear to have won because
R/L = 0 on the next clock
edge when SCORER is
enabled.

1D

C

R(H)/L(L)

SyPUSH

C

PUSH

PUSH

1D

C

R'(H)/L'(L)

R(H)/L(L)

tCHQV

Setup and hold times

Signal Too late

SCORER counts on this edge

Right won but Left got the score!

nanoseconds

C1

C1

FIGURE 5. This time PUSH was too late for
the 1st clock edge and was captured on the
2nd as SyPush.

R(H)/L(L) does not go through a flip-flop and
rises within nanoseconds of PUSH
rising.remains correct until cleared.

 The SCORER reacts to SyPush on the 3rd
clock cycle. It counts in a direction given by
R(H)/L(L). Both signals are stable at the 3rd
clock edge.

C

PUSH

R(H)/L(L)

Setup and hold times

SyPush(H) tCHQV
Alternate position for

SCORER counts on the 3rd clock edge
Electronic Engineering November 1, 2002 Tug Lab page 4, of 20

Carleton University 97.350, The Tug-of-War Game Initial Planning, The OPP (One-Pulse-Per-Push) Circuit
4.6 The OPP (One-Pulse-Per-Push) Circuit
 The SCORER must count only once, be it up or down, for each round played on the game. Otherwise each push
will count for many wins. The OPP circuit insures this by giving out one-pulse-per-push (round). The synchronized
push signal, SyPush, will initiate an output signal WINRND which will last exactly one clock cycle.

4.7 The Pseudorandom Counter
 This circuit creates ROUT, a string of 1s and 0s which is unpredictable to the players. The time between bits
should be about 1 second.

4.8 The Master Controller
The controller times the action of the game as follows:

a. Someone pushes a button either as a win or a jumped light.

b. The LEDs will come on immediately after a button is pushed.

c. The LEDs stay on for 1/2 to 1 second so it is clear who won; under 1/2 is
too short, longer would be boring

d. Then all the LEDs go out for a random time, minimum of 1/2 second.

e. A single LEDs come back on after this random time.

4.8.1 Rising Edge Detection
The pseudorandom bit generator gives random 0 and 1 strings. You may wish to check bit pairs of ROUT in-

stead of just checking for a “1.” For example checking for the pair 01 will find rising edges. Thus the ROUT string -
0111001100101110 would become
010000100010100 after a rising edge detector.

In the top sequence, there is a 50% chance of any bit being 1. If the lights came back on in response to ROUT=1,
there is a 50% chance of the lights coming back on in 1/2 second. With the lower sequence there is only a 25% chance
of getting a 1 in the first half second. This makes the game more interesting.
Also the second sequence gives a simpler controller design.

FIGURE 6. The signals PUSH and
R(H)/L(L) are logically related and
occur only nanoseconds apart.

(i) Suppose PUSH rises very near the
clock edge, SyPush will rise either on
the same clock edge or the next one.
However, R(H)/L(L) will be correct
within nanoseconds of PUSH rising,
and will remain correct until
cleared.

(ii) The SCORER reacts to SyPush on
the 2nd cycle. It counts up or down
according to R(H)/L(L) which is
stable long before the 2nd clock
edge.

SyPush(H)

C

PUSH

R(H)/L(L)

tCHQV

Setup and hold times

SyPush(H). See Figure 5.
Alternate capture of

R(H)/L(L) is correct

R'(H)/L'(L) = R(H)/L(L)

1D

C

PUSH

R(H)/L(L)

No
flip-flop

C1

 the 2nd clock edge
SCORER counts on

on the 2nd clock edge.

⊕

(i)

(i i)

(i)

FIGURE 7. The
WINRND signal lasts a
single clock cycle so one
round of the game will
only move the SCORER
once.

1D

C

COMB LOGIC

SyPush

WINRND(H)

C

One clock cycle long
SyPush

C1

MASTER
CONTROLROUT

LEDS_ON

RESET
Electronic Engineering November 1, 2002 Tug Lab page 5, of 20

Elec

Carleton University 97.350, The Tug-of-War Game More Detailed Synchronous Design, The SCORER

ght

001

011

Child

Child

2)
4.8.2 Slow Players and Gloating Players

If the players are slow, the controller circuit should keep the lights on until a push occurs. It also holds the
light on an additional 1/2 to 1 second after a push so the movement of the lights can be observed and the win-
ner can gloat.

4.8.3 Jumping the Light

 If a player “jumps the light”, the light should change immediately. However the timing is the same as for
a legitimate push. Also the controller should wait the “gloat period” and start the next round.

4.8.4 FastClear

After the LEDs go off, one must clear the push button latch. The clear circuit send out a FASTCLEAR
pulse to do this. This arms the push buttons quickly and allows detecting any player “jumping the light” at
anytime except the first clock cycle of the dark period (about 1/250 of a second).

5.0 More Detailed Synchronous Design
5.1 The SCORER
 The state diagram for the basic SCORER is as shown.

5.1.1 State Encoding
In asynchronous circuits state encoding is critical to avoid
races. In synchronous circuits state encoding is used to re-
duce logic. There are some rules of thumb you can try to
use. They usually work better than random state assign-
ment, but not ask well as an experienced designer using
symmetry. The rules are:

1. Parents of the same child, for the same input,
should be adjacent states on the Karnaugh map
(differ by only one bit). (L2, R2) have child W.

2. Children of the same parent should be adjacent.
(L1, R1) (0, R2) (R2, W) (L2, 0) (W,L1)(W, R1).

One possible state assignment obtained from these guide-
lines is shown in FIGURE 9
If these states are filled in on Karnaugh maps one obtains
the following tables. The bits in the state will be called
a, b, and c.

State

Next State

EN=0 EN=1

MR=0 MR=1

0 0 L1 R1

R1 R1 0 R2

R2 R2 1 W

W W W W

L1 L1 L2 0

L2 L2 W L1

Left Ri

Right

EN

EN

EN

.

RightLeft

Left
EN

EN

0

R1

R2

L1

L2

W

EN = WINRND
MR = R/L⊕ LEDS_ON

FIGURE 8

000

010

100

110

R1

0

W

R2

L1

L2

FIGURE 9SCORER state assignment

0
W R2

R1

~
~L2

L1

ab c

Parent

Parent
Child

x=1

x=1 Parent

Rule 1) Rule
tronic Engineering November 1, 2002 Tug Lab page 6, of 20

Carleton University 97.350, The Tug-of-War Game More Detailed Synchronous Design, The SCORER
You will not be able to satisfy all the guidelines. However a suboptimal state assignment in a synchrous circuit only
adds a few extra gates.

Verilog users normally do state assignments, but logic mimimization is done on the computer, not with maps.

5.1.2 Unused states in the SCORER
Eventually the don’t care states are filled in. Then one must check what

happens if noise puts one into either of the unused states, 111 or 101. These will
be called states 7 and 5 respectively.

What should the next states be for states that never happen? There are sev-
eral possibilities:
a) Choose the states to minimize the logic. This was done in ‘367 or ‘267.
b) Have the bad states indicates an error to the users. Then let the user

decide what to do. A lot of software errors are like that.
c) Have the bad states indicate an error and then automatically go to state 0.

d) Try to correct the error. This can be done by considering the most likely
faults. Consider state 7 (111). If only one flip-flop went wrong to enter this
state, then the previous state was either L2 (110) R2 (011) or 5 (101). Assum-
ing only one error, it could not have started from the error state 101. Unfortu-
nately one cannot tell whether it did start from 110 or 011, so this is not too
useful here.

ab\c 0 1 ab\c 0 1 ab\c 0 1

00 0 R1 00 L1 0 00 R1 R2

01 W R2 01 W R1 01 W W

11 L2 ~ 11 W ~ 11 L1 ~

10 L1 ~ 10 L2 ~ 10 0 ~

Present state
also

Next state for WinRnd=0

Next state for
MR=0,WinRnd=1

Next state for
MR=1,WinRnd=1

c,MR c,MR c,MR c,MR

a,b 00 01 11 10 a,b 00 01 11 10 a,b 00 01 11 10 a,b 01 11 10

00 0 0 R1 R1 00 0 0 0 0 00 0 0 0 0 00 0 0 1 1

01 W W R2 R2 01 0 0 0 0 01 1 1 1 1 01 0 0 1 1

11 L2 L2 ~ ~ 11 1 1 ~ ~ 11 1 1 ~ ~ 11 0 0 ~ ~

10 L1 L1 ~ ~ 10 1 1 ~ ~ 10 0 0 ~ ~ 10 0 0 ~ ~

Next States, Win-
Rnd=0

Map of a+ Map of b+ Map of c+

c,MR c,MR c,MR c,MR

a,b 00 01 11 10 a,b 00 01 11 10 a,b 00 01 11 10 a,b 01 11 10

00 L1 R1 R2 0 00 1 0 0 0 00 0 0 1 0 00 0 1 1 0

01 W W W R1 01 0 0 0 0 0 01 1 1 1 0 01 0 0 0 1

11 W L1 ~ ~ 11 0 1 ~ ~ 11 1 0 ~ ~ 11 0 0 ~ ~

10 L2 0 ~ ~ 10 1 0 ~ ~ 10 1 0 ~ ~ 10 0 0 ~ ~

Next States, Win-
Rnd=1

Map of a+ Map of b+ Map of c+

State

Next State

Win
Rnd
=0

WinRnd=1

MR=0 MR=1

0 0 L1 R1

R1 L1 0 R2

R2 R2 1 W

W W3 W W

L1 L1 L2 0

L2 L2 W L1

5

7

Electronic Engineering November 1, 2002 Tug Lab page 7, of 20

Elec

Carleton University 97.350, The Tug-of-War Game More Detailed Synchronous Design, One-Hot State Encoding
e) What one does not want to do is have the machine lock up in some state with no indication of error.

Choose a philosophy to deal with the unused states. State what it is. For example, one might say, “On
error, the machine will display an error light and require a reset push.” That way no large bets will be lost
because of the error.”

In your report, explain what happens when you enter a bad state.

5.1.3 Final SCORER Design.
Schematic capture designers should use the CE (chip enable) pin on

the flip-flops to simplify their work. The drawing shows how the signal con-
nected to CE must, when low, hold the flip-flop unchanging.
 a+ = WinRnd⋅a + WinRnd⋅(b⋅c⋅MR + - - -
 b+ = WinRnd⋅b + - - - -
 c+ = WinRnd⋅c + - - -

CE is automatically taken care of for Verilog designers if the state equations are correct.

Karnaugh map designers can minimize logic by using don’t cares in their maps. Verilog designers can
do the same by using casex for their next_state determining logic, and making the final case:

default: state =3’bxxx;

5.2 One-Hot State Encoding
An alternative scheme is to encode the state so that only one bit is “1” per state. This gives a shift-register

like structure instead of a shift register like circuit instead of a counter. This uses more flip-flops, but it has
simpler logic, and it does not require decoding logic to drive the LEDs. The shorter logic is usually faster so
it is favored for circuits which need a high clock speed.

Drawing a 7 variable Karnaugh map for this circuit is messy and unnecessary. Since we know only
one bit is “1” at a time, the “State Equations with bits” reduce to:

c = d⋅MR + b⋅MR
d = e⋅MR + c⋅MR etc.

a. These type of equations give a left-or-right shifting register using flip-flops and muxs. A 3-bit example
is shown. Unfortunately, checking for bad states is very complex with this type of machine.

b. Having 00100 as the centre state is convenient for lighting the centre LED,
so use a centre flip-flop with an asyncronous preset (PRE) instead of a clear (CLR).

abcde

State

Next State State Equations State Equations

WinRnd
= 0

WinRnd=1 with bits

MR=0 MR=1 WinRnd = 1 WinRnd = 1

00100 C C B D C = D⋅MR + B⋅MR c = a⋅b⋅c⋅d⋅e⋅MR + a⋅b⋅c⋅d⋅e⋅MR

00010 D D C E D = E⋅MR +C⋅MR d = a⋅b⋅c⋅d⋅e⋅MR + a⋅b⋅c⋅d⋅e⋅MR

00001 E E D W E = D⋅MR e = a⋅b⋅c⋅d⋅e⋅MR

01000 B B A C B = C⋅MR + A⋅MR b = a⋅b⋅c⋅d⋅e⋅MR + a⋅b⋅c⋅d⋅e⋅MR

10000 A A W B A = B⋅MR etc.

00000 W W W W W = A⋅MR + E⋅MR+ W

CE
C

D
WinRnd

b⋅c⋅MR +a⋅b⋅MR aa+

1D cba 1D1D
1
1

1
1

G1G1
C1C1C1

1D

C1

PRED Q
tronic Engineering November 1, 2002 Tug Lab page 8, of 20

Carleton University 97.350, The Tug-of-War Game More Detailed Synchronous Design, The Master Controller

R

ON
Verilog designers can easily encode one-hot states into FSMs using a casex statement. Be sure to make the last case:
default: next_state = 5'bxxxxx;

 Verilog will automatically insert the centre preset and reset flip-flops in response to:
always @(posedge clk or posedge clear) begin

if (clear) state = 5’b00100;

5.2.1 The SCORER Circuit, Adding Extras
If you decide to add extras, like separate win states, flashing lights, music, or a siren, design them into your state

machine now. Do not stick patches on at the end!

5.3 The Master Controller
The inputs signals shown for this subcircuit are:

ROUT............. the bit string from the pseudorandom bit generator.
WINRND........goes high for one clock cycle after a button is pushed.
SLOWENABLE.... which acts like a slow clock

The output signals might be:
LEDS_ON....to say one or more LEDs are on.
SLOWCLEAR..which generates FASTCLEAR to clear the PUSH-BUTTON LATCH.

5.3.1 Initial Lamp Check
 On RESET, all the LEDs should immediately come on, and stay on for 1 sec after RESET is released. This shows
that all the lights work. All LEDs should then go out and the center LED should come back on after the next rising
edge of ROUT.

5.3.2 The Mid-Game
Consider midgame play as in FIGURE 11.

(a) When the ROUT signal goes high it raises LEDS_ON on the next SLOWENABLE. This turns on a LED and sig-
nals the players to push. Note ROUT rises just after pulse hence it cannot cause a reaction until pulse B.

(b) Pushes generate a WINRND signal which moves the light and will eventually turn off LEDS_ON. However
LEDS_ON stays on for at least 1 second after WINRND, so the players can see who won, and remove their fingers.

 LEDS_ON will stay on indefinitely if no one pushes a button. This is a feature for absent minded players.

(c) After the 1 sec extra delay, LEDS_ON will go off even though ROUT may stay high.

(d) The Master controller generates SLOWCLEAR and from that FASTCLEAR which clears the push-button latch.

(e) LEDS_ON should wait a short time before coming on again. If ROUT stays high it would come back on the next
SLOW ENABLE. Waiting until ROUT has a rising edge gives a better delay.

WINRND

PSEUDO
RANDOM
BIT

GEN.

MASTER
CONTROLROUT

SLOW
CLEA

SLOWENABLE

LEDS_

RESET

FIGURE 10. The game after the initial reset. Here LEDS_ON comes on again, a Moore machine
delay after the rising edge of ROUT. Note SLOW ENABLE does not run during RESET.

⊕
RESET

ROUT

SLOW

LEDS_ON

ENABLE

1/2 sec min delay

⊕

⊕

waitwaiting for light

(random)

All lights flash for
push
Electronic Engineering November 1, 2002 Tug Lab page 9, of 20

Elec

Carleton University 97.350, The Tug-of-War Game More Detailed Synchronous Design, The Master Controller
5.3.3 Alternatives for The Rising Edge Detector Part of The Controller
The controller of Sect. 5.3.4 allows LEDS_ON to come on after a rising edge from the random-bit generator. One

could remove state A and use a pulse generated from the rising edge of ROUT to signal a simpler controller when
LEDS_ON should go high. This should give a simpler overall design, especially since you will design an edge-de-
tector is an OPP circuit. Further the OPP can share one of the flip-flops in the random generator.

5.3.4 A Possible, But Not Very Good, Controller
 These tables define a controller with timing close to FIGURE 10 and FIGURE 11. The letters within the SLO-
WENABLE signal in FIGURE 11. correspond to the states as closely as possible.

Note this controller does not hold the lights lit for 1/2 sec. after a push. This 1/2 sec corresponds to the “?” state in
FIGURE 11. Also it does not turn on all the lights immediately after RESET.

5.3.5 Mealy and More in Master Controller Design
This the hardest part of the design. You can use either a Mealy or a Moore outputs. However:

(i) Mealy outputs usually reduce the number of states needed.
(ii) Moore output are easier to understand.
(iii) You may use SLOW ENABLE to step the controller in 1/2 second steps. In Verilog one might might imply ena-
bled flip-flops by using:

always @(posedge clk or posedge clr)
begin if (clr) state=reset;
else if (clk & slowenable) state=next_state;

State

Next State Output

State

Next State Outputs

SE⋅ROUT SE⋅ROUT

00 01 11 10 00 01 11 10

A A B B ~ 0,0 00 00 01 01 ~ 0,0

B B B C C 1,0 01 01 01 11 11 1,0

C A C C A 0,1 11 00 11 11 00 0,1

10 ~ ~ ~ ~ ~
Outputs = LEDS_ON, SLOWCLEAR Outputs = LEDS_ON, SLOWCLEAR

FIGURE 11. .The midgame after one or more rounds.
(a) ROUT rising turns on the LEDs, the signal to the players to push. (b) A push raises the WINRND pulse,
which will, after 1/2 to 1 sec, (c) lower LEDS_ON and pulse SLOWCLEAR. (d) SLOWCLEAR in turn will
pulse FASTCLEAR. (e) The next LEDS_ON will wait till the next rising edge of ROUT.

ROUT

SLOW

LEDS_ON

ENABLE

1/2 sec extra delay
⊕

waiting for push

waiting for light

WINRND

SLOWCLEAR

FASTCLEAR

a push happened

A B ? C C C C C A B ?

(random)

waiting for push

one LED on

(d)

(c)(a) (b)

⊕

(e)

SIMPCLEAR A simple alternative to SLOWCLEAR and FASTCLEAR

FIGURE 13 The states of
the poor quality controller.
SE = SLOWENABLE

EN

B/10

ROUT + SE

A/00
ROUT⋅SE

C/01

EN

ROUT + SE

S
E
⋅RO

U
T

tronic Engineering November 1, 2002 Tug Lab page 10, of 20

Carleton University 97.350, The Tug-of-War GameMore Detailed Synchronous Design, Pseudorandom Sequence
(iv) A Moore output may make one to wait 1/2 sec between a jumping the light and a LEDS_ON. With Mealy out-
puts one can can react quickly. Hint: There is a better input than WINROUND for the controller.

This is a summary of some points about the master controller:

a. Turn all the lights on during reset and for 1 second therafter.

b. Leave the light on for ∆T, 1/2 < ∆T < 1 sec, after a push.

c. Move the light right away after a jump-the-light, and leave it on in the new position for ∆T, 1/2 < ∆T < 1 sec.
The controller can treat a jump exactly like a valid push. Let the the scoring circuit decide which LED goes on.

d. Capture a WINROUND signal even if thought it comes and goes between SLOWENABLE pulses.

e. Record a jumped light even in the first half second after the light goes off.

5.3.6 SLOWCLEAR and FASTCLEAR
SLOWCLEAR comes on as LEDS_ON goes off. It is slow because it is generated by the SLOWENABLE.
SLOWCLEAR is not fast enough to clear the push-button latch. Someone might jump the light during the half second
it is high. The FASTCLEAR is a pulse one CLOCK cycle wide starting at the rising edge of SLOWCLEAR. It will
clear the latch quickly..

5.3.7 The Fast/Slow Clear State Machine
 This circuit takes SLOWCLEAR which lasts about 0.5 sec, and
initiates a fast pulse FASTCLEAR which lasts only one clock cycle.
This circuit is called an edge detector, or a “one-and-only-one” pulse
circuit. It generates a pulse only when the state is 1 and there is a
SLOWCLEAR input from the controller. This condition only lasts
one clock cycle (1/250 sec.). The circuit uses only one flip-flop and
one gate.

5.4 Pseudorandom Sequence Generators
FIGURE 17 on page 12 shows a widely used circuit which generates a sequence of bits. The output may be

taken from any of Q1,Q2.Q3 or Q4. While the sequence is periodic, inside of its 15 cycle period, it passes many of the
statistical tests for randomness. Notice it is a 15, not a 16,cycle FSM. The 16th state is all zeros. If it gets into that
state it will never come out.

These pseudorandom shift registers can be made in any length but the most efficient ones have N flip-flops and
have sequence length 2N-1. The final state is all zeros and not used.

Connections for sequences with periods up to 511 bits are shown in FIGURE 16 and the table on page 12

FIGURE 14. Slow clear has to go between two SLOWENABLE pulses. It is 1/2 sec. long. We prefer to
clear the bush-button latches with FASTCLEAR which only takes them out of service for 4 ms.

SLOWCLEAR

FASTCLEAR

1/2 sec

⊕

Slow clear

Not to scale

SLOWENABLE

CLOCK

SLOWCLEAR

SLOWCLEAR

1 0

SLOWCLEARSLOWCLEAR

FIGURE 15b. The Mealy
machine used to generate
FASTCLEAR (FC) from
SLOWCLEAR (SC).

FC = 0IF SC, FC=1
Electronic Engineering November 1, 2002 Tug Lab page 11, of 20

Ele

Carleton University 97.350, The Tug-of-War Game More Detailed Synchronous Design, Pseudorandom Sequence
.

SEQUENCE LENGTHS FOR FIGURE 16
Link 15 31 63 127 255 511

A to Q3 Q3 Q5 Q6 Q2 Q5
B to Q4 Q5 Q6 Q7 Q3 Q9
C to Omit Omit Omit Omit Q4 Omit
D to Omit Omit Omit Omit Q8 Omit

Examples using this table are shown in
FIGURE 17 and especially FIGURE 18.

Note that the generator must not be all ze-
ros initially or it will not start, i.e. this is a
state machine which will lock up in the
0000 state!

Note cycle 0 and 15 are the same The se-
quence is always of length 2N-1 because
the flip-flops can never be all zeros!

Verilog code to imply the random number
generator on the right, is given below.

reg [4:1] Q;

always @(posedge clk or posedge clr)
begin if (clr) Q<=4'd8;

// Must not reset state to zero.
else if (clk)

begin
 Q[4:2]<=Q[3:1]; //(line 7)
 Q[1] <= Q[1]^Q[4]; //(line 8)
end

/* The “<=” is called a nonblocking
assignment. The Qs on the right all use
the values they had at the begin.

Thus line 8 uses the original Q[4] and
not the revised value from line 7.*/

1D Q5 1D Q6 1D Q7 1D Q81D Q41D Q31D Q21D Q1 1D Q9

A
B

C

D

FIGURE 16 A general pseudorandom bit stream generator. The number of flip-flops used depends
on the length of sequence desired. Thus, for a 15 bit sequence remove all but 4 flip-flops. For a 31
bit sequence, remove all but 5 flip-flops, etc. See FIGURE 17 and FIGURE 18

C1 C1 C1 C1 C1 C1 C1 C1 C1

1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1

1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1

1 0 1 0

CLK

Q4Q3Q2Q1

1 1 0 1

1 1 1 0

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

8
4

2
9

12
6

11
5

10
13

14
15

7

3

1
0 0 0 00

clo
ck cycles

FIGURE 17 A circuit made from XOR and FFs which gives
repeatable “random” number sequences.
This example can be constructed from the general example
of FIGURE 16 by connecting A to Q3 and B to Q4

1D

C1

1D

C1

1D

C1

1D

C1

A
B

1D Q5 1D Q6 1D Q71D Q41D Q31D Q21D Q1
A

B

FIGURE 18. A 127 state pseudorandom bit generator constructed from the general circuit of FIGURE
16. Use the connections for the 127 sequence length, and remove the two unused flip-flops.

C1 C1 C1 C1 C1 C1 C1
ctronic Engineering November 1, 2002 Tug Lab page 12, of 20

Carleton University 97.350, The Tug-of-War Game The Design of the Asynchronous Circuits, Generating the
5.4.1 Alternative Random Bit Stream Generators
a. One alternative is to have a square-wave oscillator running asynchronously at a high speed and sample it every

clock cycle.

b. Previous students have used a counter which was preloaded with the least significant bits of the clock divider
every time a button was pushed. With this number in preloaded, the counter was then clocked down to zero to
give a random delay. Since buttons tend to get pushed a reaction time after a slow clock edge, the numbers tend
to be close together. If you use this method, reverse the bit order and/or use the pseudorandom generator as your
divider.

5.5 Generating the SLOWENABLE
This circuit must generate a single pulse every 128 clock pulses. One needs a 7 bit counter which gives a carry

pulse (TC) out every time it rolls over from say 1111111 -> 0000000. Counters are trivial to generate in Verilog.

The 7 bit pseudorandom number generator counts 1 to 127, which is close enough to 128 for this game. The or-
der of the count is pseudorandom, but that does not matter for this application, and it is the simplest counter you can
build. Can you see how to use it to generate SLOWENABLE? (In the past, using this circuit has been a mark genera-
tor for the design review)

6.0 The Design of the Asynchronous Circuits

6.1 The Basis of the Design of the Push Button Circuit
 The push button circuit shall be as fair as modern technology can make it.
 i) It must tell who pushed first within a time equal to the propagation delay of two inverters.

ii) It shall have no theoretical bias toward one player. Because of the difference in delays between gates and/or lead
lengths, it is impossible not to have some bias in the circuit after construction.

 iii) If your circuit goes into a tie state, it shall either:

a. have equal theoretical probability of exiting toward either player.

b. leave the light stationary for that round.

iv) It should not depend on which player releases their button first. In a poor design, this can happen in the case of a
tie, which causes the winner to be determined by the bounce properties of the push buttons.

6.1.1 The State Diagram for the Latch.

6.1.2 State Table for the State Diagram

Asynchronous circuits must have a race free state assignment. This means state variables should change by only one
bit at a time. Two possible assignment are shown in FIGURE 21The state table for an assignment of FIGURE 21 is
shown in TABLE 9. The two state variables needed will be named G and H

The equations governing G+, H+ and hence the circuits to generate them, are obtained from the Karnaugh maps,
which in turn are obtained from the state table. Because of the don’t care states, one appears to have a choice of sev-

BR·BL

Clear

A

FIGURE 20The Push Button Latch
State A........ No button pushed since Clear.
State B........ Button 2 (right) was pushed first.
State C........ Button 1 (left) was pushed first.
Input BL.......Left Button input.
Input BR.......Right Button input.
Input Clear... FASTCLEAR
Output P........ PUSH; some button pushed.
Output R/L.... R(H)/L(L), High if BR came

before BL; low if BL preceded
BR

B

C

Clear
P, R/L

BR

Clear

BL

Clear

P, R/L

P, R/L
Electronic Engineering November 1, 2002 Tug Lab page 13, of 20

Elec

Carleton University 97.350, The Tug-of-War GameThe Design of the Asynchronous Circuits, The Basis of the Design of
eral equations for G+ and H+. However behavior and/or reliability of the circuit will suffer if the wrong
choice is made, as will be shown in Sect 5.1.4.

 A possible set of equations and the way they complete
the state table, is shown below

G+ = (G + BL)H

.

Clear (EQ 1)

H+ =(H + BR)G

.

Clear (EQ 2)

6.1.3 Side Effects of the Complete State Assignment
 As an example look at equations 1 & 2 above. Circling the maps gave definite values to the don’t care
next states. These fill ins are shown in TABLE 10. TABLE 11.shows the states converted back to letters. The

BR

Clear

BL

Clear
B=01

C=10

A=00BR

Clear

BL

Clear
B=01

C=00

A=11

FIGURE 21. Two possible state assignments for the
latch, one has a race, the other is race free.Pres Next State Output

State Inputs= BL, BR, Clear

000 010 110 100 - -1 P, R/L

A A B - C A 0 -

B B B - B A 1 1

C C C - C A 1 0

Circled states are stable. - is don’t care

TABLE 9.

Pres Next State G+ H+ Output

State Inputs= BL, BR, Clear

G H 000 010 110 100 - -1 P, R/L

0 0 0 0 0 1 - 1 0 0 0 0 -

0 1 0 1 0 1 - 0 1 0 0 1 1

- - - - - - -

1 0 1 0 1 0 - 1 0 0 0 1 0

0

0

~
0 0

0

~

0

~

0

0 0 0

00

~

0

0

~
1 1

~

~

~

~

1

0 ~ 1

00

~

Clear=0 Clear=1

00

01

11

10

00

01

11

10

00 01 11 10 00 01 11 10

MAP of G+

0

0

~
0 0

0

~

0

0 0

0

~

0

1

~
0 0

~

~

~

~
0

1 ~ 0

11

~

Clear=0 Clear=1

00

01

11

10

00

01

11

10

00 01 11 10 00 01 11

MAP of H+

GH
BL,RL

GH
GHGH BL,RL

BL,RLBL,RL

TABLE 10. Table 9 with “d” filled in

Pres Next State G+ H+ Output

State Inputs= BL, BR, Clear

G H 000 010 110 100 - -1 P, R/L

0 0 0 0 0 1 1 1 1 0 0 0 0 -

0 1 0 1 0 1 0 1 0 1 0 0 1 1

1 1 0 0 0 0 0 0 0 0 0 0 -

1 0 1 0 1 0 1 0 1 0 0 0 1 0

TABLE 11. Table 10 with letter names.

Pres Next State G+ H+ Output

State Inputs= BL, BR, Clear

G H 000 010 110 100 - -1 P, R/L

A=0 0 A B D C A 0 -

B=0 1 B B1 B B A 1 1

D=1 1 A A A A A -

C=1 0 1 0 1 0 C C A 1 0

cycle
tronic Engineering Nove
mber
 1, 2002 Tug Lab page 14, of 20

Carleton University 97.350, The Tug-of-War Game The Design of the Asynchronous Circuits, The Basis of the
tie state (both buttons pushed at once) is unstable. Pushing both buttons at once will send one to state D, which will
return one to state A, which will send one back to D, which --. Actually, instead of changing 00->11->00, after a few
cycles one of F or G will change before the other, sending one to either state B or C. This is an example of metastabil-
ity (Sect. A.2).

6.1.4 Other Considerations Based on State Assignment
i) If both buttons are pushed at once:

• Make sure a tie does not have a bias toward either side?
• Understand that pushing two buttons together is not a normal race. It is true that the state change A=00 ->D=11,

may instead go 00 -> 10 or 00 -> 01, but this is not an avoidable race. It is just one side or the other winning. It is
normal circuit operation.

• When there is a tie, if one stays in state A=00, the push button circuit is still able to latch toward one side or the
other. When a switch breaks contact due to bouncing, the person pushing that switch will lose. This “lose on first
bounce” is an avoidable unfairness.

6.1.5 Examples of Low-Grade PB Latches
Table 12:(a) Suppose B won the push in this machine. When C pushes, the machine will come out of state B, go
to the tie state D and stay there.

 Table 12:(b) If there is a tie, this machine stays in state A.(inputs 110). However if one button is released, the
other person wins. This is a lose on first bounce” circuit.

Table 13:(a) This is another “lose on first bounce” circuit. The machine will not stay in the tie state D when one
button is released.

Table 13:(b) A circuit based on this table will never go to state D. However it has a clear bias toward B.

You should choose a state table for your latch. You should analyze its behavior under tie conditions. And you must
explain why your choice was theoretically fair. This should be in your report.

Table 12: (b)

Pres Next State G+ H+

State Inputs= BL, BR, Clear

G H 000 010 110 100 - -1

A=0 0 A B A C A

B=0 1 B B B B A

D=1 1 A A A A A

C=1 0 C C C C A

Table 12: (a)

Pres Next State G+ H+

State Inputs= BL, BR, Clear

G H 000 010 110 100 - -1

A=0 0 A B D C A

B=0 1 B B D B A

D=1 1 A A D A A

C=1 0 C C D C A

Table 13: (b)

Pres Next State G+ H+

State Inputs= BL, BR, Clear

G H 000 010 110 100 - -1

A=0 0 A B B C A

B=0 1 B B B B A

D=1 1 A A A A A

C=1 0 C C C C A

Table 13: (a)

Pres Next State G+ H+

State Inputs= BL, BR, Clear

G H 000 010 110 100 - -1

A=0 0 A B D C A

B=0 1 B B B B A

D=1 1 A B D C A

C=1 0 C C C C A
Electronic Engineering November 1, 2002 Tug Lab page 15, of 20

Carleton University 97.350, The Tug-of-War GameThe Design of the Asynchronous Circuits, The Basis of the Design of
6.1.6 Reliability Based on Races and Hazards
 No asynchronous state table can be guaranteed to work without checking the following:
 a) Are there hazards in the circuit.
 b) Are there any critical races in the state table?
 c) Are there essential hazards in the state table?

6.1.7 Checking for Hazards
 Test Summarized

1. Expand the logic equations for your state table.

2. Look for variables x, where x and x are both in the same equations. If x and x do not both appear in the any
equation there are no hazards.

3. If x and x do both appear, make all the other variables 1 and 0 in all possible combinations. Try to get the equa-
tion to reduce to either xx, x + x , xx + , or (x +x)x. If one cannot, there are no hazards.

 Example 1

Equ. 1 & 2 will be checked for hazards.

G+ = (G + BL)H.Clear H+ =(H + BR)G.Clear (1 & 2)

 Since no variable appears in both complemented and uncomplemented form, there are no static or dynamic hazards.

Example 2

G+ = (GH + BL)H.Clear

This equation has a hazard, because G=1, BL=0 and Clear=0, reduce G+ to G+ = HH

Most of the PUSH-BUTTON LATCHEs have no hazards. However it is a major offense not to show in your report
how you checked for hazards. In general it is very important to check for hazards in asynchronous circuits!

6.1.8 When You Must Check for Hazards

1. Any asynchronous latch must be checked for hazards. The state table cannot be trusted if there are hazards.

2. Synchronous circuits normally do not need to be checked for hazards. All changes in synchronous circuits come
soon after a clock edge. One need only make the clock cycle long enough so that all glitches die out before the
next clock edge. Then they cannot propagate to the next state.

3. Asynchronous circuits feeding clocked logic should be hazard free. If a glitch occurred near a clock edge, it
could be captured as a false signal.

A common error in the PUSH-BUTTON LATCH, is to use G⊕ H to gen-
erate the PUSH signal. G and H will both be high on a tie, so G⊕ H
should not generate a PUSH signal on a tie. Unfortunately, there is a built-
in two-variable hazard in the exclusive-or. If a tie occurs on a clock edge
the hazard may generate a glitch which may be caught in the SYNCHRO-
NIZER circuit. The cure is to do your X-OR after the SYNCHRONIZER.

6.1.9 Checking for Essential Hazards
Races and essential hazards and hazards are equally likely.

Unfortunately many people only check for the one they understand,
which is races. Checking for only races is like checking only addi-
tion in arithmetic, and pretending that multiplication and division do
not need checking.

An essential hazard is a race between an input and a state
change. It is a property of the state table, and unlike races, cannot
be removed by a new state assignment.

G

H

QPUSH 1D

C1

Start of
 SYNCHRONIZER

FIGURE 22 common hazard in the
push button latch circuit

Pres Next State G+ H+

State Inputs= BL, BR, Clear

G H 000 010 110 100 - -1

A=0 0 A B D C A

B=0 1 D B B A

D=1 1 D D D D A

C=1 0 D C C C A
1st

2nd

3rd
Electronic Engineering November 1, 2002 Tug Lab page 16, of 20

Carleton University 97.350, The Tug-of-War Game The Design of the Asynchronous Circuits, The Design of the
The test for essential hazards is to see if three changes in an input variable, i.e. 1 -> 0 ->1 send the machine to a dif-
ferent state from a single change 1 ->0.

In this example:
Starting at state A
The single change BL 0 -> 1
cause state change A -> C
The triple change in BL 0 -> 1 -> 0
causes state changes A -> C -> D

Here the final states are different, and this state table has an essential hazard.

6.1.10 Asynchronous Circuits in Verilog
Verilog is not very good at synthesizing asynchronous circuits.

You will want to turn off any optimization.
You may have trouble with always blocks, and have to use assign. If that also gives trouble build the feedback ele-
ments with basic gates, and and or. For example:

 G+ = (G + BL)H.Clear becomes:

and and1(G, temp, ~H, ~Clear);
or or2(temp, G, BL;)

6.2 The Design of the Synchronizer Circuit
The synchronizer circuit takes the asynchronous PUSH input which may change anytime and makes it into SyPush

which cannot change near the clock edge. That is during the setup or hold times of the flip-flops.

Logically independent asynchronous input signals should be sent through a single D flip-flop before they enter the
rest of the synchronous machine. But this will not work for two logically-dependent signals. See Sect 4.5.

6.3 The Design of the OPP (One-Pulse-per-Push) Circuit
 It gives out a single synchronous pulse one clock cycle long. It always gives one pulse, and only one pulse.

FIGURE 23The sychronizer D flip-flop and a the OPP circuit. The OPP circuit is simpler to
implement as a Mealy machine, as shown by its state graph.

PUSH 1D

C1

Start of

WINRND
1 Pulse
Circuit

PUSH

SyPush

WINRND

CLOCK

asynchronous

synchronous PUSH

0 1

SyPush

SyPush

SyPush

SyPush

/ WINRND

/ WINRND

/ WINRND

/ WINRND

Timing for the OPP Circuit

State Graph for the OPP Circuit

SyPush

Output for state 1 and SyPush=1

Stay in state 1 if Sypush=1
Electronic Engineering November 1, 2002 Tug Lab page 17, of 20

Carleton University 97.350, The Tug-of-War Game : Timing Properties of Flip-Flops, Normal D flip-flop operation.
Appendix A : Timing Properties of Flip-Flops

A.1 Normal D flip-flop operation.
FIGURE 24. The normal operation of the rising-edge edge-triggered D flip-flop.

The input, as sampled a short time before and/or during the rising clock edge, is
stored in the flip-flop.
The stored data output appears a short time after the clock edge.

FIGURE 25. If the D input of the flip-flop changes during this final sample time, the flip-flop
cannot tell whether it should store the old or the new D value. Thus the manufacturer
places a time range around the clock edge where the input should not be changed. If
the input is changed inside this region, the output may be derived from either the old
input, the new input, or even half-way in between.

A.1.0.1 Setup, Propagation and Hold Times

There are two time intervals associated with the active clock edge in D flip-flops:
• The setup time, which is the interval before the clock where the data must be
held stable.
• The hold time, which is the interval after the clock where the data must be
held stable.

Most modern flip-flops have a zero or a negative hold time. A negative hold time
means the data can change slightly before the clock edge without risk of not being
captured.

FIGURE 26. Example of the setup time, hold time, and propagation delay for a 74AC74 CMOS
flip-flop. The INPUT signal shows several legal transitions, but avoids showing one in
the shaded area where data should not change.

One other useful specification is the flip-flop clock to output propagation delay. It
is given the abbreviation tCHQV (time from Clock High to Q Valid).

D

C

Q

CLOCK

INPUT INPUT

Q

CLOCK

Time from clock edge to output

Time from input sample to clock edge

D

C

Q

CLOCK

INPUT INPUT

Q

CLOCK

Hold time
Setup time

Region where data must hold still

Hold time
Setup time

negative

D INPUT

Q

CLOCK

0 ns Hold time
3 ns Setup time

Region where data should not change74AC74
Setup
time

Hold
time

Prop
Delay
tCHQV

min

typ

1 ns

6.5 max

0 ns

-1.5ns

3 ns

1.5 ns 1 ns tCHQV, Prop Delay
Electronic Engineering November 1, 2002 Tug Lab page 18, of 20

Carleton University 97.350, The Tug-of-War Game : Timing Properties of Flip-Flops, Metastability,
The minimum delays are the ones one uses in most designs. The manufacturer
will guarantee those. The typical delay is not very rigorously defined.

A.1.0.2 Summary of the Restricted Region

The restricted region is the time interval round the active clock edge where a flip-
flop’s input signal should not change. If it does change in that region the flip-flop’s
output, after the clock edge, may:
1) follow the change in D.
2) not follow D.
3) follow it halfway (go metastable).

A.2 Metastability,
Metastability is when a flip-flop balances at “1/2” trying to make up its mind
whether to go to a 1 or a 0.

The flip-flop output will eventually go to either a 1 or a 0. Usually this will happen
in less than a clock cycle.

Metastability is a problem only for flip-flops running at close to their maximum
speed. Not for the Tug-of-War.

The Push-Button-Latch under tie conditions is metastable in the state table of
Sect. 6.1.4. Many metastable circuits oscillate for a cycle or so.

A.3 Flip-Flops With Inputs Near the Clock Edge

A.3.1 Synchronous and Asynchronous Signals
A synchronous signal will be defined as one which is constrained so it cannot
change in the restricted region near the clock edge. An asynchronous signal can
and will change anywhere. See FIGURE 27..

Any signal which passes through a flip-flop is synchronous. The propagation de-
lay inside the flip-flop, tCHQV, will give enough delay to move the signal edges out
of the restricted region. Thus the Q signal in FIGURE 28. is synchronous and re-
sults from sending the upper signal through a D flip-flop.

FIGURE 27. Three different D inputs to a flip-flop are shown. The upper two are synchronous
because they do not change in the restricted region (inside the setup and hold times).
The lower one is asynchronous because it has one transition inside the restricted
region.

D INPUT

Q

CLOCK

Hold time
Setup time

Q followed D

Q did not follow DQ

Q metastable
Q went

D

C

Q

CLOCK

D in D in; Synchronous

CLOCK

Restricted Region

D in; Asynchronous

D in; Synchronous
Electronic Engineering November 1, 2002 Tug Lab page 19, of 20

Carleton University 97.350, The Tug-of-War Game : Timing Properties of Flip-Flops, Synchronous and Asynchronous
FIGURE 28. The output of a flip-flop is always synchronous. The only exceptions are unlikely and
are mentioned in the text.

A.3.1.1 Making an Asynchronous Signal Synchronous

Sending an asynchronous signal through a D flip-flop will sychronize it provided:

a) t(CHQV)Min < tHOLD This should not happen in any flip-flop designed
since 1975.

b) Metastability is not a problem. This is usually the case unless the flip-flops are run-
ning

 close to maximum clock speed.

When the asynchronous signal changes in the restricted region, it may or may not
be captured. However, provided the asynchronous signal stays stable for at least a
clock cycle, the signal will be captured on the next clock edges. If one needs to
catch superfast pulses, which rise and fall inside a clock cycle, one must use an
asynchronous pulse-catching circuit.

FIGURE 29. Synchronizing an asynchronous input. Under the conditions above, the change in D
inside the restricted region will either be caught on the edge where it changed, or on
the next edge.

D

C

Q

CLOCK

D D; Synchronous

CLOCK

Restricted Region

Q; Synchronous

D

C

Q
CLOCK

D

CLOCK

caught on 2nd edge

D; Asynchronous

Q; Synchronous

Nonhousebroken
asynchronous
input

Hold time

tCHQV,

caught on 1st edge

clean
synchronized
output

A single asynchronous input may be synchronized by sending it
through a D flip-flop before allowing it into a synchronous circuit.
Electronic Engineering November 1, 2002 Tug Lab page 20, of 20

	The Tug-of-War Game
	1.0 The Game
	FIGURE 1 . The tug of war machine. It contains 3 push-buttons, 7 light-emitting diodes (LEDs) and...

	2.0 The Field Programmable Gate Array (FPGA)
	3.0 Good Design Practice
	a. Do not gate the clock. The gate will cause the flip-flops controlled by the gated clock to fli...
	b. Use only ONE clock for all timing. Divide its output to get slower timing signals. Then use a ...
	c. Two related (passing through common logic) asynchronous input signals must be stable near the ...
	d. Do not allow one asynchronous input to change two state variables (flip-flops) together. If th...
	e. Do not use asynchronous preset or clear in counters and shift registers. The clear signal may ...
	f. Any asynchronous circuit which latches, i.e. your push button circuit, must be checked for haz...
	g. Any unclocked latches in your circuit are asynchronous. If you place cross coupled NAND gates ...

	4.0 Initial Planning
	FIGURE 2 . A possible block diagram for the game. The blocks are completely synchronous and run f...
	4.1 Clock and Clock Divider
	4.2 Push Button Latch
	4.3 The FAVOR-THE-LOSER circuit
	4.4 The SCORER
	4.5 The Synchronizer Circuit
	FIGURE 3 . How a D flip-flop synchronizes a signal. If the D input changes inside the flip-flop s...
	FIGURE 4 . The signals PUSH and R(H)/L(L) are logically related and occur only nanoseconds apart....
	FIGURE 5 . This time PUSH was too late for the 1st clock edge and was captured on the 2nd as SyPush.
	FIGURE 6 . The signals PUSH and R(H)/L(L) are logically related and occur only nanoseconds apart.

	4.6 The OPP (One-Pulse-Per-Push) Circuit
	FIGURE 7 . The WINRND signal lasts a single clock cycle so one round of the game will only move t...

	4.7 The Pseudorandom Counter
	4.8 The Master Controller
	a. Someone pushes a button either as a win or a jumped light.
	b. The LEDs will come on immediately after a button is pushed.
	c. The LEDs stay on for 1/2 to 1 second so it is clear who won; under 1/2 is too short, longer wo...
	d. Then all the LEDs go out for a random time, minimum of 1/2 second.
	e. A single LEDs come back on after this random time.
	4.8.1 Rising Edge Detection
	4.8.2 Slow Players and Gloating Players
	4.8.3 Jumping the Light
	4.8.4 FastClear

	5.0 More Detailed Synchronous Design
	5.1 The SCORER
	FIGURE 8

	0
	0
	L1
	R1
	R1
	R1
	0
	R2
	R2
	R2
	1
	W
	W
	W
	W
	W
	L1
	L1
	L2
	0
	L2
	L2
	W
	L1
	5.1.1 State Encoding
	1. Parents of the same child, for the same input, should be adjacent states on the Karnaugh map �...
	2. Children of the same parent should be adjacent. (L1, R1) (0, R2) (R2, W) (L2, 0) (W,L1)(W, R1).
	FIGURE 9 SCORER state assignment

	00
	0
	R1
	00
	L1
	0
	00
	R1
	R2
	01
	W
	R2
	01
	W
	R1
	01
	W
	W
	11
	L2
	~
	11
	W
	~
	11
	L1
	~
	10
	L1
	~
	10
	L2
	~
	10
	0
	~
	Present state
	also
	Next state for WinRnd=0
	Next state for
	MR=0,WinRnd=1
	Next state for
	MR=1,WinRnd=1
	00
	0
	0
	R1
	R1
	00
	0
	0
	0
	0
	00
	0
	0
	0
	0
	00
	0
	0
	1
	1
	01
	W
	W
	R2
	R2
	01
	0
	0
	0
	0
	01
	1
	1
	1
	1
	01
	0
	0
	1
	1
	11
	L2
	L2
	~
	~
	11
	1
	1
	~
	~
	11
	1
	1
	~
	~
	11
	0
	0
	~
	~
	10
	L1
	L1
	~
	~
	10
	1
	1
	~
	~
	10
	0
	0
	~
	~
	10
	0
	0
	~
	~
	Next States, WinRnd=0
	Map of a+
	Map of b+
	Map of c+
	00
	L1
	R1
	R2
	0
	00
	1
	0
	0
	0
	00
	0
	0
	1
	0
	00
	0
	1
	1
	0
	01
	W
	W
	W
	R1
	01
	0
	0
	0
	0
	0
	01
	1
	1
	1
	0
	01
	0
	0
	0
	1
	11
	W
	L1
	~
	~
	11
	0
	1
	~
	~
	11
	1
	0
	~
	~
	11
	0
	0
	~
	~
	10
	L2
	0
	~
	~
	10
	1
	0
	~
	~
	10
	1
	0
	~
	~
	10
	0
	0
	~
	~
	Next States, WinRnd=1
	Map of a+
	Map of b+
	Map of c+
	5.1.2 Unused states in the SCORER

	0
	0
	L1
	R1
	R1
	L1
	0
	R2
	R2
	R2
	1
	W
	W
	W3
	W
	W
	L1
	L1
	L2
	0
	L2
	L2
	W
	L1
	5
	7
	5.1.3 Final SCORER Design.
	5.2 One-Hot State Encoding

	00100
	C
	C
	B
	D
	C = D×MR + B×MR
	c = a×b×c×d×e×MR + a×b×c×d×e×MR
	00010
	D
	D
	C
	E
	D = E×MR +C×MR
	d = a×b×c×d×e×MR + a×b×c×d×e×MR
	00001
	E
	E
	D
	W
	E =�������������� D×MR
	e =��������������������������� a×b×c×d×e×MR
	01000
	B
	B
	A
	C
	B = C×MR + A×MR
	b = a×b×c×d×e×MR + a×b×c×d×e×MR
	10000
	A
	A
	W
	B
	����A = B×MR
	etc.
	00000
	W
	W
	W
	W
	W = A×MR + E×MR+ W
	a. These type of equations give a left-or-right shifting register using flip-flops and muxs. A 3-...
	b. Having 00100 as the centre state is convenient for lighting the centre LED, so use a centre fl...
	5.2.1 The SCORER Circuit, Adding Extras
	5.3 The Master Controller
	5.3.1 Initial Lamp Check
	FIGURE 10 . The game after the initial reset. Here LEDS_ON comes on again, a Moore machine delay ...

	5.3.2 The Mid-Game
	FIGURE 11. .The midgame after one or more rounds. (a) ROUT rising turns on the LEDs, the signal t...
	FIGURE 12

	5.3.3 Alternatives for The Rising Edge Detector Part of The Controller
	5.3.4 A Possible, But Not Very Good, Controller

	A
	A
	B
	B
	~
	0,0
	00
	00
	01
	01
	~
	0,0
	B
	B
	B
	C
	C
	1,0
	01
	01
	01
	11
	11
	1,0
	C
	A
	C
	C
	A
	0,1
	11
	00
	11
	11
	00
	0,1
	10
	~
	~
	~
	~
	~
	Outputs = LEDS_ON, SLOWCLEAR
	Outputs = LEDS_ON, SLOWCLEAR
	FIGURE 13 �The states of the poor quality controller. ��SE = SLOWENABLE
	5.3.5 Mealy and More in Master Controller Design
	a. Turn all the lights on during reset and for 1 second therafter.
	b. Leave the light on for DT, 1/2 < DT < 1 sec, after a push.
	c. Move the light right away after a jump-the-light, and leave it on in the new position for DT, ...
	d. Capture a WINROUND signal even if thought it comes and goes between SLOWENABLE pulses.
	e. Record a jumped light even in the first half second after the light goes off.

	5.3.6 SLOWCLEAR and FASTCLEAR
	FIGURE 14 . Slow clear has to go between two SLOWENABLE pulses. It is 1/2 sec. long. We prefer to...

	5.3.7 The Fast/Slow Clear State Machine
	FIGURE 15 b. ������The Mealy machine used to generate FASTCLEAR (FC) from SLOWCLEAR (SC).

	5.4 Pseudorandom Sequence Generators
	FIGURE 16 �� A general pseudorandom bit stream generator. The number of flip-flops used depends o...
	FIGURE 17 A circuit made from XOR and FFs which gives repeatable “random” number sequences. This ...
	FIGURE 18 . A 127 state pseudorandom bit generator constructed from the general circuit of FIGURE...
	FIGURE 19
	5.4.1 Alternative Random Bit Stream Generators
	a. One alternative is to have a square-wave oscillator running asynchronously at a high speed and...
	b. Previous students have used a counter which was preloaded with the least significant bits of t...

	5.5 Generating the SLOWENABLE

	6.0 The Design of the Asynchronous Circuits
	6.1 The Basis of the Design of the Push Button Circuit
	a. have equal theoretical probability of exiting toward either player.
	b. leave the light stationary for that round.
	6.1.1 The State Diagram for the Latch.
	FIGURE 20 The Push Button Latch State A........ No button pushed since Clear. State B........ But...

	6.1.2 State Table for the State Diagram
	FIGURE 21 . Two possible state assignments for the latch, one has a race, the other is race free.

	Pres
	Next State
	Output
	State
	Inputs= BL, BR, Clear
	A
	A
	B
	-
	C
	A
	0 ���-
	B
	B
	B
	-
	B
	A
	1����1
	C
	C
	C
	-
	C
	A
	1����0
	TABLE 9.

	Pres
	Next State G+ H+
	Output
	State
	Inputs= BL, BR, Clear
	0 0
	0 0
	0 1
	-
	1 0
	0 0
	0 ���-
	0 1
	0 1
	0 1
	-
	0 1
	0 0
	1����1
	-
	-
	-
	-
	-
	-
	-
	1 0
	1 0
	1 0
	-
	1 0
	0 0
	1����0
	G+ = (G + BL)H.Clear (EQ 1)
	H+ =(H + BR)G.Clear (EQ 2)
	TABLE 10. Table 9 with “d” filled in

	Pres
	Next State G+ H+
	Output
	State
	Inputs= BL, BR, Clear
	0 0
	0 0
	0 1
	1 1
	1 0
	0 0
	0 ���-
	0 1
	0 1
	0 1
	0 1
	0 1
	0 0
	1����1
	1 1
	0 0
	0 0
	0 0
	0 0
	0 0
	-
	1 0
	1 0
	1 0
	1 0
	1 0
	0 0
	1����0
	TABLE 11. Table 10 with letter names.

	Pres
	Next State G+ H+
	Output
	State
	Inputs= BL, BR, Clear
	A=0 0
	A
	B
	D
	C
	A
	0 ���-
	B=0 1
	B
	B1
	B
	B
	A
	1����1
	D=1 1
	A
	A
	A
	A
	A
	-
	C=1 0
	1 0
	1 0
	C
	C
	A
	1����0
	6.1.3 Side Effects of the Complete State Assignment
	6.1.4 Other Considerations Based on State Assignment
	6.1.5 Examples of Low-Grade PB Latches
	Table 12: (b)

	Pres
	Next State G+ H+
	State
	Inputs= BL, BR, Clear
	A=0 0
	A
	B
	A
	C
	A
	B=0 1
	B
	B
	B
	B
	A
	D=1 1
	A
	A
	A
	A
	A
	C=1 0
	C
	C
	C
	C
	A
	Table 13: (b)

	Pres
	Next State G+ H+
	State
	Inputs= BL, BR, Clear
	A=0 0
	A
	B
	B
	C
	A
	B=0 1
	B
	B
	B
	B
	A
	D=1 1
	A
	A
	A
	A
	A
	C=1 0
	C
	C
	C
	C
	A
	6.1.6 Reliability Based on Races and Hazards
	6.1.7 Checking for Hazards
	1. Expand the logic equations for your state table.
	2. Look for variables x, where x and x are both in the same equations. If x and x do not both app...
	3. If x and x do both appear, make all the other variables 1 and 0 in all possible combinations. ...

	6.1.8 When You Must Check for Hazards
	1. Any asynchronous latch must be checked for hazards. The state table cannot be trusted if there...
	2. Synchronous circuits normally do not need to be checked for hazards. All changes in synchronou...
	3. Asynchronous circuits feeding clocked logic should be hazard free. If a glitch occurred near a...
	FIGURE 22 common hazard in the push button latch circuit

	6.1.9 Checking for Essential Hazards

	Pres
	Next State G+ H+
	State
	Inputs= BL, BR, Clear
	A=0 0
	A
	B
	D
	C
	A
	B=0 1
	D
	B
	B
	A
	D=1 1
	D
	D
	D
	D
	A
	C=1 0
	D
	C
	C
	C
	A
	6.1.10 Asynchronous Circuits in Verilog
	6.2 The Design of the Synchronizer Circuit
	6.3 The Design of the OPP (One-Pulse-per-Push) Circuit
	FIGURE 23 The sychronizer D flip-flop and a the OPP circuit. The OPP circuit is simpler to implem...

	Appendix A : Timing Properties of Flip-Flops
	A.1 Normal D flip-flop operation.
	FIGURE 24. The normal operation of the rising-edge edge-triggered D flip-flop. The input, as samp...
	FIGURE 25. If the D input of the flip-flop changes during this final sample time, the flip-flop c...
	A.1.0.1 Setup, Propagation and Hold Times
	FIGURE 26. Example of the setup time, hold time, and propagation delay for a 74AC74 CMOS flip-flo...

	A.1.0.2 Summary of the Restricted Region

	A.2 Metastability,
	A.3 Flip-Flops With Inputs Near the Clock Edge
	A.3.1 Synchronous and Asynchronous Signals
	FIGURE 27. Three different D inputs to a flip-flop are shown. The upper two are synchronous becau...
	FIGURE 28. The output of a flip-flop is always synchronous. The only exceptions are unlikely and ...
	A.3.1.1 Making an Asynchronous Signal Synchronous
	a) t(CHQV)Min < tHOLD This should not happen in any flip-flop designed since 1975.
	b) Metastability is not a problem. This is usually the case unless the flip-flops are running clo...
	FIGURE 29. Synchronizing an asynchronous input. Under the conditions above, the change in D insid...

