ELEC 3500: Assignment 2 Solutions

1. State whether the following Verilog procedures generate combinational logic, latches or flip-flops. If a procedure generates latches, modify the code to produce combinational logic.

8 Marks
For marking: Questions (a) and (f) do not contain latches. They carry 1 mark each. The other questions contain latches. They carry two marks. Identification of latches carries one mark and eliminating them by modification of the code carries another mark.

```
(a) wire A, B;
    reg Y;
    always @(A or B)
    begin
            Y = A| B;
    end
    Ans: Combinational Logic
(b) wire A, B, C;
    reg Y;
    always @(A or B)
    begin
        Y = (A B ) &C;
    end
    Ans: Produces latches. Modify the code by adding C to the trigger list. always@ (A or B or C)
(c) reg s;
    reg q,r;
    always @(s)
    begin
        case (s)
                        1'b0: q = 1'b1;
            1'b1: r = 1'b1;
        endcase
    end
Ans: Produces latches. Modify the code to initialize \(q\) and \(r\) before the case statement eg. \(q=0 ; r=0\); Or make sure that both q and r are given values in both paths of the case statement.
(d) reg \([1: 0] \mathrm{x}\);
    reg [1:0] q;
    always @(x)
    begin
        case (x)
                        2'b00: q = 2'b01;
                            2'b10: q = 2'b10;
        endcase
    end
Ans: Produces latches. Adding a default case for the case statement eliminates the latches.
    default: q = 2'b00;.
(e) wire A, D;
    reg B, C, D;
    always@(posedge A)
    begin
        B <= C;
        C <= D;
```

end
Ans: Produces flip-flops.
2. Registers a, b are declared as reg [2:0] $a, b ;$ a and b have initial values of 3 and 1 respectively. Find the values of a and b after each of the following Verilog codes are executed.
(a) $\mathrm{a}=\mathrm{b}+2$;
$\mathrm{b}=\mathrm{a}+2$;
Ans: $\mathrm{a}=3 ; \mathrm{b}=5$;
(b) $\mathrm{b}=\mathrm{a}+2$;
$\mathrm{a}=\mathrm{b}+2$;
Ans: $\mathrm{a}=7 ; \mathrm{b}=5$;
(c) $\mathrm{a}<=\mathrm{b}+2$;
$\mathrm{b}<=\mathrm{a}+2$;
Ans: $\mathrm{a}=3 ; \mathrm{b}=5$;
(d) $\mathrm{b}<=\mathrm{a}+2$;
$\mathrm{a}<=\mathrm{b}+2$;
Ans: $\mathrm{a}=3 ; \mathrm{b}=5$;
(e) $\mathrm{b}=\mathrm{a} \& \& \mathrm{~b}$;
$a=b \& a ;$
Ans: $\mathrm{a}=1 ; \mathrm{b}=1$;
(f) $a<=\mid b$;
b <= \&a;
Ans: $\mathrm{a}=1 ; \mathrm{b}=0$;
3. Draw the state diagram of the FSM implemented by the following Verilog code.

```
reg [1:0] a,b;
wire x,y;
always @(a or x)
begin
    case (a)
        2'b00: b = (x) ? 2'b01 : 2'b00;
        2'b01: b = (x) ? 2'b10 : 2'b00;
        2'b10: b = (!x) ? 2'b11 : 2'b00;
        2'b11: b = 2'b00;
    endcase
end
always @(posedge clk)
begin
    a <= b;
end
assign y = &a;
```

Ans:

4. Draw the transistor level circuitry using CMOS logic for a functional D-latch constructed using a Mux. The Mux is implemented using pass transistors.
Ans:

5. (a) What is wrong with the following circuit?

1 mark
Ans: The clock is gated. It will create a clock skew.
(b) Suggest a cure.

1 mark
Ans: Use an enabled D flip-flop.

