97.350 Assignment \#1 - Solutions

1. Given the data in the following table for an NMOS transistor with $\quad \mathrm{k}^{\prime}:=20 \frac{\mu \mathrm{~A}}{\mathrm{~V}^{2}}$
Calculate $\mathrm{V}_{\mathrm{TO}}, \lambda, \gamma, 2\left|\phi_{\mathrm{F}}\right|$, and W / L

	$\mathbf{V}_{G S}(\mathbf{V})$	$\mathbf{V}_{\text {DS }}(\mathbf{V})$	$\mathbf{V}_{\text {SB }}(\mathbf{V})$	ID (mA)
$\mathbf{1}$	3	5	0	1210
$\mathbf{2}$	5	5	0	4410
$\mathbf{3}$	5	10	0	5292
$\mathbf{4}$	5	5	-2	3265
$\mathbf{5}$	5	5	-5	2381

- In all cases, the device is in saturation, i.e.: $\quad V_{D S}>V_{G S}-V_{T}$
- From cases 1 and 2: $\quad \frac{\mathrm{I}_{\mathrm{D} 2}}{\mathrm{I}_{\mathrm{D} 1}}=\frac{\left(\mathrm{v}_{\mathrm{GS} 2}-\mathrm{v}_{\mathrm{T} 0}\right)^{2}}{\left(\mathrm{v}_{\mathrm{GS} 1}-\mathrm{v}_{\mathrm{T} 0}\right)^{2}}$

Therefore: $\quad \mathrm{v}_{\mathrm{DS} 1}=\mathrm{V}_{\mathrm{DS} 2} \quad \& \quad \mathrm{~V}_{\mathrm{BS}}=0$

$$
\mathrm{v}_{\mathrm{TO}}=0.8 \mathrm{v}
$$

- From cases 2 and $3: \quad \frac{\mathrm{I}_{\mathrm{D}}}{\mathrm{I}_{\mathrm{D} 2}}=\frac{1+\lambda \cdot \mathrm{V}_{\mathrm{DS} 3}}{1+\lambda \cdot \mathrm{V}_{\mathrm{DS} 2}}$

Therefore: $\quad \mathrm{v}_{\mathrm{GS} 2}=\mathrm{v}_{\mathrm{GS} 3}$

$$
\lambda:=\frac{\frac{\mathrm{I}_{\mathrm{D} 2}}{\mathrm{I}_{\mathrm{D} 3}}-1}{\mathrm{v}_{\mathrm{DS} 2}-\mathrm{v}_{\mathrm{DS} 3} \cdot \frac{\mathrm{I}_{\mathrm{D} 2}}{\mathrm{I}_{\mathrm{D} 3}}}
$$

$$
\lambda=0.05 \mathrm{v}^{-1}
$$

- From $\quad \frac{\mathrm{W}}{\mathrm{L}}=\frac{2 \cdot \mathrm{I}_{\mathrm{D} 1}}{\mathrm{k}^{\prime} \cdot\left(\mathrm{v}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{TO}}\right)^{2} \cdot\left(1+\lambda \cdot \mathrm{v}_{\mathrm{DS} 1}\right)}$

$$
\frac{\mathrm{W}}{\mathrm{~L}}=20
$$

- Solve for V_{T} :

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{T}}=\mathrm{v}_{\mathrm{GS}}-\sqrt{\frac{2 \cdot \mathrm{I}_{\mathrm{D}}}{\mathrm{~K} \cdot\left(1+\lambda \cdot \mathrm{v}_{\mathrm{DS}}\right)}} & \text { Where } \\
\mathrm{v}_{\mathrm{T} 4}:=\mathrm{v}_{\mathrm{GS} 4}-\sqrt{\frac{2 \cdot \mathrm{I}_{\mathrm{D} 4}}{\mathrm{~K} \cdot\left(1+\lambda \cdot \mathrm{v}_{\mathrm{DS} 4}\right)}} & \frac{\mathrm{W}}{\mathrm{~L}}=400 \frac{\mathrm{~mA}}{\mathrm{v}^{2}} \\
\mathrm{v}_{\mathrm{T} 5}:=\mathrm{v}_{\mathrm{GS} 5}-\sqrt{\frac{2 \cdot \mathrm{I}_{\mathrm{D} 5}}{\mathrm{~K} \cdot\left(1+\lambda \cdot \mathrm{v}_{\mathrm{DS} 5}\right)}} & \mathrm{v}_{\mathrm{T} 4}=1.386 \mathrm{~V}
\end{array}
$$

On the other hand, we can write:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{T} 4}=\mathrm{V}_{\mathrm{TO}}+\gamma \cdot\left(\sqrt{\left|-2 \cdot \phi_{\mathrm{F}}+\mathrm{V}_{\mathrm{SB} 4}\right|}-\sqrt{\left|-2 \phi_{\mathrm{F}}\right|}\right) \\
& \mathrm{V}_{\mathrm{T} 5}=\mathrm{V}_{\mathrm{TO}}+\gamma \cdot\left(\sqrt{\left|-2 \cdot \phi_{\mathrm{F}}+\mathrm{V}_{\mathrm{SB} 5}\right|}-\sqrt{\left|-2 \phi_{\mathrm{F}}\right|}\right)
\end{aligned}
$$

This can be solved using iteration methods such as Newton's Method, Bisection search or any computer solver using Matlab, Mathcad, etc...:
$\gamma:=1 \sqrt{\mathrm{~V}}$

$$
\phi_{\mathrm{F}}:=1 \mathrm{~V}
$$

Given

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{T} 4}=\mathrm{V}_{\mathrm{TO}}+\gamma \cdot\left(\sqrt{\left|-2 \cdot \phi_{\mathrm{F}}+\mathrm{V}_{\mathrm{SB} 4}\right|}-\sqrt{\left|-2 \phi_{\mathrm{F}}\right|}\right) \\
& \mathrm{V}_{\mathrm{T} 5}=\mathrm{V}_{\mathrm{TO}}+\gamma \cdot\left(\sqrt{\left|-2 \cdot \phi_{\mathrm{F}}+\mathrm{V}_{\mathrm{SB} 5}\right|}-\sqrt{\left|-2 \phi_{\mathrm{F}}\right|}\right) \\
& \binom{\gamma}{\phi_{\mathrm{F}}}:=\operatorname{Find}\left(\gamma, \phi_{\mathrm{F}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=0.7 \sqrt{\mathrm{~V}} \\
& \phi_{\mathrm{F}}=0.301 \mathrm{~V}
\end{aligned}
$$

2. For the following NMOS inverter circuit, assume:

$$
\mathrm{V}_{\mathrm{DD}}:=5 \mathrm{~V} \quad \mathrm{R}:=75 \mathrm{k} \Omega \quad \frac{\mathrm{~W}}{\mathrm{~L}}=\frac{3.6}{1.2} \quad \mathrm{C}:=3 \mathrm{pF}
$$

Use the following data for an NMOS transistor:

$$
\mathrm{V}_{\mathrm{T} 0}:=0.743 \mathrm{~V} \quad \mathrm{k}^{\prime}:=19.6 \cdot 10^{-6} \frac{\mathrm{~A}}{\mathrm{~V}^{2}} \quad \lambda:=0.06 \mathrm{~V}^{-1}
$$

a) Discuss qualitatively why this circuit behaves as an inverter.

It Works as an inverter because:

$$
\begin{aligned}
& \text { if }\left(\mathrm{V}_{\mathrm{in}}<\mathrm{V}_{\mathrm{T}}\right) \text { (i.e. low), NMOS is off, } \mathrm{I}=0, \mathrm{~V}_{\text {out }}=5 \mathrm{~V} \text { (i.e. high) } \\
& \text { if } \mathrm{V}_{\text {in }} \text { is high (i.e. } 5 \mathrm{~V} \text {), NMOS is on, } \mathrm{I} \neq 0, \mathrm{~V}_{\text {out }}=5 \mathrm{~V}-\mathrm{I} \cdot \mathrm{R} \text { (i.e. low) }
\end{aligned}
$$

b) Find V_{OH} and V_{OL}

For $\mathrm{V}_{\mathrm{in}}<\mathrm{V}_{\mathrm{T}}-->\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$
For $\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$, NMOS is in linear (or triode) mode
$\mathrm{I}_{\mathrm{D}}=\left[\frac{\mathrm{k}^{\prime}}{2} \cdot\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right) \cdot\left[\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T} 0}\right) \cdot \mathrm{V}_{\mathrm{DS}}-\frac{\mathrm{V}_{\mathrm{DS}}^{2}}{2}\right]\right]=\frac{5 \mathrm{~V}-\mathrm{V}_{\mathrm{OL}}}{2}$

Solving the above equation for V_{OL} :

$$
\mathrm{I}=\mathrm{K}_{\mathrm{n}} \cdot \mathrm{~V}_{\mathrm{OL}} \cdot\left(5-\mathrm{V}_{\mathrm{T}}-\frac{\mathrm{V}_{\mathrm{OL}}}{2}\right)=\frac{5 \mathrm{~V}-\mathrm{V}_{\mathrm{OL}}}{\mathrm{R}}=\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{D}}
$$

$$
\mathrm{V}_{\mathrm{OL}}:=0.26 \mathrm{~V}
$$

c) Calculate $t_{\text {plh }}, t_{\text {phl }}$, and t_{p}

$$
\mathrm{t}_{\mathrm{plh}}:=0.69 \cdot \mathrm{R} \cdot \mathrm{C} \quad \mathrm{t}_{\mathrm{plh}}=155.25 \mathrm{~ns}
$$

For $t_{\text {phl }}$ we should calculate $I_{\text {ave }}$
$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{D}}-\mathrm{I}_{\mathrm{R}}$
$\mathrm{V}_{\text {out }}:=5 \mathrm{~V} \quad$ Hence $\quad \mathrm{V}_{\mathrm{DS}}:=\mathrm{V}_{\text {out }} \quad \mathrm{V}_{\mathrm{GS}}:=5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{Dsat}}:=\frac{\mathrm{k}^{\prime}}{2} \cdot\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right) \cdot\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T} 0}\right)^{2} \cdot\left(1+\lambda \cdot \mathrm{V}_{\mathrm{DS}}\right)$

$$
\mathrm{I}_{\text {Dsat }}=692.625 \mu \mathrm{~A}
$$

Therefore: $\mathrm{I}_{\mathrm{C} 1}:=\mathrm{I}_{\text {Dsat }}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{R}}=0 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{C} 1}=692.625 \mu \mathrm{~A}
\end{aligned}
$$

$\mathrm{v}_{\text {out }}:=2.5 \mathrm{~V}$ Hence $\quad \mathrm{v}_{\mathrm{DS}}:=\mathrm{v}_{\text {out }} \quad \mathrm{v}_{\mathrm{GS}}:=5 \mathrm{~V}$
$\mathrm{I}_{\text {Dlin }}:=\mathrm{k}^{\prime} \cdot\left(\frac{\mathrm{w}}{\mathrm{L}}\right) \cdot\left[\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{v}_{\mathrm{T} 0}\right) \cdot \mathrm{v}_{\mathrm{DS}}-\frac{\mathrm{v}_{\mathrm{DS}}^{2}}{2}\right] \quad \quad \mathrm{I}_{\text {Dlin }}=442.029 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{R}}:=\frac{\mathrm{V}_{\text {out }}}{\mathrm{R}}$

$$
\mathrm{I}_{\mathrm{R}}=33.333 \mu \mathrm{~A}
$$

Therefore: $\mathrm{I}_{\mathrm{C} 2}:=\mathrm{I}_{\mathrm{Dlin}}-\mathrm{I}_{\mathrm{R}} \quad \mathrm{I}_{\mathrm{C} 2}=408.696 \mu \mathrm{~A}$
$\mathrm{I}_{\text {ave }}:=\frac{\mathrm{I}_{\mathrm{C} 1}+\mathrm{I}_{\mathrm{C} 2}}{2} \quad \mathrm{I}_{\text {ave }}=550.66 \mu \mathrm{~A}$
Since $\mathrm{C}=3 \mathrm{pF}$ is large, we ignore parasitics.
$\mathrm{t}_{\mathrm{phl}}:=\frac{2.5 \mathrm{v} \cdot \mathrm{C}}{\mathrm{I}_{\text {ave }}}$

$$
{ }^{t_{\mathrm{phl}}}=13.62 \mathrm{~ns}
$$

$\mathrm{t}_{\mathrm{p}}:=\frac{\mathrm{t}_{\mathrm{phl}}+{ }_{\mathrm{t}}^{\mathrm{plh}}}{}$

$$
\mathrm{t}_{\mathrm{p}}=84.435 \mathrm{~ns}
$$

d) Are the rising and falling delays equal? Why?
$\mathrm{t}_{\mathrm{plh}} \gg \mathrm{t}_{\mathrm{phl}}$ because $\mathrm{R}=75 \mathrm{k} \Omega$ is much larger then the effective on-resistance of the NMOS.
e) Calculate the static power dissipation for: (i) $\operatorname{Vin}=0 \mathrm{~V}$ and (ii) $\mathrm{Vin}=5 \mathrm{~V}$.
if $V_{\text {in }}=V_{\mathrm{OL}}$ then $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{Vdd}}=0 \quad \mathrm{P}_{\mathrm{S}}=0 \mathrm{~W}$
$\mathrm{V}_{\mathrm{DS}}:=0.26 \mathrm{~V}$
$\mathrm{I}_{\mathrm{D}}:=\mathrm{k}^{\prime} \cdot\left(\frac{\mathrm{W}}{\mathrm{L}}\right) \cdot\left[\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T} 0}\right) \cdot \mathrm{V}_{\mathrm{DS}}-\frac{\mathrm{V}_{\mathrm{DS}}^{2}}{2}\right]$

$$
\mathrm{I}_{\mathrm{D}}=63.094 \mu \mathrm{~A}
$$

if $v_{\text {in }}=v_{\mathrm{OH}}$ then $\mathrm{v}_{\text {out }}=\mathrm{v}_{\mathrm{OL}}$ and $\mathrm{I}_{\mathrm{Vdd}}=63.1 \mu \mathrm{~A} \quad \mathrm{P}_{\mathrm{S}}:=\mathrm{I}_{\mathrm{D}} \cdot \mathrm{V}_{\mathrm{DD}} \quad \mathrm{P}_{\mathrm{S}}=0.315 \mathrm{~mW}$
f) Calculate the dynamic power dissipation assuming that the gate is clocked as fast as possible.
$\mathrm{f}_{\text {max }}:=\frac{1}{2 \cdot \mathrm{t}_{\mathrm{p}}}$

$$
\begin{array}{ll}
\mathrm{f}_{\text {max }}=5.922 \mathrm{MHz} & \mathrm{~V}_{\text {swing }}:=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{OL}} \\
& \mathrm{~V}_{\text {swing }}=4.74 \mathrm{~V}
\end{array}
$$

$\mathrm{P}_{\mathrm{d}}:=\mathrm{C} \cdot \mathrm{V}_{\text {swing }} \cdot \mathrm{V}_{\mathrm{DD}} \cdot \mathrm{f}_{\text {max }}$

$$
\mathrm{P}_{\mathrm{d}}=0.421 \mathrm{~mW}
$$

