RESISTIVE CI RCUITS

- OHM S LAW - DEFI NES THE SI MPLEST PASSI VE ELEMENT: THE RESI STOR

RESI STORS


```
A resistor is a passi ve el ement
characterized by an al gebraic
rel ati on between the voltage across
its terminals and the current
through it
v(t)=F(i(t)) General Model for a Resistor
```

 A Ii near resistor obeys OHM s Law
 $$
v(t)=\operatorname{Ri}(t)
$$

```
The constant, R, is called the
resistance of the component and
is measured in units of Ohm (\Omega)
```

Froma di mensional point of view Ohms is a deri ved unit of Volt/Amp

Since the equation is al gebraic the time dependence can be omitted

Standard Multiples of Ohm
$M \Omega \quad$ Mega $\operatorname{Ohm}\left(10^{6} \Omega\right)$
$k \Omega \quad$ Kilo Ohm $\left(10^{3} \Omega\right)$

> A common occurrence is $\frac{\text { Volt }}{\mathrm{mA}}$
> resulting in resistance in $\mathrm{k} \Omega$

Conduct ance

If i nstead of expressing voltage as a function of current one expresses current interns of voltage, OHM s I aw can be written

$$
i=\frac{1}{R} v
$$

We define $G=\frac{1}{R}$ as Conductance
of the component and write

$$
i=G v
$$

The unit of conductance is Si emens

Notice passive si gn convention

Circuit Representation

Two special resistor values

Short
Circuit
$R=0$
$R=\infty$
$G=\infty$

$$
G=0
$$

Li near approxi mation

Actual v-I rel ationship
Onm s Law is an approxi mation valid while voltages and currents remain in the Li near Range

OHM S LAW PROBLEM SOLVI NG TI P

$$
v=R i \quad i=G v \quad O H M ' s \text { Law }
$$

One equation and three variables. Gi ven ANY two the thi rd can be found

Given current and resistance
Find the voltage
Notice use of passi ve sign convention

Given Voltage and Resistance

$-\quad I=4[A]$

Given Current and Voltage Find Resistance

Table 1 Keeping Units Straight

Voltage	Current	Resistance
Volts	Amps	Ohms
Volts	mA	$\mathrm{k} \Omega$
mV	A	$\mathrm{m} \Omega$
mV	mA	Ω

Determine $i(t)$

Determine $i(t)$

G VEN VOLTAGE AND CONDUCTANCE REFERENCE DI RECTI INS SATI SF PASSI DE SI EN CONNENTI ON

$$
i(t)=G v(t) \text { OHM S LAW }
$$

UNI TS?
CONDUCTANCE IN SI EMENS, VOLTAGE I N VOLTS. HENCE CURRENT I N AMPERES

$$
i(t)=8[A]
$$

OHM S LAW $v(t)=R i(t) \quad$ UNI TS?

$$
-4[V]=(2 \Omega) i(t) \Rightarrow \boldsymbol{i}(t)=-2[A]
$$

THE EXAMPLE COULD BE G VEN LI RE THIS

```
RESI STORS AND ELECTRI C PONER
```

Resistors are passive components that can only absorb energy.
Conbi ni ng Ohms law and the expressions for power we can derive several usef ul expressions

$$
\begin{array}{ll}
\boldsymbol{P}=\boldsymbol{v i} & \text { (Power) } \\
\boldsymbol{v}=\boldsymbol{R} \mathbf{i}, \text { or } \mathbf{i}=\boldsymbol{G} \boldsymbol{v} & \text { (Ohm's Law) }
\end{array}
$$

Ubrking with SI units Volt, Ampere Watt, Ohm there is never a problem One must be careful when using multiples or sub multiples.

EXAMPLE: $\boldsymbol{R}=40 \boldsymbol{k} \Omega, \boldsymbol{i}=2 \boldsymbol{m} \boldsymbol{A}$
The basic strategy is to express all gi ven variables in sl units

Problemsolving tip: There are four

$$
\boldsymbol{v}=\left(40^{*} 10^{3} \Omega\right) *\left(2 * 10^{-3} \boldsymbol{A}\right)=80[\boldsymbol{V}]
$$

$$
\text { variabl es }(P, v, i, R) \text { and two equat ions. } \boldsymbol{P}=\boldsymbol{R i}^{2}=\left(40 * 10^{3} \Omega\right) *\left(2 * 10^{-3} \boldsymbol{A}\right)^{2}=
$$ Gi ven any two variables one can find t he ot her two.

Given $\boldsymbol{P}, \mathbf{i}$
$v=\frac{P}{i}, R=\frac{v}{i}$
Given $\boldsymbol{v}, \boldsymbol{R}$

Given $\boldsymbol{i}, \boldsymbol{R}$

$$
160 * 10^{-3}[W]
$$

$v=\boldsymbol{R} \mathbf{i}, \boldsymbol{P}=\boldsymbol{v i}=\boldsymbol{R} \mathbf{i}^{2} \quad \mathbf{i}=\sqrt{\frac{\boldsymbol{P}}{\boldsymbol{R}}}, v=\boldsymbol{R} \mathbf{i}=\sqrt{\mathbf{P R}}$
If not gi ven, the reference di rection for voltage or current can be chosen and the other is gi ven by the passive sign convention

BY RESI STOR

$I=0.5 \mathrm{~mA}$
 路

$G=50 \mu S$

$\boldsymbol{P}=$?

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{S}}=\boldsymbol{I} \boldsymbol{R} \Rightarrow \boldsymbol{V}_{\boldsymbol{S}}=\frac{\boldsymbol{I}}{\boldsymbol{G}} \quad \boldsymbol{V}_{\boldsymbol{S}}=\frac{0.5 \times 10^{-3}[\boldsymbol{A}]}{50 \times 10^{-6}[\boldsymbol{S}]}=10[\boldsymbol{V}] \\
& \boldsymbol{P}=\boldsymbol{I}^{2} \boldsymbol{R}=\frac{\boldsymbol{I}^{2}}{\boldsymbol{G}} \boldsymbol{P}=\frac{\left(0.5 \times 10^{-3}[\boldsymbol{A}]\right)^{2}}{50 \times 10^{-6}[\boldsymbol{S}]}=\frac{0.5 \times 10^{-2}[\mathbf{W}]}{5[\mathbf{m W}]}
\end{aligned}
$$

SAMPLE PROBLEM

Recognizing the type of problem:

Possibly useful relationships

 This is an application of Ohm's Law We are given Power and Voltage. We are asked for Resistance, Current and Charge$$
\begin{aligned}
& P=\boldsymbol{V I}=\frac{\boldsymbol{V}^{2}}{\boldsymbol{R}}=\boldsymbol{I}^{2} \boldsymbol{R} \\
& \boldsymbol{V}=\boldsymbol{I} \boldsymbol{R}
\end{aligned}
$$

