FIRST ORDER TRANSIENT CIRCUITS

IN CIRCUITS WITH INDUCTORS AND CAPACITORS VOLTAGES AND CURRENTS

CANNOT CHANGE INSTANTANEOUSLY.
EVEN THE APPLICATION, OR REMOVAL, OF CONSTANT SOURCES CREATES A

TRANSIENT BEHAVIOR

FIRST ORDER CIRCUITS
Circuits that contain a single energy storing elements.

Either a capacitor or an inductor



|ANALYSIS OF LINEAR CIRCUITS WITH INDUCTORS AND/OR CAPACITORS |

THE CONVENTIONAL ANALYSIS USING MATHEMATICAL MODELS REQUIRES THE DETERMINATION
OF (A SET OF) EQUATIONS THAT REPRESENT THE CIRCUIT.

ONCE THE MODEL 1S OBTAINED ANALYSIS REQUIRES THE SOLUTION OF THE EQUATIONS FOR
THE CASES REQUIRED.

FOR EXAMPLE IN NODE OR LOOP ANALYSIS OF RESISTIVE CIRCUITS ONE REPRESENTS THE
CIRCUIT BY A SET OF ALGEBRAIC EQUATIONS
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WHEN THERE ARE INDUCTORS OR CAPACITORS THE MODELS BECOME LINEAR ORDINARY

DIFFERENTIAL EQUATIONS (ODEs). HENCE, IN GENERAL, ONE NEEDS ALL THOSE TOOLS
IN ORDER TO BE ABLE TO ANALYZE CIRCUITS WITH ENERGY STORING ELEMENTS.

A METHOD BASED ON THEVENIN WILL BE DEVELOPED TO DERIVE MATHEMATICAL MODELS
FOR ANY ARBITRARY LINEAR CIRCUIT WITH ONE ENERGY STORING ELEMENT.

THE GENERAL APPROACH CAN BE SIMPLIFIED IN SOME SPECIAL CASES WHEN THE FORM
OF THE SOLUTION CAN BE KNOWN BEFOREHAND.

THE ANALYSIS IN THESE CASES BECOMES A SIMPLE MATTER OF DETERMINING SOME
PARAMETERS.

TWO SUCH CASES WILL BE DISCUSSED IN DETAIL FOR THE CASE OF CONSTANT SOURCES.
ONE THAT ASSUMES THE AVAILABILITY OF THE DIFFERENTIAL EQUATION AND A SECOND
THAT IS ENTIRELY BASED ON ELEMENTARY CIRCUIT ANALYSIS.. BUT IT IS NORMALLY LONGER

WE WILL ALSO DISCUSS THE PERFORMANCE OF LINEAR CIRCUITS TO OTHER SIMPLE INPUTS



AN INTRODUCTION

INDUCTORS AND CAPACITORS CAN STORE ENERGY. UNDER SUITABLE CONDITIONS THIS ENERGY
CAN BE RELEASED. THE RATE AT WHICH IT 1S RELEASED WILL DEPEND ON THE PARAMETERS
OF THE CIRCUIT CONNECTED TO THE TERMINALS OF THE ENERGY STORING ELEMENT
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‘GENERAL RESPONSE: FIRST ORDER CIRCUITS

Including the Initial conditions

the model for the capacitor t t, t] X
voltage or the inductor current efx(o__efx(%)::y_effTH(X)dX*/é}
will be shown to be of the form t T

0

dx t—t t t-x
= (t t) = f(t); x(0+)= - 1 —
dt()+aX() (t); x(0+) Xp X(t):e X(to)+_je = fT|—| (X)dX
adX ¢ )
T—+ X = Ty X(0+) = X,
dt THIS EXPRESSION ALLOWS THE COMPUTATION

- - - - OF THE RESPONSE FOR ANY FORCING FUNCTION.
SOIVIng the differential SlEiLlien WE WILL CONCENTRATE IN THE SPECIAL CASE

US!”Q integrating factors: one WHEN THE RIGHT HAND SIDE IS CONSTANT
tries to convert the LHS Into an

exact derivative 7 is called the "time constant."
. dx o 1 e; it will be shown to provide significant
d =~ ™ 7 information on the reaction speed of the
% dx 1 _3 1 éf circuit
€ E i ;e X= ; € Ty The initial time, t,, is arbitrary. The

general expression can be used to
t t
J‘ i | Ee?f study sequential switchings.
i, |dt r "




FIRST ORDER CIRCUITS WITH
CONSTANT SOURCES

rz—)t(er— fry; X(0+) = X,

_ Lt =X

X(t)=e ° x(to)+1je T foy (X)dx

0

IT the RHS 1s constant

t—t,

x(t):e_fx(t0)+ je " dx
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X(t)=e ° x(t,)+—""e *[edx
T t

x(t)=e fox(t)+he (zej

T t,

X(t)=e © x(t)+f. e ( —e:j

t—t,

X(t) — fTH T (X(to) — fTH )e_T
=

The form of the solution i1s

) TIME
x(t) = K, + K e [E; t >t | coNsTANT
TRANSIENT |

Any variable 1n the circuit 1s of
the form
t—t

YO =K, +Ke ©:t>t,

Only the values of the constants
K1, K2 will change



xo(f) = Koe™”" EVOLUTION OF THE TRANSIENT AND INTERPRETATION OF
THE TIME CONSTANT

ent reaches x-axis in one time constant
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— T with less than 2% error
Drops 0.632 of |n|t|ai\ transient is zero
value in one time constant J beyond this point
e—l‘/T A

A QUALITATIVE VIEW:

THE SMALLER THE THE TIME
CONSTANT THE FASTER THE
TRANSIENT DISAPPEARS
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THE TIME CONSTANT

The following example i1llustrates
the physical meaning of time
constant

t

e
0.368
0.135

0.0067

EFFECT OF TIME CONSTANT
T T T

With less than 1%

error the transient
0.0498 is negligible after
0.0183 five time constants

Charging a capacitor
Ve—Vs| Rs 5 KCL@a:
Re VWV + [ dv, V.-V
« C C =e :O
dt Rs 1
The model 0sl
— dVC 0.8
c Vel b Riy C — =+ Ve =V,
dt dt 0.7}
Assume Bl
T = IQTH(: Ty 05}
VS :V31VC(O):O "
The solution can be shown to be’|
t 03r
V. () =V, -V.e *
c(t) =Vs —Vq transient ot

For practical purposes the
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CIRCUITS WITH ONE ENERGY STORING ELEMENT

THE DIFFERENTIAL EQUATION APPROACH

CONDITIONS
1. THE CIRCUIT HAS ONLY CONSTANT INDEPENDENT SOURCES

2. THE DIFFERENTIAL EQUATION FOR THE VARIABLE OF INTEREST
IS SIMPLE TO OBTAIN. NORMALLY USING BASIC ANALYSIS TOOLS;
e.g-, KCL, KVL. . . OR THEVENIN

3. THE INITIAL CONDITION FOR THE DIFFERENTIAL EQUATION
IS KNOWN, OR CAN BE OBTAINED USING STEADY STATE ANALYSIS

FACT: WHEN ALL INDEPENDENT SOURCES ARE CONSTANT
FOR ANY VARIABLE, y(t), IN THE CIRCUIT THE
SOLUTION IS OF THE FORM

(t-t5)

yit)=K +Ke * ,t>t

@)

SOLUTION STRATEGY: USE THE DIFFERENTIAL EQUATION AND THE
INITIAL CONDITIONS TO FIND THE PARAMETERS K, K,,7




IT the diff eq for y s known [\, 4re initial condition to get

In the form one more eqguation
d . =
al—y+a0y:f We can use this Y(O+)— K1+ K2
dt info to find
y(0+) =y, the unknowns Ky =y(0+H) - K,
Use the diff eq to find two
more equations by replacing
the form of solution 1nto the
differential equation
SHORTCUT: WRITE DIFFERENTIAL EQ.
Lt dy K _t | IN NORMALIZED FORM WITH COEFFICIENT
y(t)=K;+Kue 7,t>0= a=—726 ” |OF VARIABLE = 1.
d a, |d f
d 7] K
f
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a 14 a
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EXAMPLE

FIND i(t),t>0

t
x(t)=K;+K,e 7,t>0

t=0 A K, = X(0); K; + K, = x(0+)
KVL i(t) =K, [tz
Vs C_D ol [ I, MODEL. USE KVLFOR t>0
— 1)
: di
VS=VR+VL=RI(t)+La(t)
INITIAL CONDITION
t<0=1i(0-)=0
0 j_( ) _ i(0+)=0
inductor = i(0-) =1(0+)
STEP 1 | LMy, i dVs |2t
—F=@)+it) =1
R t() (t) = R
. Y;
STEP 2 STEADY STATE i(c0) = Klzﬁs
STEP 3 INITIAL CONDITION v _I;
i(0+) =K, +K, ANS: i(t):HS 1-e /R




_t
FIND v, (t),t>0 V() =K, +K,e ,t>0

Ki =V (0); K, + K, =V (0+)

3 k() \ [ = 4 k()
vWA O >C M o
R, +
12V vc(z) = 100 pF % 2k (1)
- C R,
MODEL FOR t>0. USE KCL DETERMINE v, (t)

-0 [Vo (== v O =3ve ()

t

vo(t):ge_%[\/],t>0

c e 1)+

STEP 1 £ =(R,+R,)C =(6x10°Q)(100x10°F) =0.6s

t

SIS VC(t)=K1+K2e_;,t>O Ky=0
INITIAL CONDITIONS. CIRCUIT IN STEADY STATE t<O STEP 3
3k - 4 k() Ve (0+) =8=K;+ K, = K, =8[V]
A AA; O—reo—a—M—9 0
6 ¥ —
Ve (0-)=—(12V & Ve () =8e 2°[V],t>0
12v<t> Ve(09) 9( ) 321:{1 v,(t) ¢
.- . o




USING THEVENIN TO OBTAIN MODELS

Obtain the voltage across the capacitor

or the current through the i1nductor

. a
CII’?UIt Rty a
_Wt'th Inductor
resis a:jnces or ‘ Inductor
so%r;ces Capacitor _ Vi or
0 Thevenin Capacitor
Representation of an arbitrary b
circuit with one storage element
R
- KCL@® node a Ry a Use KVL
. +1g =0 VR TV = Vry
: dv, Y Ve = Rpylp
i =C—C : d
dt - I
b L=
Case 1.1 iy = Ve ~Vin Case 1.2 dt
Voltage across capacitor RTH Current through inductor d|
dV V. —V +RTH L_VTH
clc  YeVH _g dt |
d dt RTH L dIL ] -

R.,C

C —
gt e

=1
Ry, ) dt Rri *
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