

DECEMBER 2005

FINAL EXAMINATION

DURATION: 3 HOURS

No. of Students: 205

Department Name & Course Number: ELEC 2501A, B, C Course Instructor(s) T.G. Ray and Q.J. Zhang

AUTHORIZED MEMORANDA			No araphical.	
Self-contained electronic	calculator	with memory	cleared.	No graphical

Students MUST count the number of pages in this examination question paper before beginning to write, and report any discrepancy to a proctor. This question paper has pages.

This examination question paper may not

be taken from the examination room.

In addition to this question paper, students require: an examination booklet no yes 🖾 no a Scantron sheet yes 🗌

INSTRUCTIONS and INFORMATION:

1. PRINT YOUR NAME AND STUDENT NUMBER CLEARLY.

NAME:

NUMBER:

marks/1:

- 2. ATTEMPT ALL QUESTIONS.
- 3. PUT YOUR ANSWERS ONLY IN THE APPROPRIATE SPACES PROVIDED. Your exam booklet is for rough work and will not be marked.
- 4. FULL MARKS FOR EACH QUESTION ARE INDICATED. Part marks are possible depending on the question.
- 5. THE EXAM MARKS TOTAL 100.

Faculty Page	1	2	3	4	5	6	7	8	9	10	11	12
Marks	1											
	1	8	8	14	7	6	4	9	10	11	11	11

Q1. RMS Value and Power

(16 marks)

a) For the periodic waveform in Figure 1:

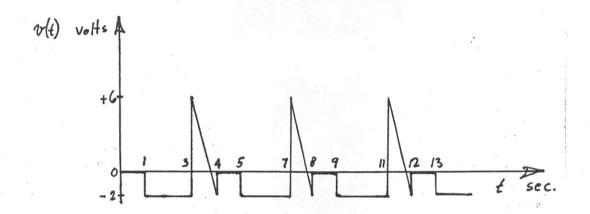


Figure 1.

ai) What are representative equations for the non-zero parts of the waveform?

Answer:
$$v(t) = \frac{1}{2} \frac{1}{60} \frac{1}{160} \frac{$$

aii) Using the equations above, what is the equation for calculating the RMS value of the waveform?

Answer: RMS=
$$\frac{1}{4} \left[\int_{3}^{2} (-2)^{2} dt + \int_{3}^{4} (-8t+30)^{2} dt \right]$$
marks/3:

aiii) What is the RMS value of the waveform?

Answer: RMS=
$$2.08 \text{ volts}$$
 marks/2:

1b) Find the power that is absorbed or supplied by each of the elements in the following circuit:

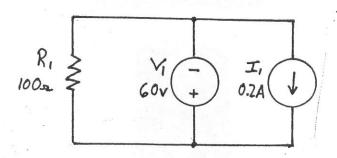


Figure 2.

Answer: Power in R_1 : +36 watts $P = \sqrt{\frac{2}{R}}$ Power in V_1 : -24 watts P = 0, or $K \in L$ Power in I_1 : -12 watts $P = V_1$ marks/4:

1c) Given the circuit of Figure 3:

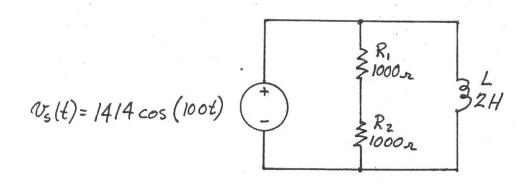


Figure 3.

(missed R2 completely) & OR

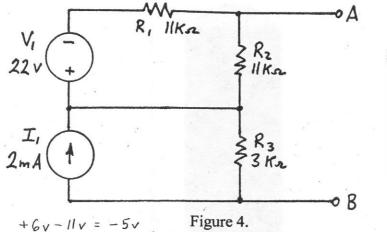
1000 worth 0.5 (missed V2 Emissed - PRZ)

500 worth 1.5 (missed - PRZ) or
missed V2

What is the average power dissipated in each of R₁ and L?

Answer: Average power in R₁ is 250 3 watts marks/3: ___

Average power in L is


__watts

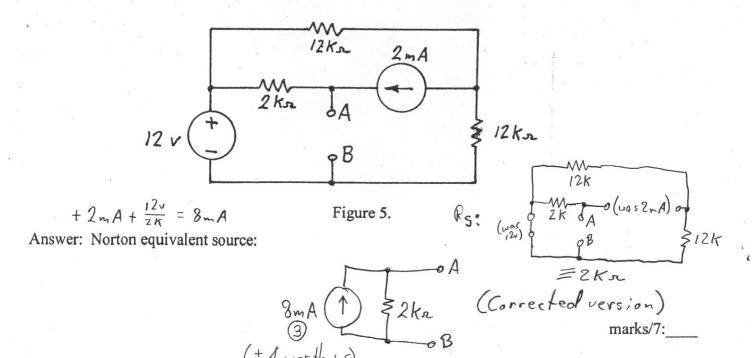
marks/1: ___

Q2. Thevenin, Norton and Superposition

(21 marks)

a) For the circuit shown in Figure 4, find the Thevenin equivalent source between the terminals A and B.

Answer: The venin equivalent source: 11 | 11 + 3 = 8.5 k


8.5 kn A if on Hed, then in-plied

8.5 kn A top and botton: ok

Shape: (1)

Marks/7:

b) For the circuit shown in Figure 5, find the Norton equivalent source between the terminals A and B.

2c) For the circuit shown in Figure 6:

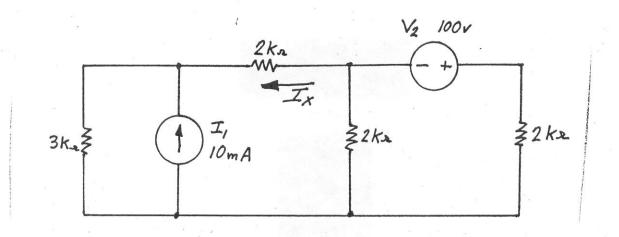


Figure 6.

Use superposition to find the contribution of each source to the current I_X, and then find the total current I_X.

Answer: Contribution to
$$I_X$$
 made by the source I_1 :

$$I_X(V_2) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

Contribution to I_X made by the source V_2 :

$$O(2) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

Contribution to I_X made by the source V_2 :

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k} || 5 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 5 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k} + 2 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k} + 2 \text{ k}} \left(\frac{2 \text{ k}}{2 \text{ k}} \right) = -8.33 \text{ mA}$$

$$O(3) = \frac{-100 \text{ v}}{2 \text{ k$$

Q3. Nodal Analysis and Loop Analysis

(10 marks)

a) Given the circuit in Figure 7:

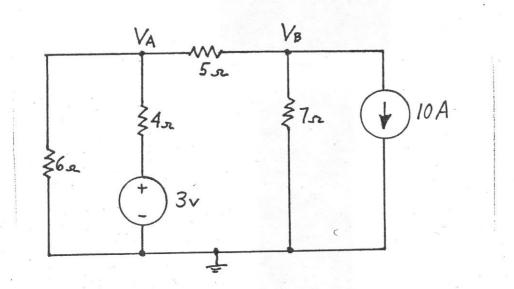


Figure 7.

Write the nodal equations at nodes A and B, using the convention that currents entering a node are positive.

Answer: At node A:

O-VA + 3v-VA + VB-VA = 0

marks/3:

At node B:

O-VB - 10A = 0

marks/3:

May be Any term must be completely correct.

Combined To convention is opposite, -1 in each equation where it is opposite.

The penalty

If = 0 is missed, -4 in each equation where it is missed

Equivalent forms of these equations

are acceptable.

b) Given the circuit of Figure 8:

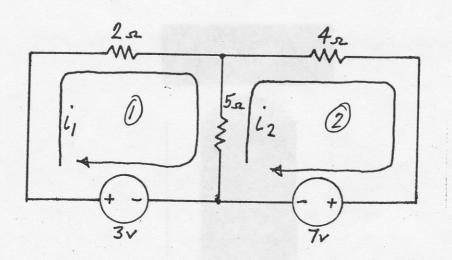


Figure 8.

Write the loop equations for the two loops.

Answer: Around loop1: $\frac{(i_1 - i_2)}{+2i_1} + 5(i_1 - i_2) - 3v = 0 \qquad \text{marks/2:}$ Around loop2: $\frac{(i_2 - i_1)}{5(i_2 - i_1)} + 4i_2 + 7v = 0 \qquad \text{marks/2:}$ $\leq q - e \quad \text{connects} \quad q_5 \quad q_5$

Q4. **Phasor Analysis**

(19 marks)

Note: Answers may be in either polar or Cartesian form, but still must be simplified, e.g. 15 \(\mathcal{L}\) 30° volts, or e.g. 30-j27 ohms.

a) For the circuit given in Figure 9:

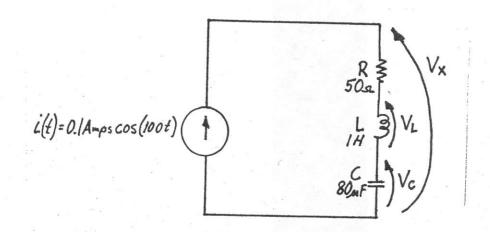
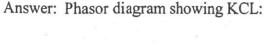


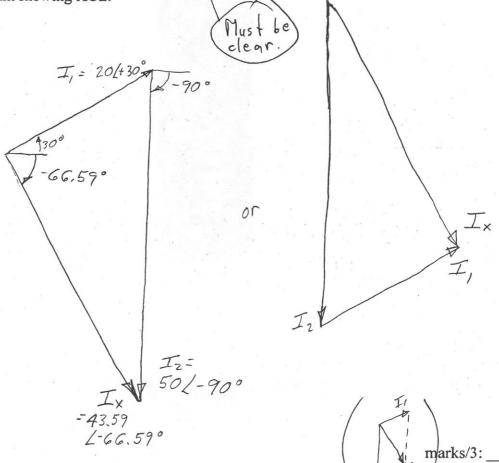
Figure 9.

ai) Find the impedance of the inductor and the impedance of the capacitor.

Answer:
$$Z_L = \frac{1}{j \cdot 00 \cdot 80 \cdot 100} = \frac{0}{j \cdot 00 \cdot 80 \cdot 100} = \frac{1}{j \cdot 00 \cdot 100} = \frac{1}{j \cdot 00} = \frac{1}{j$$

a ii) Find the inductor and capacitor voltages as phasors.


a iii)


Find the voltage
$$V_x$$
 as a phasor.

$$5 \angle 0^\circ + j | 0 - j | 2, 5$$
Answer: $V_x = \frac{5 - j \cdot 2 \cdot 5}{0} \quad \text{or} \quad 5.59 \angle -26.6^\circ$

$$0 \rightarrow \text{if one of } V_L \text{ or } V_C \text{ is awong } (buf \pm 90^\circ)$$
Then check $V_L + V_C \text{ for } 0$

- Given the KCL equation $I_X = I_1 + I_2$ in which $I_1 = 20 \ \angle +30^\circ$ amps and $I_2 = 50 \ \angle -90^\circ$ amps: (17.32 + 10) + (-150)b)
- Answer: $I_X = 17.32 j40$ or $43.59L 66.59^\circ$ amps bi) marks /2:
- For $I_X = I_1 + I_2$, show KCL is satisfied in a clear phasor diagram, approximately to scale: b ii)

- c) A series RLC resonant circuit is to have a resonant frequency of 1 MHz and is to use L = 0.1 mH. ci) What value of C is required? $\omega_0 = 2\pi f_0 = 6.28 \text{ Mg/s}$ $\omega_0 = \frac{1}{VLC}$ $\frac{1}{\omega_0 z} = LC$ What value of C is required? Answer: C = 253 pf (2) 10 x error give(1) 10 n Fgire(1) marks /2:
 - If the circuit is to have a bandwidth (BW) of 12 kHz, what is the value of Q? $Q = \frac{\omega_0}{BW}$ cii) Answer: Q = 83.3marks /2:
 - At resonance, what is the combined impedance of the inductor plus capacitor? ciii) Answer: $\mathbf{Z} = 0$ marks /1:

Q5. Frequency Response and Bode Plots

Answer: Phase Bode plot:

(11 marks)

Given the transfer function $H(j\omega) = V_{OUT} / V_{IN} = j10\omega / (1+j0.025\omega)$:

What is the value of the corner frequency in radians per second? a)

Answer: The corner frequency is 40 r/s

marks/2:

Draw the magnitude and phase Bode plots, clearly indicating the important values on each of them. b)

49dB (orequivilent 1) Answer: Magnitude Bode Plot: 52AB (1) 1 Shape + Wo D Value at 10 Wo = 4 r/s should be 32dB: 40 dB w >0: H(je)=j10w + + 20dB/dec

(wo)

Osmooth shape

marks/4:

marks/5:

40

Q6. Transient Analysis

(22 marks)

In the circuit of Figure 10, switch S is open for all t<0. At t=0 the switch is closed. a)

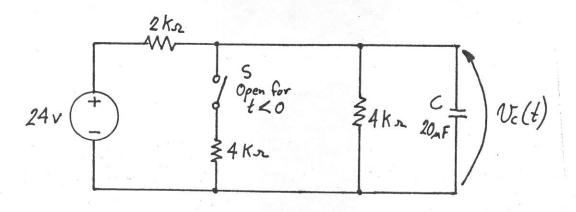
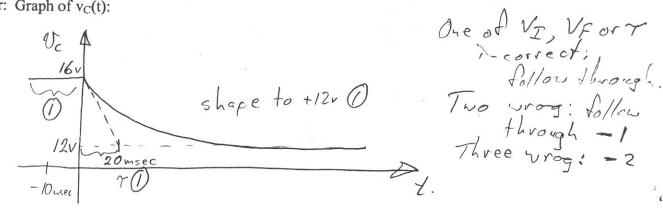


Figure 10.


Find the voltage across the capacitor, v_C , for t<0. a i)

Answer: For t<0, $v_C = \frac{+/6 v}{marks/1}$

Derive an expression for the voltage across the capacitor, $v_C(t)$, for t>0. a ii)

 $V_F = 12v$ V_F Sketch $v_c(t)$ from t = -10 msec. to t = +60 msec clearly showing the time constant and its relationship to the waveform.

Answer: Graph of $v_C(t)$:

If the response above is interrupted at t= +10 msec. by the switch being opened, derive a new equation for $v_C(t)$ for t > +10 msec.

Answer: For t>+10 msec., $v_{c}(t) = \frac{16 - 1.574 e^{-(t-10 \text{msec})}}{26.7 \text{msec}}$ $V_{T_{new}} = 12 + 4e^{-10/20} = 14.426$ $V_{F_{new}} = 11$ switch C:

In the circuit shown below in Figure 11, switch S is open for all t<0. At t=0 the switch is closed.

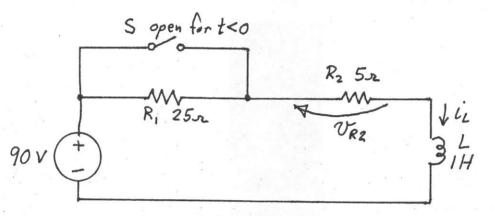


Figure 11.

bi)

Find v_{R2} at the instant just after the switch is closed. $+(3 \text{ A}(5 \text{ s}_{1}))$ b ii)

Answer:
$$v_{R2} = \frac{2}{\sqrt{5\nu}}$$
 marks /2:

b iii) Find the final value of v_{R2} .

Answer:
$$v_{R2} = \frac{+90 \text{ y}}{\text{marks }/1:}$$

Find the time constant for the response of v_{R2} for t>0.

$$\gamma = \frac{L}{R} = \frac{1H}{5\pi}$$

Answer: Time Constant = 0.2 sec marks/1:____