
First and Second Order Filters

• These functions are useful for the design of simple filters or they can
be cascaded to form high-order filter functions

First Order Filters

    General first order bilinear transfer function is given by:
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    pole at s = - ωo and a zero at s = - ao / a1 and a high frequency gain
    that approaches a1

• The numerator coefficients (ao, a1) determine the type of filter (e.g.
low-pass, high-pass, etc.)
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Consider the Following Circuit
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     For stability.  1+ L (s) = 0  which results in the poles sP of the
    closed - loop circuit as

t s
AP( ) = −
1

    Assuming an ideal opamp with A = ∞ the poles are obtained from

N sP( ) = 0

• That is, the poles are identical to the zeros of the RC network
• Since our objective is to realize a pair of complex conjugate poles

we should select an RC network that has complex conjugate zeros
• The simplest such networks are Bridged - T networks







• The pole polynomial of the active filter circuit will be equal to the
numerator polynomial of the Bridged - T network
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• Common implementation C1 = C2 = C, R3 = R, R4 = R / m
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• A common implementation of the single amplifier biquad is the Salen -
key filter

• A low - pass filter can be seen below

• Similar circuits are available for the other filter configurations
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Sensitivity
• Because of telerances in component values and because of the finite

opamp gain the response of the actual filter will deviate from the
ideal response

• As a means of predicting such deviations, the filter designer
employs the concept of sensitivity

• For second order filters one is normally interested in finding how
sensitive their poles are relative to variations (Both initial tolerances
and future changes) in RC component values and amplifier gain

• These sensitivities can be quantified using the classical sensitivity
function
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• Here x denotes the value of a component and y denotes a circuit
parameter of interest (e.g. ωo, Q).  For small changes
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    Thus we use the value of Sx
y
 to determine the per unit change in y

    due to a given per - unit change in x

• If the sensitivity of Q relative to a particular resistance R1 is 5, then
a 1% increase in R1 results in a 5% increase in the value of Q

Switched - Capacitor Filters

• Active RC filters are difficult to implement totally on an IC due to
the requirements of large - valued capacitors and accurate RC time
constants

• The switched capacitor filter technique is based on the realization
that a capacitor switched between two circuit nodes at a sufficiently
high rate is equivalent to a resistor connecting these two nodes



Consider the Following Circuit







• From the above circuit we see that during each clock period TC an
amount of charge qC1 = C1 v1 is subtracted from the input source
and supplied to the integrator capacitor C2

• The average current flow between the input node and virtual ground
(VG) is
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    If TC is sufficiently short one can think of the process as continuous
    and define an equivalent resistance REQ that is in effective
    resistance between nodes IN and VG
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• Thus the time constant that determines the frequency response of the
filter is determined by the clock period TC and the capacitor ratio C2 / C1.
Both of these parameters can be well controlled in an IC process

• Note the dependence on capacitor ratio rather than absolute value.  The
accuracy of capacitor ratios in MOS technology are on the order of 0.1%

• For reasonable clock frequencies (100 kHz) and not too large capacitor
ratios (10) one can obtain relatively large time constants (10-4 s)

• Switched capacitor filter ICs offer a low cost high order filter on a single
IC

• The clock frequency must be higher than any frequency component of
the signal (typically 100x)

• Can be easily programmed by changing the clock frequency

• Some of clock signal feeds through to the output, signals near the clock
frequency can be aliased into the passband, overall increase in the noise
floor



Oscillators and Waveform Shaping Circuits

• In the design of electronic systems the need frequently arises for
signals having prescribed waveforms (e.g. sinusoidal, square, triangle,
pulse, etc.)

• Commonly used in computers, control systems, communication
systems and test and measurement systems

• Two common ways for generating sinusoids

– Positive feedback loop with non-linear gain limiting mechanism

– Appropriately shaping other waveforms such as triangle waves

• Circuits that directly generate square, triangle and pulse waveforms
generally employ circuit blocks known as multivibrators.  Three basic
types are bistable, astable and monostable



Sinusoidal Oscillators

• Commonly referred to as linear sine-wave oscillators although some
form of non-linearity has to be employed to limit the output amplitude

• Analysis of circuits is more difficult as s - plane analysis cannot be
directly applied to the non-linear part of the circuit

• The basic structure of a sinusoidal oscillator consists of an amplifier
and a frequency selective network connected in a positive feedback
loop





• In actual oscillator no input will be present, included to help explain
operation

• Note the feedback signal XF is summed with a positive sign
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    The loop gain is

L s A s s( ) ( ) ( )= β

    and the characteristic equation is

1 0− =L s( )

• If at a specific frequency fo the loop gain Aβ is equal to unity it
follows that Af will be infinite.  Such a circuit is by definition an
oscillator

• Thus for sinusoidal oscillation at ωo

L j A j j( ) ( ) ( )ω ω β ωο ο ο= = 1 Barkhausen Criteria

• Unity gain, zero phase shift













Active Filter Based on Two Loop Integrator
(Biquad)

• Opamp - RC circuit that realizes second order filter functions based
on the use of two integrators connected in cascade in an overall
feedback loop

• Consider second order high pass filter

T s
V

V
k s

s s Q

hp

i

( ) = =
+ 



 +

2

2 2ω ωο
ο

    where k is the high frequency gain.  Rearranging the equation gives
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The signal  can be obtained by passing through 

an integrator with a time constant equal to 1 .  Passing

the resulting signal through another identical integrator

generates 

hp 







• The signal at the output of the first integrator is
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  which is a bandpass function
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• Similarly the output of the second integrator is a low pass function
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• The two - integrator - loop biquad realizes three basic second order
filter functions LP, BP and HP simultaneously.  This circuit is
commonly called the universal active filter







• If Rf / R = 1
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    By summing the LP, BP, and HP outputs the overall transfer
    function of the KHN biquad and summer is
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• An alternative two - loop integrator which uses three opamps in
single ended mode is the Tow - Thomas biquad.  Details can be
found on pages 804 & 805 of the text

• Although Two - Integrator loop biquads are versatile and easy to
design, their performance is adversly affected by the finite
bandwidth of the opamps



Single Amplifier Biquad Filters

• Second order filter functions can also be implemented with a single
amplifier.  These minimal realizations are low power and low cost,
however, they suffer from greater dependence on opamp gain and
bandwidth and are generally more sensitive to tolerances in the
resistors and capacitors

• The single amplifier biquads (SABs) are therefore generally limited to
less stringent filter specifications (Q < 10)





Active Filters

• In this section we study a family of opamp - RC circuits that realize
the various second order filter functions by replacing the inductor L in
the LCR resonator with an opamp - RC circuit that has an inductive
input impedance

• Many opamp - RC circuits have been proposed for simulating the
operation of an inductor

• One of the simplest is the negative impedance converter (NIC)





• Can be used to convert a capacitor to a “backward” inductor
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• One of the best circuits for simulating an inductor is the Antoniou
inductance simulation circuit.  This circuit is very tolerant to the
non-ideal properties of opamps



• The circuit is shown below





The effective inductance of the circuit is 

Typically    
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Opamp - RC Resonator
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Second Order Functions
    The general second order (biquadratic) filter transfer function is
    given by
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    where ωo and Q determine the poles according to
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    we are usually interested in the case of complex conjugate poles
    obtained for Q > 0.5





• The radial distance of the poles from the origin is the pole frequency

• The higher the value of Q the closer the poles are to the jω axis and the
more selective (higher peak and initial rolloff) the filter response
becomes

• An infinite value of Q locates the poles on the jω axis and can yield
sustained oscillations

• Q is called the pole quality factor









Second Order LCR Resonator
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