First and Second Order Filters

. These functions are useful for the design of simple filters or they can
be cascaded to form high-order filter functions

First Order Filters

General first order bilinear transfer function is given by:
a,;s+a,
S+w,

poleat s=-w,andazeroat s=- a,/ & and ahigh frequency gain
that approaches a;

T(s) =

. The numerator coefficients (a,, &) determine the type of filter (e.g.
low-pass, high-pass, etc.)
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Consider the Following Circuit
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t(s) = N(s) Loop Gain = L(s) = At(s) = AN(s)

D(s) D(s)

For stability. 1+ L (s) = 0 which resultsin the poles s of the
closed - loop circuit as

1

t(sp) = - A

Assuming an ideal opamp with A = ¥ the poles are obtained from
N(sp) =0

. That is, the poles are identical to the zeros of the RC network

. Since our objectiveisto realize apair of complex conjugate poles

we should select an RC network that has complex conjugate zeros
. The simplest such networks are Bridged - T networks
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. The pole polynomial of the active filter circuit will be equal to the
numerator polynomial of the Bridged - T network
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. Common implementationC; =C,=C,R3=R,Rs;=R/m

m = 4Q? CR="<



Fig. 11.29 An active-filter feedback loop
generated using the bridged-T network of
Fig. 11.28(q).



« A common implementation of the single amplifier biquad is the Salen -
key filter

* A low - passfilter can be seen below
« Similar circuits are available for the other filter configurations




Sensitivity
. Because of telerances in component values and because of the finite
opamp gain the response of the actual filter will deviate from the
Ideal response
. Asameans of predicting such deviations, the filter designer
employs the concept of sensitivity
. For second order filters one is normally interested in finding how
sensitive their poles are relative to variations (Both initial tolerances
and future changes) in RC component values and amplifier gain
. These sengitivities can be quantified using the classical sensitivity
function
¥ Tyx
s) = lim =Y =177
X x®0 DX
DX® 0 A Ixy




. Here x denotes the value of acomponent and y denotes a circuit
parameter of interest (e.g. wo, Q). For small changes

Dx
X

Thus we use the value of S, to determine the per unit changein'y
due to agiven per - unit change in x

. If the sengitivity of Q relative to aparticular resistance R; is 5, then
a 1% increase in Ry resultsin a 5% increase in the value of Q

Switched - Capacitor Filters

. Active RC filters are difficult to implement totally on an IC due to
the requirements of large - valued capacitors and accurate RC time
constants

- The switched capacitor filter technique is based on the realization
that a capacitor switched between two circuit nodes at a sufficiently
high rate is equivalent to aresistor connecting these two nodes
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Fig. 11.35 Basic principle of the switched-capacitor filter technique. (a) Active-RC integrator.
(b) Switched-capacitor integrator. {€) Two-phase clock (nonoverlapping). (d} During ¢4, C,
charges up to the current value of v, and then, during ¢,, discharges into C..



. From the above circuit we see that during each clock period T¢ an
amount of charge qc: = C; Vs is subtracted from the input source

and supplied to the integrator capacitor C;
. The average current flow between the input node and virtual ground

(VG) is

If Tc issufficiently short one can think of the process as continuous
and define an equivalent resistance Regq that is in effective
resistance between nodes IN and VG

_V; _ T
Reo =1, = 6,
The time constant for the integrator is:

C,

Time constant = C, Rgy = T¢. e
1



Thus the time constant that determines the frequency response of the
filter is determined by the clock period T and the capacitor ratio C, / C,.
Both of these parameters can be well controlled in an IC process

Note the dependence on capacitor ratio rather than absolute value. The
accuracy of capacitor ratiosin MOS technology are on the order of 0.1%

For reasonable clock frequencies (100 kHz) and not too large capacitor
ratios (10) one can obtain relatively large time constants (104 s)

Switched capacitor filter |Cs offer alow cost high order filter on asingle
IC

The clock frequency must be higher than any frequency component of
the signal (typically 100x)

Can be easily programmed by changing the clock frequency

Some of clock signal feeds through to the output, signals near the clock

frequency can be aliased into the passband, overall increase in the noise
floor



Oscillators and Waveform Shaping Circuits

In the design of electronic systems the need frequently arises for
signals having prescribed waveforms (e.g. sinusoidal, square, triangle,
pulse, etc.)

Commonly used in computers, control systems, communication
systems and test and measurement systems

Two common ways for generating sinusoids
— Positive feedback loop with non-linear gain limiting mechanism
— Appropriately shaping other waveforms such as triangle waves

Circuits that directly generate square, triangle and pulse waveforms
generally employ circuit blocks known as multivibrators. Three basic
types are bistable, astable and monostable



Sinusoidal Oscillators

« Commonly referred to as linear sine-wave oscillators although some
form of non-linearity has to be employed to limit the output amplitude

 Anaysisof circuitsis more difficult as s - plane analysis cannot be
directly applied to the non-linear part of the circuit

» Thebasic structure of asinusoidal oscillator consists of an amplifier
and afrequency selective network connected in a positive feedback
loop



Amplifier 4

Frequency-selective

network 8

Fig. 12.1 The basic structure of a sinusoidal
oscillator. A positive-feedback loop is
formed by an amplifier and a frequency-
selective network. In an actual oscillator
circuit no input signal will be present; here
an input signal x; is employed to help
explain the principle of operation.

o



- In actual oscillator no input will be present, included to help explain
operation
. Note the feedback signal X is summed with a positive sign

A(s)

A= A b ()

Theloop gainis

L(s) = A(s)b(s)

and the characteristic equation is

1- L(s) =0

- If at aspecific frequency f, the loop gain Ap is equal to unity it
follows that As will be infinite. Such acircuit is by definition an

oscillator
. Thus for sinusoidal oscillation at we

L(jw,) = A(jw,)b(jw,) =1  Barkhausen Criteria

. Unity gain, zero phase shift



(e) LPN, w, = Wq



(f) HPN, w, = wy



(g) All-pass



Table 14.1 DESIGN DATA FOR THE CIRCUITS OF FIG. 14.22

Fig. 11.22(d)

1 R,

s+ s +
CsRe C4C6RR3R5

CIRCUIT TRANSFER FUNCTION AND OTHER PARAMETERS DESIGN EQUATIONS
Resonator wo = 1/VC4CeR R3R5/R, C,4 = Cg¢ = C (practical value)
Fig. 11.21(b) R R, =R, = Ry = Rs = l/wsC

= Ry —2 R¢ = QlwoC
Q= RN ¢, RiRsEs ¢ °
Low-pass (LP) T(s) = KR,/C4CeR R3R5 K = dc gain
Fig. 11.22(a) () = ! R,
st + s +
C6R6 C4C6R1R3R5
High-pass (HP) -~ Ks? K = High-frequency gain
Fig. 11.22(b) (s) = 1 R,
2+ s +
CsRg  C4CeR\R3Rs
Bandpass (BP) T(s) = Ks/CeRg K = Center-frequency gain
Fig. 11.22(c) (s = ! x
s2+ s +
C6R6 C4C6R1R3R5
Regular notch (N) T(s) K [s? + (R,/C4CeR R3R5)] K = Low- and high-frequency gain
s =




Low-pass notch (LPN)
Fig. 11.22(e)

Cei
Ce1 + Ce

.5'2 + (Rz/C4C61R1R3R5)
1 R,
A} +
CeRe  Ca(Ce) + Ce2)R(R3R;
w, = 1/VC4Ce R \R3Rs/R,

Wy = 1/VC4(C6] + C62)R|R3R5/R2

Ce1 + C R
Q — Rﬁ\/ 61 62 2
C4 R1R3R5

T(s) = K

X

52+

K = dc gain

C61+C62=C6=C
Ce1 = C(wplw,)?

Ce2 = C — Cq;

High-pass notch (HPN)
Fig. 11.22(f)

5% + (Ro/C4CsR1R3Rs))

T(s)=K

1 R 1 1
52 + 2 (

Ky + +
CeRs C4CsR1R3 \Rs;  Rs
w, = 1/NVC4CsR R3R5,/R;

\/ R, ( 1 1 )
wqg = +
C4C¢RR3 \Rs;  Rs

)

K = High frequency gain

1 + 1 1 C
_— —_ = — = W
Rsy Rs;, Rs

Rs; = Rs(wp/w,)?

Ce R, [ 1 1 )
Q =R ( + ) R52 = R5/[1 - ((I)n/(t)o) ]
*VCiRiR3 \Rs;  Rs
All-pass (AP) ) 1 r R,
: -5 —
Fig. 11.22(g) S Y CeRe 1L C4CeRiR3Rs .
T(s) = ry = rp = r (arbitrary)
.1 R,
s+ s +
C6R6 C4C6R1R3R5
w,=wy Q,=Q(ry/r,) Flat gain = 1 Adjust r; to make @, = Q.




Active Filter Based on Two Loop Integrator
(Biquad)

. Opamp - RC circuit that realizes second order filter functions based
on the use of two integrators connected in cascade in an overall
feedback loop

. Consider second order high pass filter

T(S) :Vhp = kSZ
Vi st few,

where k is the high frequency gain. Rearranging the equation gives
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The signal S° Vi, Can be obtained by passing V,,, through

an integrator with a time constant equal to %v . Passing
o
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Fig. 11.23 Derivation of a block-diagram realization of the two-integrator-loop biquad.



. The signal at the output of the first integrator is

W, /@
§ %éjvhp
Vi

which is a bandpass function

W, /@
§ %éjvhp _ kw, s
Y 57 g0 oBrw,’
. Similarly the output of the second integrator is alow pass function

5 o
& SZBVhp kw2

Vi 2 +8%o /0

= pr (S)

. Thetwo - integrator - loop biquad realizes three basic second order
filter functions LP, BP and HP simultaneoudly. Thiscircuit is
commonly called the universal active filter



(a)



Vip O—VMW— AN
Rp
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R, + Vo
le O—‘M—
(b)

Fig. 11.24 (a) The KHN biquad circuit, obtained as a direct implementation of the block
diagram of Fig. 11.23(c). The three basic filtering functions, HP, BP, and LP, are simultaneously
realized. {(b) To obtain notch and all-pass functions, the three outputs are summed with

appropriate weights using this op amp summer.



- IfRf/R=1

crR= 1L, R%Zzzq-l =2- 818

By summing the LP, BP, and HP outputs the overall transfer
function of the KHN biquad and summer is

F/ Qg2 F/Q F/ Q2
V. kgﬁms S§A8gwo+§Ango
; g odew,”

. An alternative two - loop integrator which uses three opampsin
single ended mode isthe Tow - Thomas biquad. Details can be
found on pages 804 & 805 of the text

. Although Two - Integrator loop biguads are versatile and easy to

design, their performance is adversly affected by the finite
bandwidth of the opamps




Single Amplifier Biguad Filters

» Second order filter functions can also be implemented with asingle
amplifier. These minimal realizations are low power and low cost,
however, they suffer from greater dependence on opamp gain and
bandwidth and are generally more sensitive to tolerancesin the
resistors and capacitors

 The single amplifier biquads (SABSs) are therefore generaly limited to
less stringent filter specifications (Q < 10)



Fig. 11.19 Redlization of the second-order
all-pass transfer function using a voltage
divider and an LCR resonator.



Active Filters

In this section we study a family of opamp - RC circuits that realize
the various second order filter functions by replacing the inductor L in
the LCR resonator with an opamp - RC circuit that has an inductive
Input impedance

Many opamp - RC circuits have been proposed for ssmulating the
operation of an inductor

One of the simplest is the negative impedance converter (NIC)
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Can be used to convert a capacitor to a*“backward” inductor

ZC:jvv—C Iy =- vy JWC

7 =VYin - Yno 1 _ )

"Iy -vyjwC  jwC wC
IN AL Jw W

Equivalent to an inductor of value vviC

One of the best circuits for simulating an inductor is the Antoniou
Inductance ssimulation circuit. Thiscircuit isvery tolerant to the
non-ideal properties of opamps



 Thecircuit is shown below

1%
Zin = _[—l — SC4R1R3R5/R2
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(a)
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(b) @

_Fig. 11.20 (a) The Antoniou inductance-simulation circuit. (b} Analysis of the circuit assuming
Ideal op amps. The order of the analysis steps is indicated by the circled numbers.



The effective inductance of the circuit is

_ G RR3Rg
R,

L

Typically R, =R,=R,=R.=R
C,=C

L = CR?



Opamp - RC Resonator




(b)




(c)

Fig. 11.21 (a) An LCR resonator. (b) An op amp-RC resonator obtained by replacing the
inductor L in the LCR resonator of (a) with a simulated inductance redlized by the Antoniou
circuit of Fig. 11.20(a). {€) Implementation of the buffer amplifier K.

"o :%\/ LCs :/1/C4C6R1R3R%
2

C R
Q=w,CsRs = Rq ° :
C, R RyRe
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(b) HP

Fig. 14.22 Realizations for the various second-order filter functions using the op amp—-RC
resonator of Fig. 11.24(b). (a) LP; (b) HP; (¢) BP, (d) notch at wy, (€) LPN, w, = wq; (f) HPN,
w, = we, (g) all-pass. The circuits are based on the LCR circuits in Fig. 11.18. Design equations

are given in Table 11.4,
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Filter Type and T(s)

s-Plane Singularities

Bode Plot for |T]

Passive Realization

Op Amp-RC Realization
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Second Order Functions

The general second order (biquadratic) filter transfer function is
given by

a,s”+a,s+a,
(2, 3,0

gQ—S+W

where w, and Q determine the poles according to

P = 0+’W\/ $ o

we are usually interested in the case of complex conjugate poles
obtained for Q > 0.5

T(s) =
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Theradial distance of the poles from the origin is the pole frequency

The higher the value of Q the closer the poles are to the jw axis and the
more selective (higher peak and initial rolloff) the filter response
becomes

An infinite value of Q locates the poles on the jw axis and can yield
sustained oscillations

Q iscalled the pole quality factor



Filter Type and T(s)

s-Plane Singularities
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Second Order LCR Resonator

et ]

Equating the denominator to standard form gives
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Fig. 11.47 (a) The second-order parallei LCR resonator. (b) and (¢) Two ways for exciting
the resonator of (a) without changing its natural structure. The resonator poles are the poles of
V. /I and V_/V,
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Fig. 11.18 Realization of various second-order filter
functions using the LCR resonator of Fig. 11.17(b):

(a) general structure, (b) LP, (¢) HP, (d} BP, (e) notch
at wg, (f) general notch, (g) LPN (w, = wg), (h) LPN as
s — o, (i) HPN (w, < wp).
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