Current Source Biasing

- Integrated circuits have transistors which are manufactured simultaneously with the same device parameters (parameters from chip to chip will vary)
- As a result, different bias techniques are employed than in discrete designs
- One common technique is current source biasing, which allows the designer to take advantage of matched devices
- We will begin by looking at some simple current source circuits
- A current source is not a "naturally" occurring device. It can be simulated by a network of transistors and circuit elements.

Figure 7.31 NPN BJT with grounded base.

The voltage across R_{E} is approximately constant.
$\therefore \mathrm{I}_{\mathrm{E}}$ is held at a constant value

$$
I_{E}=\frac{-V_{E E}-V_{B E}}{R_{E}}
$$

Figure 7.32
Network of R_{E} and $V_{E E}$ replaced by constant dc current source of equivalent value $I_{0}=$ $-\left(V_{E E}-V_{B E}\right) / R_{E}$.

Figure 7.33
Simulated current source using an NPN BJT.

Figure 7.34

BJT follower with BJT

 current source bias.

Figure 7.35
Equivalent bias
circuit of Fig. 7.34.

Problem: For the previous circuits find the bias values I_{C} and V_{CE} for each transistor

Solution
Assume D_{1} and D_{2} forward biases $\left(\mathrm{I}_{1}>\mathrm{I}_{\mathrm{B} 2}\right)$

$$
V_{B}=V_{E E}+2 V_{F}=-10 \mathrm{~V}+2(0.7 \mathrm{~V})=-8.6 \mathrm{~V}
$$

Using KVL around loop A

$$
2 V_{F}=V_{B E 2}+I_{E 2} R_{2}
$$

Since $V_{B E 2} \cong V_{F}$

$$
I_{E 2}=\frac{V_{F}}{R_{2}}=\frac{0.7 \mathrm{~V}}{180 \Omega} \cong 3.7 \mathrm{~mA}
$$

Since $I_{C} \cong I_{E}$

$$
I_{C 1}=I_{C 2}=3.9 \mathrm{~mA}
$$

Check that D_{1} and D_{2} are forward biased for a worst case minimum $\beta_{F}=20$

$$
\begin{gathered}
I_{B 2}=\frac{I_{C 2}}{\beta_{F}} \cong 0.19 \mathrm{~mA} \\
I_{1}=\frac{V_{C C}-V_{B}}{R_{1}}=\frac{10 \mathrm{~V}-(-8.6 \mathrm{~V})}{50 \mathrm{k} \Omega}=0.37 \mathrm{~mA} \\
V_{C 1}=V_{C C}-I_{C 1} R_{C}=10 \mathrm{~V}-(3.9 \mathrm{~mA})(1 \mathrm{k} \Omega)=6.1 \mathrm{~V} \\
V_{E 2}=V_{B}-V_{B E 2}=-8.6 \mathrm{~V}-0.7 \mathrm{~V}=-9.3 \mathrm{~V} \\
V_{E 1}=V_{C 2}=0 \mathrm{~V}-V_{B E 1}=-0.7 \mathrm{~V} \\
V_{C E 1}=V_{C 1}-V_{E 1}=6.1 \mathrm{~V}-(-0.7 \mathrm{~V})=6.8 \mathrm{~V} \\
V_{C E 2}=V_{C 2}-V_{E 2}=-0.7 \mathrm{~V}-(-9.3 \mathrm{~V})=8.6 \mathrm{~V}
\end{gathered}
$$

Current Mirrors

- Current mirrors also take advantage of matched transistors but require a minimal number of resistors. They are also well suited for circuits with more than one stage.

Figure 7.39
Basic topology of the current mirror bias circuit. The biasing device is perfectly matched to the reference device, through which the reference current $I_{\text {ref }}$ is established.

Figure 7.40 Three circuits biased by a common current mirror reference.

Basic BJT Current Mirror

Figure 7.41

BJT current mirror bias circuit. The current $I_{\text {ref }}$ is set by R_{A}.

$$
\begin{aligned}
& I_{A}=\frac{V_{C C}-\left(V_{C E 1}+V_{E E}\right)}{R_{A}}=\frac{V_{C C}-V_{B E 1}-V_{E E}}{R_{A}} \\
& I_{A}=I_{R E F}+I_{B 1}+I_{B 2}
\end{aligned}
$$

IF β_{F} is large $I_{B 1} \ll I_{\text {REF }} \quad I_{B 2} \ll I_{\text {REF }}$

$$
I_{R E F} \cong I_{A}
$$

Problem
For the following circuit $\mathrm{I}_{\mathrm{C} 3}=3 \mathrm{~mA}$ and
$\mathrm{V}_{\mathrm{CE}}=5.4 \mathrm{~V}$. Find the quiescent (DC bias)
power dissipated in each transistor.

Figure 7.42
Current mirror bias circuit design example.

$$
\begin{aligned}
& I_{C 3} \cong I_{o}=I_{R E F} \cong I_{A} \\
& I_{A}=\frac{0 \mathrm{~V}-\left(V_{F}+V_{E E}\right)}{R_{A}} \\
& R_{A}=\frac{-V_{F}-V_{E E}}{I_{R E F}}=\frac{-0.7 \mathrm{~V}-(-10 \mathrm{~V})}{3 \mathrm{~mA}}=3.1 \mathrm{k} \Omega \\
& V_{E}=-0.7 \mathrm{~V} ; \text { To achieve } V_{C E}=5.4 \mathrm{~V}, V_{C}=4.7 \mathrm{~V} \\
& V_{C C}-V_{C}=10 \mathrm{~V}-4.7 \mathrm{~V}=5.3 \mathrm{~V} \\
& R_{C}=\frac{5.3 \mathrm{~V}}{3 \mathrm{~mA}}=1.8 \mathrm{k} \Omega
\end{aligned}
$$

The DC power in each transistor is given by:

$$
\begin{aligned}
& P_{Q}=I_{C} V_{C E}+I_{B} V_{B E} \cong I_{C} V_{C E} \\
& P_{Q 1}=(3 \mathrm{~mA})(0.7 \mathrm{~V})=0.2 \mathrm{~mW} \\
& P_{Q 2}=(3 \mathrm{~mA})[-0.7 \mathrm{~V}-(-10 \mathrm{~V})] \cong 28 \mathrm{~mW} \\
& P_{Q 3}=(3 \mathrm{~mA})(5.4 \mathrm{~V})=16 \mathrm{~mW}
\end{aligned}
$$

MOSFET Current Mirror

Figure 7.44 MOSFET current mirror made from matched devices. The reference current is determined by R_{A}, K, and $V_{T R}$.

Advantage: $\quad \mathrm{I}_{\mathrm{REF}}=\mathrm{I}_{\mathrm{A}}$
Gate current is negligible

Widlar Current Source

- The basic current mirror requires that the bias current and reference current be equal
- The wildar current source sets the mirrored current to a value smaller than $\mathrm{I}_{\text {REF }}$ by using an extra resistor
- The widlar current source allows you to establish small bias currents $(\mu \mathrm{A})$ without using large resistor values

Figure 7.46 Widlar current source.

$$
\begin{aligned}
& I_{R E F} \cong \frac{V_{C C}-V_{E E}-V_{B E 1}}{R_{A}} \\
& V_{B E 1}=V_{B E 2}+I_{E 2} R_{2} \\
& I_{E}=I_{E O}\left(e^{V_{B E} / \eta V_{T}}-1\right) \cong I_{E O} e^{V_{B E} / \eta V_{T}} \\
& V_{B E}=\eta V_{T} \ln \frac{I_{E}}{I_{E O}}
\end{aligned}
$$

Assuming matched BJTs

$$
\begin{aligned}
& \eta V_{T} \ln \frac{I_{E 1}}{I_{E O}}=\eta V_{T} \ln \frac{I_{E 1}}{I_{E O}}+I_{E 2} R_{2} \\
& I_{E 2} R_{2}=\eta V_{T} \ln \frac{I_{E 1}}{I_{E 2}}
\end{aligned}
$$

$$
\begin{aligned}
& I_{E 1} \cong I_{R E F} \quad I_{E 2} \cong I_{o} \\
& I_{o}=\frac{\eta V_{T}}{R_{2}} \ln \frac{I_{R E F}}{I_{o}}
\end{aligned}
$$

- Equation difficult to solve in closed form. Use successive iteration or trial and error
- When you know the desired I_{o} then $\mathrm{I}_{\text {REF }}$ can be found directly

$$
I_{R E F}=I_{o} \exp \left(\frac{I_{o} R_{2}}{\eta V_{T}}\right)
$$

Problem:
Using a widlar current source find the values of R_{A} and R_{B} that will produce $\mathrm{I}_{\mathrm{o}}=100 \mu \mathrm{~A}$. Given $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{VEE}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=0.7 \mathrm{~V}$ and $\eta=1$.

Solution:
Select a value of R_{2} such that

$$
I_{o} R_{2} \cong \eta V_{T}
$$

To keep exponent from becoming too large

$$
\eta V_{T}=25 \mathrm{mV}
$$

Choose $\quad I_{o} R_{2}=100 \mathrm{mV} \quad \therefore R_{2}=1 \mathrm{k} \Omega$

$$
\begin{aligned}
& I_{R E F}=(100 \mu \mathrm{~A}) \exp \left[\frac{(100 \mu \mathrm{~A})(1 \mathrm{k} \Omega)}{0.025 \mathrm{~V}}\right]=5.46 \mathrm{~mA} \\
& I_{R E F}=\frac{V_{C C}-V_{E E}-V_{F}}{R_{A}} \\
& R_{A}=\frac{10 \mathrm{~V}-(-10 \mathrm{~V})-0.7 \mathrm{~V}}{5.46 \mathrm{~mA}}=3.54 \mathrm{k} \Omega
\end{aligned}
$$

Wilson Current Source

- Refined Widlar source that can produce $\mathrm{I}_{\mathrm{O}}>\mathrm{I}_{\text {REF }}$

Figure 7.48
Refined version of the Widlar current source, called the Wilson current source.

- The balance between $\mathrm{V}_{\mathrm{BE} 1}$ and $\mathrm{V}_{\mathrm{BE} 2}$ is set by the ratio of R_{1} to R_{2}

Assuming $I_{C} \cong I_{E}$

$$
\begin{aligned}
& V_{B E 1}+I_{R E F} R_{1}=V_{B E 2}+I_{o} R_{2} \\
& \eta V_{T} \ln \frac{I_{R E F}}{I_{E O 1}}+I_{R E F} R_{1}=\eta V_{T} \ln \frac{I_{o}}{I_{E O 2}}+I_{o} R_{2}
\end{aligned}
$$

Assuming matched devices

$$
I_{o}=\frac{\eta V_{T}}{R_{2}} \ln \frac{I_{R E F}}{I_{o}}+I_{R E F} \frac{R_{1}}{R_{2}}
$$

Small Signal Modeling of Three Terminal Devices

- Incremental signals
- Piecewise linear models
- Incremental circuit models
- BJT
- FET
- Refinements to incremental model
- Output resistance
- Input resistance
- Alternative BJT representation
- Two - port representations

Small Signal Modeling of Three Terminal Devices

- Related to PWL concept in which the V-I characteristics are modeled by a straight line tangent to the curve at a particular operating point
- With three terminal devices the relationship between the output port and input port must be taken into account. This generally leads to a PWL model with a linearly dependent source.
- Circuits containing small signal models can be analyzed using linear circuit theory under proper conditions
- The terms small-signal and incremental will be used interchangeably

Incremental Signals

- Any transient, periodic or AC fluctuation in a voltage or current
- An incremental signal is small in magnitude compared to the bias voltages or currents in the circuit
- Incremental signal carries the signal information processed by the circuit

Figure 8.1
Simple BJT inverter with input equal to a bias voltage $V_{B B}$ plus incremental signal voltage v_{s}.

$$
\begin{array}{rlc}
v_{\mathrm{IN}} & =V_{B B}+v_{s}(t) \\
\text { total } & =\text { bias } \quad+\text { incremental } \\
\text { voltage } & \text { component } & \text { signal } \tag{8.1}
\end{array}
$$

The signal and bias portions of the input voltage are responsible for the corresponding components of the circuit's output voltage or current. For the inverter of Fig. 8.1, the output voltage can be expressed by

$$
\begin{equation*}
v_{\mathrm{OUT}}=V_{C E}+v_{o}(t) \tag{8.2}
\end{equation*}
$$

where $V_{C E}$ is the bias component and $v_{o}(t)$ the signal component. The bias component $V_{C E}$ is established by $V_{B B}$, while the signal component $v_{o}(t)$ is driven by $v_{s}(t)$. Similarly, the collector and base currents in the BJT can be expressed as

$$
\begin{equation*}
i_{C}=I_{C}+i_{c}(t) \quad \text { and } \quad i_{B}=I_{B}+i_{b}(t) \tag{8.3}
\end{equation*}
$$

The bias components I_{C} and I_{B} are established by $V_{B B}$, and the incremental components $i_{c}(t)$ and $i_{b}(t)$ are driven by $v_{s}(t)$.

Figure 8.2
Bias plus incremental signal component applied to BJT inverter voltage transfer characteristic.

PWL Models of Three Terminal Devices

- Formation of small signal model begins with PWL model
- PWL model can be applied to three terminal device if the dependency of the output port is considered

Figure 8.3
(a) Voltage-current characteristic of the base-emitter input port of a BJT resembles the $v-i$ characteristic of the PN junction diode; (b) idealized BJT output port $v-i$ characteristic. ${ }^{i} C=\beta_{F} i_{B}$
The finite upward slope in the active region has been assumed negligible in this figure.

Figure 8.4
Piecewise linear model of the BJT with both ports represented.

$$
r_{B E}=\left.\frac{\partial v_{b e}}{\partial i_{b}}\right|_{V_{B E}, I_{B}}=\frac{\eta V_{T}}{I_{B}}
$$

- Model valid only in constant current region
- If the circuit in which the BJT is connected produces a signal as well as a bias component to i_{B} then:

$$
i_{c}(t)=\beta_{o} i_{b}(t)
$$

- where i_{c} and i_{b} are inc
- remental signals and β_{0} is the incremental current gain

Piecewise linear model for the BJT in which the dc portion I_{C} of the collector current is related to I_{B} via β_{F}, and the incremental signal portion i_{c} of the collector current is related to i_{b} via β_{o}. The input port is modeled by V_{f} and $r_{b e}$.

- Since β_{F} is fairly constant it is possible to assume $\beta_{\mathrm{o}}=\beta_{\mathrm{F}}$ in many cases
- The symbols $h_{\text {FE }}$ and $h_{f e}$ are sometimes used instead of β_{F} and β_{o} when using h-parameter analysis

Incremental Circuit Model

In analyzing the small signal performance of a circuit it is customary to ignore the DC components of the model once the bias conditions have been established.

This can be accomplished by the following procedure:

1. Find the DC bias point and determine an appropriate PWL model
2. Set all bias values to zero by setting all DC sources to zero (including those in the PWL model)
3. Solve the desired variables using linear circuit theory
4. Superimpose the signal variables onto the corresponding DC bias voltages and currents to obtain the total voltage and current values

Figure 8.7
Simple BJT inverter with the transistor biased in its active region by $V_{B B}$. The voltage v_{s} is the signal component of the total input voltage $v_{\mathbb{N}}$.

Figure 8.8 Constant-current-region piecewise linear model substituted for the BJT in the circuit of Fig. 8.7.

$$
\begin{aligned}
& I_{B}=\frac{V_{B B}-V_{F}}{R_{B}}=\frac{1 \mathrm{~V}-0.7 \mathrm{~V}}{10 \mathrm{k} \Omega}=30 \mu \mathrm{~A} \\
& I_{C}=\beta_{F} I_{B}=(100)(30 \mu \mathrm{~A})=3 \mathrm{~mA} \\
& V_{\text {OUT }}=V_{C E}=V_{C C}-I_{C} R_{C}=10 \mathrm{~V}-(3 \mathrm{~mA})(1 \mathrm{k} \Omega)=7 \mathrm{~V}
\end{aligned}
$$

- Transistor operates in constant current therefore we can use PWL model developed earlier

$$
r_{b e}=\frac{\eta V_{T}}{I_{B}}=\frac{1(0.025)}{30 \mu \mathrm{~A}} \cong 833 \Omega
$$

Figure 8.9 Incremental representation of the circuit of Fig. 8.7.

$$
\begin{aligned}
& i_{b}=\frac{v_{s}}{R_{B}+r_{b e}} \quad v_{o}=-\beta_{o} i_{b} R_{C} \\
& v_{o}=\frac{-\beta_{0} R_{C}}{R_{B}+r_{b e}} v_{s}=\frac{-100(1 \mathrm{k} \Omega)}{10 \mathrm{k} \Omega+0.833 \mathrm{k} \Omega} v_{s} \cong-9.2 v_{s}
\end{aligned}
$$

$\frac{-\beta_{0} R_{C}}{R_{B}+r_{b e}}$ is the incremental or small- signal voltage gain
$V_{\text {OUT }}=V_{C E}+v_{o}(t)=7 \mathrm{~V}-9.2 v_{s}(t)$
Total $=$ Bias + Incremental
Voltage Voltage Signal

Figure 8.11
Thévenin equivalent of the output port of the circuit of Fig. 8.9.

Problem:

For the following circuit find the incremental components of v_{c} and v_{e}.

Figure 8.12
BJT in feedback bias configuration with input signal voltage source v_{s}.

Figure 8.13 (a) Incremental model of the circuit of Fig. 8.12; (b) Thévenin equivalent used to represent v_{s}, R_{1}, and R_{2}.

Note: v_{s} connection does not represent typical amplifier design.

KVL around the input loop for incremental signal

$$
v_{s} \frac{R_{1}}{R_{1}+R_{2}}=i_{b}\left(R_{1} \| R_{2}\right)+i_{b} r_{\pi}+\left(\beta_{\mathrm{o}}+1\right) i_{b} R_{E}
$$

$$
i_{b}=\frac{v_{s}\left[R_{1} /\left(R_{1}+R_{2}\right)\right]}{\left(R_{1} \| R_{2}\right)+r_{\pi}+\left(\beta_{\mathrm{o}}+1\right) R_{E}}
$$

$$
v_{e}=\left(\beta_{\mathrm{o}}+1\right) i_{b} R_{E}=\frac{\left(\beta_{\mathrm{o}}+1\right) R_{E}\left[R_{1} /\left(R_{1}+R_{2}\right)\right] v_{s}}{\left(R_{1} \| R_{2}\right)+r_{\pi}+\left(\beta_{\mathrm{o}}+1\right) R_{E}}
$$

$$
v_{c}=-\left(\beta_{\mathrm{o}} i_{b}\right) R_{C}=-\frac{\beta_{\mathrm{o}} R_{C}\left[R_{1} /\left(R_{1}+R_{2}\right)\right] v_{s}}{\left(R_{1} \| R_{2}\right)+r_{\pi}+\left(\beta_{\mathrm{o}}+1\right) R_{E}}
$$

In the limit $\quad R_{1} \| R_{2} \ll\left(\beta_{\mathrm{o}}+1\right) R_{E}$ $\beta_{\mathrm{o}}+1 \cong \beta_{\mathrm{o}}$

$$
r_{\pi} \ll\left(\beta_{\mathrm{o}}+1\right) R_{E}
$$

$$
v_{e} \cong \frac{R_{1}}{R_{1}+R_{2}} v_{s}
$$

$$
v_{c} \cong-\frac{R_{C}}{R_{E}} \frac{R_{1}}{R_{1}+R_{2}} v_{s}
$$

Incremental Model of MOSFET

Figure 8.14
Piecewise linear model
for the input and output ports of an FET in the constant-current region. The value of I_{D} is determined by the bias value of $v_{G S}$.

$$
g_{m}=\left.\frac{\partial i_{D}}{\partial v_{G S}}\right|_{V_{G S}, I_{D}}=\frac{\partial}{\partial v_{G S}}\left[k\left(V_{G S}-V_{T R}\right)^{2}\right]_{V_{G S}, I_{D}}=2 k\left(V_{G S}-V_{T R}\right)
$$

Assume constant current operation

$$
\begin{aligned}
& V_{G S}-V_{T R}=\left(\frac{I_{D}}{k}\right)^{1 / 2} \\
& g_{m}=2 \sqrt{k I_{D}}
\end{aligned}
$$

Similar expression can be derived for JFET

Figure 8.15
FET transconductance curve and tangent line representing g_{m}.

- An incremental description for a FET can also be defined for triode (resistive) region
- It can be shown that the incremental model is as follows

Figure 8.24
For constant $v_{D S}$, incremental changes in $v_{G S}$ cause changes in slope of the tangent to the $v-i$ characteristic.

Figure 8.25
Piecewise linear model for a MOSFET in the triode region. This model contains no dc sources.

Problem:
(A) Find the small signal componont of $\mathrm{V}_{\text {OUT }}$ for the following circuitd $v_{\mathrm{s}}=0.1 \operatorname{Sin} \omega \mathrm{t}, \mathrm{k}=0.2 \mathrm{~mA} / \mathrm{V}^{2}$, $V_{T R}=-2 \mathrm{~V}$.
(B) Find the Thevenin circuit between $V_{\text {OUT }}$ and ground

Figure 8.16 MOSFET inverter in feedback bias configuration.

The bias values can be found to be

$$
I_{D} \cong 0.47 \mathrm{~mA} \quad V_{G S}=-I_{D} R_{E}=-0.47 \mathrm{~V}
$$

Applying KVL to output loop

$$
V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{E}\right)=10 \mathrm{~V}-(0.47 \mathrm{~mA})(3 \mathrm{k})=8.6 \mathrm{~V}
$$

- Since $\mathrm{V}_{\mathrm{DS}}>\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TR}}\right)=1.53 \mathrm{~V}$ the device operates in the constant current region

The incremental transconductance g_{m} is given by

$$
\begin{aligned}
g_{m} & =2 k\left(V_{G S}-V_{T R}\right) \\
& =2\left(0.2 \mathrm{~mA} / \mathrm{V}^{2}\right)[-0.47 \mathrm{~V}-(-2 \mathrm{~V})] \\
& \cong 0.61 \mathrm{~mA} / \mathrm{V}
\end{aligned}
$$

- The signal component of $\mathrm{v}_{\text {OUT }}$ can be found by substituting the PWL model and setting all DC sources to zero

Figure 8.17

Incremental model of
the circuit of Fig.
8.16. All dc sources
have been set to
zero.

Applying KVL to the output loop

$$
\begin{aligned}
& v_{g s}=v_{s}-i_{d} R_{E}=v_{s}-\left(g_{m} v_{g s}\right) R_{E} \\
& v_{g s}=\frac{v_{s}}{1+g_{m} R_{E}}
\end{aligned}
$$

\therefore Note feedback limits the fraction of v_{s} that appears as v_{gs}

$$
\begin{aligned}
& v_{\text {OUT }}=-i_{d} R_{D}=-g_{m} v_{g s} R_{D} \\
& v_{\text {OUT }}=\frac{-g_{m} R_{D}}{1+g_{m} R_{E}} v_{s}
\end{aligned}
$$

$$
a_{V}=\frac{v_{\text {OUT }}}{v_{s}}=\frac{-g_{m} R_{D}}{1+g_{m} R_{E}}=\frac{-(0.61 \mathrm{~mA} / \mathrm{V})(2 \mathrm{k} \Omega)}{1+(0.61 \mathrm{~mA} / \mathrm{V})(1 \mathrm{k} \Omega)}=-0.76
$$

$$
v_{\text {OUT }}=a_{V} v_{s}=(-0.76)(0.1 \sin \omega \mathrm{t})=-0.076 \sin \omega \mathrm{t}
$$

- Since $v_{\text {OUT }}$ is computed with no load it represents the incremental open circuit Thevenin voltage
- The incremental r_{th} can be found by setting v_{s} to zero and applying
$\mathrm{v}_{\text {TEST }}$

Figure 8.18 Applying a test source to the output terminals of the incremental circuit of Fig. 8.18. The v_{s} source has been set to zero.

$$
\begin{aligned}
& v_{g s}=g_{m} v_{g s} R_{E} \quad \text { can only be satisfied if } \mathrm{v}_{\mathrm{gs}}=0 \\
& i_{\text {test }}=\frac{v_{\text {test }}}{R_{D}} \\
& r_{\text {th }}=\frac{v_{\text {test }}}{i_{\text {test }}}=R_{D}
\end{aligned}
$$

Figure 8.19 Incremental Thévenin equivalent of the circuit of Fig. 8.17 seen between the output terminal and ground.

