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LARGE CHANGE SENSITIVITY ANALYSIS IN LINEAR SYSTEMS
USING GENERALIZED HOUSEHOLDER FORMULAE
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SUMMARY

This paper investigates multiparameter large change sensitivity problems in linear systems by a set of generalized
Householder formulae. The newly developed rectangular fonnulae can accommodate large, small and zero parameter
changes directly by avoiding a critical matrix inversion as compared to the traditional square fonnulae. Possible
detennination of a minimum order reduced system, whose solution procedure constitutes the major work in large
change evaluation is discussed. Applications to linear systems are considered for the original and adjoint systems
w.r.\. single as well as multiple input-output cases. This approach makes it possible to use large change analysis
algorithms even if many parameters are changed.

INTRODUCTION

In computer-aided circuit design, it is often required to calculate network responses after the parameters
in a certain set are changed. This problem, referred to as large change sensitivity analysis, has been studied
by many people. Fidlerl and Singhal et al.2considered single and multiple parameter changes, respectively,
and developed methods to calculate the response function as a multilinear form in variable parameters.
Another method is to formulate a reduced system, whose solutions are then used to update the responses.
This method has been treated from different angles, e.g. the current source substitution approach of Leung
and Spence/ the adjoint network approach of Ternes and Cho,4 the Householder formula approach/'s
the scattering matrix approach of Haley6.7 and the matrix partitioning approach of Vlach and Singhal.8
Hajf has derived and summarized a set of algorithms where finite, infinite and zero parameter changes
are all permitted and sparsity is exploited. A recent overview of this area has been given by Haley and
Current7 who presented general approaches encompassing most of the previous methods.

As already noticed,J.S large change analysis algorithms will lose efficiency when too many parameters
are changed. This is mainly because the algorithms involve the solution of a reduced system of order n~,
the number of variables. However, cases exist where this system is larger than needed. Also, in a Monte
Carlo analysis or in an optimization procedure, it is possible that some variables change slightly while
others change substantially. In this case, the small parameter changes may cause ill-conditioning in a
non-iterative methodJ-s and the large changes may affect the convergence rate in an iterative method. S

In this paper, we present a set of generalized Householder formulae which is capable of handling
complicated cases encountered in practice. The problem of determining a minimum reduced system is
investigated. Different aspects of the basic set of formulae are discussed in terms of duality property and
operation count. Applications to general linear systems are considered for original and adjoint responses
with single and multiple input and output situations. Also, as a special case, a series of first-order sensitivity
expressions are obtained without reference to Tellegen's theorem. Numerical examples are given for a
general system of linear equations and for an arbitrary 10 node electrical circuit.
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A SET OF GENERALIZED HOUSEHOLDER FORMULAE

Let the linear system be characterized by an n x n matrix A. Suppose the parameters ct»of the system are
changed by .:1ct».The system matrix A will then be affected by .:1A.We can express

.:1A= VDWT (I)

where V, D and Ware n x r.. rl Xr2 and n x r2 matrices, respectively. For a network example, D can be
an ncl>x ncl>diagonal matrix containing variables, and V and Ware n x ncl>matrices containing + 1and -1.5.8

The effect of .:1ct»in the response matrix A-I is defined as

(2)

For the calculation of .:1(A-I), a commonly suggested method is the Householder formula,9 which can be
represented by

(3)

In this formula, D is required to be a square and non-singular matrix. Even if this can be satisfied,
ill-conditioning may still happen when D is inverted. In fact, cases exist where D is simply not invertible
and additional measures such as the partitioning procedures developed by Hajf and Vlach and Singhal8
must be applied. Another formula by Householder islo

.:1(A-I) = -A -IVD(D + DWTA-IVD)-IDWT A-I (4)

This formula avoids actually performing the inversion of D. But it still has the same limitation as that
of (3).

In accordance with the form of D, we refer to (3) as the square with inversion formula (SIF) and (4)
as the square without inversion formula (SF).

To alleviate the limitations, corresponding formulae can be derived as"

(5)

and

(6)

These two formulae permit D to be singular or even rectangular. Thus, more freedom can be exploited
using different formulations of D and ill-conditioning can be avoided.

The reduced systems in (5) and (6) are of orders r2and r" respectively, where rl is the number of rows
of D and r2is the number of columnsof D. Therefore, (5) may be preferred if rl > r2,otherwise (6) should
be used. It is reasonable to refer to (5) as the vertical rectangular formula (VRF) and (6) as the horizontal
rectangular formula (HRF), respectively, reflecting the form of D.

The case of a rectangular D may occur, e.g. when we construct a minimum order reduced system
involving variables that are active element parameters, and when large change algorithms are applied to
algebraic linear systems other than electrical networks." In those cases, the rectangular D may be used
in the VRF and HRF without modification leaving V and W free of values .:1ct».Hence, V and W need to
be. preprocessed only once.

It should be noted that mathematically, the square formulae are special cases of the rectangular ones.
Computationally, the latter have good stability.

PROPERTIES OF THE SET OF GENERALIZED HOUSEHOLDER FORMULAE

Duality property

The HRF and the VRF can be considered as dual to each other. If we apply the following interchanges:

A-AT (7)
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(8)

and

(9)

then the two formulae, i.e. (5) and (6), are completely interchanged.
This duality property can be employed to save our analytical effort by half. Unless otherwise stated,

we will focus on the vertical formula in the ensuing sections. Results for the horizontal ones can be
similarly obtained.

The minimum order of the reduced system

Using the scattering theory approach, Haley has found that the order of the reduced system can be as
low as rank (~A). Using our approach of only simple matrix manipulations one can also verify thatll

min rl = min r2 =rank (~A)
(V,D.W) IV,D,WI

(10)

This equation yields the conclusion that, for evaluating large change effects involving Householder
formulae, the minimum order of the reduced system is equal to the rank of ~A.

Consider the circuit of Figure 1 in which 7 parameters are changed from their nominal values. By the
methods of References 3-5 and 8, the reduced system is 7 x 7. However, the rank of the nodal admittance
deviation matrix is 4. Thus, an even smaller system of size 4 x 4 is sufficient for this problem.

Figure 1. An arbitrary 10 node network: with 7 variable parameters. All element values are assumed to be 1. Variables <1>..<1>2".., <1>,
are conductances of the associated components

Operation count

Consider the computation of ~(A -I). Suppose r) + r2< n and the matrix A has already been LU factorized.
Usually, V, D and Ware formulated such that D contains variables whereas V and W indicate the positions
of the variables and are constant. Preparatory calculations involving V and Ware performed only once
for each set of variables. Table I gives operation counts (number of operations, i.e. multiplications or
divisions) for the set of generalized Householder formulae. As shown in the table, the computational
stability of the HRF and the VRF is achieved at the cost of one more matrix multiplication, as compared
with the SIF. It should be noticed that these operation counts are for arbitrary algebraic linear equations.
When linear circuits are concerned, and operation count is reduced as discussed in the next section.

COMPUTATIONS OF ORIGINAL AND ADJOINT LINEAR SYSTEM RESPONSES
CORRESPONDING TO DIFFERENT NUMBERS OF INPUTS AND OUTPUTS

In this section, we examine the computations of large change sensitivities in different input and output
cases. The VRF is applied. All results of forward and backward substitutions (FBS) involving A are

1 2 3 <A 4 5 6
+

cp.,

1OA(n I t:t1J Vout

9 10
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Table I. Operation count for the generalized Householder formulae

Cases Square with
inversion
formula

(SIF)

Vertical
rectangular

formula
(VRF)

Horizontal
rectangular

formula
(HRF)

Square without
inversion
formula

(SF)

Case 1
'I ~ '2
Preparatory calculation
Calculation tor each set of

parameter changes

Case 2

Cp
C2

Cp
C1

'I ='2=,
Preparatory calculation
Calculation for each set of

parameter changes

Cp
2CA + CB

Cp
3CA + CB

Cp
3CA + CB

Cp
SCA + CB

Cp =n2(,. + '2) + n'.'2
C1 ='1(2'.'2 +,~ + '2n + n2), C2= '2(2'\'2 +,~ +'1 n + n2)
CA= ,3, CB= m(,+ n)

calculated in the preparatory step and are represented by P and p for the original system (coefficient
matrix A) and by Q and q for the adjoint system (coefficient matrix AT). To distinguish these solutions
for different right-hand sides, we use characters similar to the right-hand sides as subscripts. For example,
Pv is the solution of

APv =V (II)

and qb is the solution of

(12)

Case I. Response matrix A-(

(13)

where S is the inverse of (1 + WTpvD).

Case 2. System reponsesfor a single excitation vector e

Suppose that the response vector corresponding to excitation e is x = [XI X2 . . . xn]T, i.e.

Ax=e (14)

We have

~x = ~(A -Ie)

= -PvDs (15)

where s is the solution of

(16)

Case 3. Adjoint responsesfor a single excitation vector b

Suppose that the adjoint response vector corresponding to excitation b is y = [YI Y2. . . Yn]T, i.e.

ATy= b (17)
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We have

/:1yT = /:1(bT A -I)

= -S,TQJ;., (18)

where 5' is the solution of

(19)

Case 4. Response of a single-input and single-output (5/50) system
r

If we use vector b to select the desired output from response vector x, then

/:1(bTx) = /:1(bTA -Ie)

= -biDs

where 5 is defined in (16) and bl equals P~b and is obtained in the preparatory step.

(20)

Case 5. Responses of a multi-input and multi-output (M/MO) system

Suppose e is an n x n' matrix whose columns represent different excitation vectors and B is an n x m'
matrix whose columns select the desired output measurements. Then the n'.input-m'-output case can be
expressed, fonnally, by BTA-Ie. Thus

/:1(BTA-Ie) = -BT A-IVD(l + WTA-IVD)-IWT A-Ie (21)

We notice that the tenn BTA-IV can be computed either as BTpvor Q~V with the difference of operation
count being n2(rl - m'). Therefore, comparing rl and m', we can calculate (BTA-IV) as

{

BTPv if rl:SO;m'
BTA-1V=

Q~V ifrl>m'

(22a)

(22b)

Similarly,

(23a)

(23b)

Also, at least one of (22a) and (23b) should be used in order to yield either Pv or Qw which is required
in calculating

(1 + WTA-IVD) =(l +QJ;.,VD)

= (1 + WTpvD) (24)

Hence, according to the values of rh "2, m' and n', we can choose appropriate fonnulations. For example,
when m' < n' and m' < r2, we use

(25)

where S is the solution to

(26)

This approach requires m' + r2FBS in the adjoint system for QB and Qw as preparatory calculations, one
LV factorization and m' FBS in the reduced system of (26).

Expressions for different cases of large change evaluation

In Table II, we summarize the various cases of the above discussion. Different situations of the MIMO
case are distinguished so that the number of FBS in the n x n system equals the minimum of m' + r2,
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Table II. Formulae for the computation of large changes when A-I is involved
and when '1;;!o'Z

Identification Formula Definition of S or s*

.1(A-I)

.1(bTA-I)

.1(A-Ie)

.1(bTA-1e)

t.1(BTA-IC)

-PvDSQ~
-STQ~
-PvDs
-(bTpv)Ds

(1) -ST(Q~C)
(2) -(BTpv)DS
(3) -(Q~V)DS
(4) -(BTpv)DS(Q~c)
(5) -(Q~V)DS(Q~C)

HIS =1 or HzS = 1
H;s= DT(VTqb)
Hzs=WTpc
Hzs=WTpc

H;S = DT(VTQB)
HzS = WTpc
HIS = Q~C
H.S = I or HzS = I
H,S=1

*H. =(1+Q~VD). Hz= (1+WTpvD)
t Table III can be used as a guideto selectamong(I j to (5) bythe minimum

FBS criterion.

n' +'. and rl +'2 and the number of FBS in the reduced system equals the minimum of rto 'z, m' and n',
as shown in Table III. This minimum FBS criterion can be used as a guide to select appropriate expressions
for the calculation of ~(BTA-IC).

When the number of FBS exceeds the order of the system, a matrix inversion may be performed directly.

Computational cost consideration

In the preceding section the operation count was discussed for a general linear system of equations.
However, when an electric circuit is concerned, the cost is much less. We consider the SISO network as
an example. Suppose that the reduced system is of order r. In the preparatory step, we calculate Pv, whose
operation count is rn2, and P~b, WTpv and WTx which are simply element selections and additions. Then,
for each set of parameter changes, we formulate and solve the reduced system by at worst 4r3/ 3 - r/3 + r2
operations. The operation count for updating the output is r for the SIF and r+ r2 for the HRF and the
VRF.

Special case: first-order sensitivity

As a special case of large change sensitivity analysis, small change sensitivity computations can be
deduced from our large change formulae without reference to Tellegen's theorem. Table IV gives examples
of such first-order sensitivities w.r.t. components of a matrix. Table V lists formulae w.r.t. variables. These
results are obtained by putting ~4J into the denominators of large change formulae and then letting tbe

Table III. Major computational effort for calculating .1(BTA-IC) by formulae in Table II where '.;;"z

Category The n x n system
represented by A

Corresponding
Case in Table II

The 'z x 'z system
represented by

H. or H2

No. of LV factorizations

No. of FBS

(1)-(5)

(1)
(2)
(3)
(4)
(5)

m'+,z
n'+,.
m'+,z
'1+'2
m'+'2

m'
n'
n'
'2
'z
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Table IV. Expressions appropriate for computations of sensitivitites w.r.t.
components of matrix A when A-I is involved

Identification Sensitivity expression.

(a) general (b) when A =AT and i ~ j

i/A-I

i/Ajj

i/(bTA-Ie)

i/A

i/(BTA-IC)

i/Ajj

i/[BTA-IC ]
~t
i/A

. Uj(Uj) is a unit n-vector containing 1 at the ith (jth) row and zeros
everywhere else.

t [. ]/k is the (1,k )th element of matrix ..
*b is the lth column of Band e is the kth column of C. Both band e

are used as the R.H.S. of the system involving A for original solutions Pb,
Pc and adjoint solution qb'

parameter change I1cPapproach zero. The formulae in Tables IV and V are consistent with the existing
ones derived using other approaches, e.g. Reference 12.

EXAMPLES

Example 1. A system of linear equations with rectangular D

Consider a lOX 10system of linear equations with coefficient matrix A. Suppose the intersection elements
of rows 2, 5, 9 and columns 3 and 6 are constantly changed. We formulate V, D and W such that

V = [U2 Us U9]

W = [U3 U6] .

(27)

(28)

and

(29)

where Uj, i = 2, 3, 5, 6, 9, is a unit 10-vector containing 1 in the ith row and zeros everywhere else. In this
way, no additional effort is involved when applying the VRF and HRF. If we use the square formulae,
elementary transformations must be employed in order to obtain a square matrix D.

Numerical solutions as well as intermediate results are shown in Figure 2.

Example 2. An electrical network with its minimum order system achieved

The 10-node circuit of Figure 1 is solved using the generalized Householder formulae with simultaneous
changes of 7 variable components. The minimum order of the reduced system is 4, which is achieved by
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Table V. Expressions appropriate for computation of
sensitivities w.r.t. variable t/Jwhen A-I is involved

Identification Sensitivity expression

aA-1

at/J

a(bTA-I)

at/J

a(A-Ie)

aeb

a(bTA-Ie)
aeb

a(BTA-IC)

aeb

1(1) is an index set whose elements indicate the rows
(columns) containing the variable eb.

Au is a matrix containing the intersection elements
of A in rows i, i Eland columns j, j E J.

Ur(UJ) is a matrix whose columns are unit vectors
u" i E I(uj,j E J).

{

BTPU" ifnr<m',

{

Q'LC, ifnJ<n'
(*)= T . ,(t)= T . ,

QBU" If n,;;. m UJPc. If nJ;;' n
(qb)r and (Pc)J are defined as vectors consisting of all
ith elements of qb, i E I, and all jth elements of Pc,j E J,
respectively.

formulating V, D and W as

and

-~q,4
~q,4 + ~q,s + ~q,6

-~q,s
o

-~q,2
-~q,s

~q,2 + ~q,3 + ~q,s

o

(30)

6U
(31)

The -1 's in V and W correspond to reference nodes associated with the variables. If a loop or several
connected loops are fomulated by the variable branches, a common reference node is appointed for all
the variables contributed to the loop or loops. For example, node 9 in Figure 1 is chosen as the common

o 0 0 0
o 0 0 0
1 0 0 0
o 1 0 0
o 0 0 1

V=W= I
o 0 0 -1
o 0 0 0
o 0 1 0

-1 -1 -1 0
o 0 0 0
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MATRIX [A]

1.0 5.0 5.0 1.0 5.0 2.0 1.0 1.0 7.0 2.0

VECTOR [B]

35.0

2.0 3.0 3.0 7.0 0.0 4.0 3.0 6.0 8.0 3.0

3.0 0.0 2.0 4.0 2.0 6.0 4.0 4.0 9.0 7.0

32.0

16.0

6.0 1.0 2.0 5.0 2.0 3.0 3.0 7.0 3.0 5.0 51.0

8.0 1.0 2.0 2.0 4.0 4.0 6.0 8.0 4.0 8.0 42.0

4.0 1.0 6.0 7.0 3.0 5.0 7.0 3.0 5.0 3.0 19.0

7.0 0.0 6.0 5.0 9.0 4.0 8.0 9.0 2.0 -.0 34.0

2.0 0.0 4.0 2.0 2.0 5.0 3.0 5.0 4.0 3.0 71.0

3.0 2.0 0.0 1.0 5.0 3.0 4.0 2.0 3.0 1.0 36.0

4.0 2.0 4.0 4.0 6.0 2.0 9.0 6.0 1.0 7.0 61.0

SOLUTION BEFORE ANY CHANGE:

VECTOR [X]

-8.89217

39.80097

-3.00067

2.31014

-5.40544

48.42778

-12.11626

-3.61726

-32.93004

16.99799

Figure 2(a). The original linear system and its solutions. A is a 10 x 10 matrix containing parameters of the system; b is the excitation
vector; x is the solution vector

reference node for variables cI>.. cl>2"", cl>6and -1 appears in the 9th row of V accordingly. The l's in
and W correspond to the non-reference nodes associated with the variable branches, e.g. nodes 3, 4, and
8 in Figure 1. With respect to each reference node, a submatrix is formulated using 6.cI>in just the same
way as if a nodal admittance matrix is formulated using cI> w.r.t. a ground node. D is a block diagonal
matrix containing those submatrices.

The changes of variables range from 0.00001 to 90. Zero changes are also included, as shown in Table
VI. These simultaneous small, large and zero changes are handled directly by the VRF.11 For the two
extreme cases of 6.cI>,the SIF can handle 6.cI>~ ex)whereas the VRF and HRF accommodate 6.cI>~ O. In a
Monte Carlo analysis, network optimization, identification and tuning, various unpredictable patterns of
6.cI>~ 0 in multiparameter changes may be possible, and 6.cI>~ ex)is often limited by, for instance, tolerances
and tuning ranges or by step size constraints. For 100 sets of variable changes of cl>tto cI>"the operation



VECTOR (RHS)

-3.00067

48.42778

Figure 2(b). Matrices V, W, Pv and vector RHS, where Pv is the solution of APv=V and RHS=WTx

counts for our method using SIF, VRF, the existing method of References 3-5 and 8 and the direct method
are of the order of 11,230 14,030, 24,930 and 43,430, respectively.

CONCLUSIONS

We have presented a multiparameter large change sensitivity analysis approach for a general system
involving solutions of linear equations. Particular attention has been devoted to the formulation and order
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MATRIX (V) MATRIX (W)

0.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

MATRIX(PV)

-.03684 . 19072 -.00936

-.30799 -.26526 .04838

.00454 .09406 -.15865

-.04645 -.23600 .02949

.02608 -.09579 . 12002

-.48948 -.43199 .13012

.18919 .22984 .01487

.27060 .13754 .00846

.36321 .32717 -.02238

-.27658 -.20670 -.09789
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ItATRIX [D]

2.00000

4.00000

3.00000

5.00000

2.00000 3.00000

MATRIX [H]

1.06802 .00797

-2.44666 -2.23801

VECTOR [S]

-2.66983

-18.72004

SOLUTION AFTER THE FIRST LARGE CHANGE:

VECTOR [X]

8.15496

-3.82546

-2.66983

-23.34277

-6.40995

-18.72004

24.40133

27.88727

22.14824

-27. 58607

Figure 2(c). Results correspondingto the first change of variable parameters represented by D. H represents (I + WTA-'VD) and
s is the solution of the reduced system Hs =WT X

of the reduced system, which in turn affects the stability and efficiency of the system repsonse evaluation.
The mathematical essence of the generalized Householder formulae also provides basic links with other
approaches, indicating their theoretical equivalence. However, our extended formulae accommodate more
cases of various formulations of the reduced system which the traditional methods cannot handle directly.
For a general circuit with arbitrary distribution of variable components, proper formulations of V, D and
Ware possible to ensure that the large change calculation is performed via a minimum order reduced
system. Thus, under certain circumstances, large change algorithms are still feasible even if many system
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VARIABLES CHANGE AGAIN CAUSING A CHANGE OF (D].

(V] AND (W] REMAIN UNCHANGED.

MATRIX (D]

6.00000 7.00000

5.00000 4.00000

3.00000 4.00000

MATRIX (H]

1.02160 -.22657

-4.70646 -3.63383

VECTOR (5]

-4.57788

-7.39775

SOLUTION AFTER THE SECOND LARGE CHANGE:

VECTOR (X]

-2.20815

3. 56798

-4.57788

-12.47901

-3.16642

-7.39775

15.58395

25.41279

12.05534

-20.00992

Figure 2(d). Results corresponding to the second change of variable parameters. Hand s are similarly defined to those in Figure 2(c)

parameters are changed. These circumstances may be, for example, a case where loops are constructed
by branches containing variables. It is also possible that a general formulation of V, D and W, together
with the set of Householder formulae, can be embedded into the different iterative and non-iterative
methods of Hajl to yield various powerful design procedures.
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Table VI. Parameter changes for example 2

Variable The first change
(I/O)

The second change
(I / !1)

The third change
Om)

A.cPl
A.cP2
A.cP3
A.cP4
A.cPS
A.cP6
A.cP7

84.0
0'5
0.00001
0.02

40
50
0.00002

0'00001
0.001
0'12

45
0.00003

90
-2

0.2
o
3.0
o
0.02

15
0.1
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