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1 INTRODUCTION

This chapter deals with the application of optimization techniques for
modeling, diagnosis, and tuning (MDT) of electrical circuits. A conventional
interpretation of such techniques for modeling and diagnosis is the deter-
mination of appropriate network parameters leading to the best match
between circuit responses and measured data. When the measurements are
insufficient to evaluate all network elements, the most likely faults may be
located. Otherwise, if the measurements are sufficient, parameter identifica-
tion is initiated, resulting in a circuit model whose performance best fits the
measurement data in the presence of uncertainties and noise. Closely related
is the tuning problem, which has been approached mostly from the optimi-
zation point of view. Existing software for mathematical programming can be
readily exploited in this case.

Our presentation is tutorial but designed to be helpful for a state-of-the-art
understanding. We first review circuit-oriented optimization methods with
emphasis on aspects important in MDT. A general formulation of circuit
diagnosis as an optimization problem is introduced. It is followed by a
detailed investigation into three specific formulation cases. Optimization
methods for modeling and tuning are presented and compared with those for
diagnosis. Illustrative examples are provided.
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382 Sandler and Zhang

2 CIRCUIT-ORIENTED OPTIMIZATION TECHNIQUES

Optimization methods have played an important role in computer-aided
design of circuits and systems [1-9]. Recent advances in this area produced
successful results that would have been prohibitively labor-intensive with
other techniques [10]. Typical circuit design objectives are to satisfy or to
exceed design specifications as much as possible. The MDT problems,
however, are usually oriented either toward (response) data fitting or toward
"parameter fitting" or a combination of both. The parameter fitting can be
interpreted as forcing parameters to approach a desired pattern. Such a
pattern is constructed to best represent

1. An estimation of the parameters, e.g., results from a deliberate per-
turbation of the circuit (for more measurement information), a projected
target parameter point for tuning

2. An assumption of the circuit philosophy, e.g., type of faults, whether
catastrophic or soft

3. A criterion for optimality, e.g., the objective for minimum parameter
adjustment in tuning

2.1 Introduction to Mathematical Programming

An optimization problem can be stated as

minimize U(<<p)
q.

(la)

subject to constraints

g(cp);?;0

and

(1b)

b(<<p)= 0

where cp~ [CPl cP, . . . cP~y,
h .a [h h . . . h ]

i
- I 2 nh .
When U, g, and hare all linear functions of «p,(1) is a linear programming

(LP) problem, readily solvable by the simplex method [11], a classical
approach being currently challenged by Karmarkar's algorithm [12, 13].

To handle the nonlinear programming (NLP) problem, i.e., the nonlinear
case of (1), a variety of methods have been developed. The unconstrained
NLP problem can be solved by conjugate direction methods and quasi-
Newton methods. The constrained NLP problem can be handled using, e.g.,
penalty and barrier methods and augmented Lagrangian methods.

A systematic treatment of (1) can be found in many textbooks, e.g.,
Luenberger [II]. A comprehensive examination of optimization from

9 ... 9 ]
T

. 2 "g ,

(Ic)

and
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the circuit design point of view is provided in Refs. [1-9]. In this section, we
highlight those aspects of optimization which are relevant to MDT.

2.2 Least pth Optimization [14-16)

A frequently encountered objective
f(cj)~ [f1(cj) f2(cj) ... fm(cj)]T,that is,

(
m

)
l/P

U(cj) = i~l Ih(cj)W ,

U(cj) is the pth norm of

p~1 (2)

The larger the value of p, the more emphasis is being put on max{lf,l, If21,
. . ., Ifm!}'At the solution, large (small) p typically produces many Ihl's that are
equal to max{lfd, If21,. .., Ifm!}(equal to zero).

The p = 1 case of (2) corresponds to the 11norm optimization, solvable by
the two-stage algorithm of Hald and Madsen [17, 18]. The algorithm
combines a first-order method that approximates the solution by successive
linear programming with a quasi-Newton method that uses approximate
second-order information to solve the system of nonlinear equations arising
from the necessary first-order conditions at a solution.

The p = 2 case of (2) (least-squares or 12approximation) is a problem of
wide publicity. Both first-order and second-order methods have been derived
for general nonlinear 12problems [19, 20]. For certain linear 12problems, a
closed-form solution is obtainable by invoking generalized matrix inversion
[21, 22].

The objective function defined in (2) is used to penalize the modulus ofh.
To penalize the value ofh, we use the generalized least pth function

(3)

where

Mf ~maxh(cj)
ieJ

J~{1,2,...,m} (4)

and

if Mf > 0, then K = {iIh ~ 0, iEJ } and q = p
if M f < 0, then K = J and q = - p

In the case of Mf > 0 (Mf < 0), the larger the value of p, the more nearly
would we expect the maximum (minimum) Ihl to be emphasized. Therefore,

(5)
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the minimization of (3)corresponds to the effort to meet (when Mf > 0) or to
exceed (when Mf < 0) a design specification as much as possible.

As p -+ co, the generalized least pth optimization approaches the minimax
optimization, the latter being effectively solved by the combined LP and
quasi-Newton method of Hald and Madsen [23,24]. The algorithm is a two-
stage one similar to the II optimization algorithm of [17]. Initially, stage 1 is
used and at each point f is approximated by linear functions using first-order
information. In stage 2, the quasi-Newton iteration is used to solve a set of
nonlinear equations that necessarily hold at a local minimum. Usually, stage
1 is used to obtain fast convergence to the neighborhood of the solution.
Stage 2 is used to obtain superlinear final convergence, but several switches
between the two stages may take place.

The two-stage algorithms for {I and minimax optimizations are com-
putationally practical and have been implemented by Bandler et al. [25, 26].

2.3 Quadratic Programming

In a quadratic programming(QP) problem, the objectivefunctionisdefined
as

(6)

where 1\ is a scalar, s is an n-vector, and H is an n x n matrix.
The QP problems arise both in their own right and as subproblems within

general nonlinear optimization methods. Typically, a QP problem is to
minimize the function of (6) subject to linear equality and/or inequality
constraints. Such a problem can be solved, e.g., using the iterative methods
described by Gill and Murray [27, 28]. The linear inequality constraints are
treated using the active-set methods, in which a prediction of the set of
constraints that are active at the solution is maintained. This prediction is
called the working set and is updated by adding or deleting constraints as the
iterations proceed. By treating the working set as equality constraints, the
constrained QP problem is transformed into an unconstrained one. The
problem is relatively easy to solve if the original H is positive definite [27].

For unconstrained QP problems, with H as positive definite, the minimum
can be uniquely located in a finite number of steps, using, e.g., Newton's
method and the conjugate gradient method.

2.4 MINMAX and MINBOX Approaches in Linearization

Linearization is often used in solving nonlinear programming problems.
Hachtel et al. [29] described the MINMAX and MINBOX approaches,
where the range of the validity of a linear approximation is specified in the
variable domain and the function domain, respectively. Used in nonlinear



Optimization Techniques 385

minimax optimization, the MINMAX approach resembles the conventional
way of locating the minimax point of linearized functions subject to a
prescribed "box constraint" on cpoThe MINIBOX approach, on the other
hand, either produces a smallest step 6cp that achieves user-specified levels of
improvement in f, or states that the levels are infeasible.

2.5 Gradient and Nongradient Approaches

r The use of exact gradient information au/ccpsignificantly improves the
effectiveness of an optimization algorithm. The well-known adjoint network
method developed by Director and Rohrer [30, 31J remains a powerful tool
for sensitivity calculation. An equivalent but pure algebraic approach has
also been studied [32, 33]. For special types of networks, e.g., branched
cascaded networks, more effective methods can be derived [34].

Not infrequently, the gradient is difficult or even impossible to obtain.
Approximate gradient methods have been developed, in addition to the direct
search methods, which do not depend explicitly on evaluation or estimation
of gradients. The theoretical background is the Broyden formula [II, 35J,
which utilizes function values to improve the gradient estimation as the
optimization proceeds. This feature has been implemented in nonlinear /1 and
minimax optimization packages [36].

3 GENERAL FORMULATION OF DIAGNOSIS AS
OPTIMIZATION PROBLEMS

3.1 Introduction

The analog diagnosis techniques are described here using a single frequency
measurement. Such a description offers both conceptual and notational
simplicity. Particular mathematical manipulations required for multifreq-
uency cases are illustrated whenever necessary.

Suppose from the circuit under test (CUT) we obtain a set of measure-
ments represented by an nF-vector FM. The corresponding responses as
functions of circuit parameters «P~ [«PI CP2 ... CPnY are given by
F ~ F(cp, cu). For single-frequency cases, F ~ F(cp) is used for notational
convenience. A nominal design of the circuit is characterized by «poand FO.

When the measurements are insufficient to identify all parameters, e.g..
when nF < n, the equation

(7)

is an underdetermined one. An optimization technique can be used to find the
most likely 6«pamong an infinite number of solutions to (7).Such a problem



386 Sandler and Zhang

can be stated as

minimize U(~cj)
6<1»

s.t. h(FM,~cj) ~ F(cj)°+ ~cj) - FM = 0

(8a)

(8b)

where U is an increasing function of I~cj)il,i = I, 2, ..., n.
A convenient approach to solving (8) is to use penalty methods. For

example, a least pth formulation is

(
n",

)
l/P

min~~ize Jl wjl~cj);iP+ Jl P;iFj(cj)°+ ~cj) - FjMIP

where Wi' i = 1,2, ..., n, and Pi' i = 1,2, . . ., nF'are appropriate weighting
factors [25].

(9)

3.2 Constraint Equation

Suppose the N-node circuit is characterized by its nodal equation

YV = I (10)

where Y, V, and I are the nodal admittance matrix, voltage vector, and
current excitation vector, respectively. We assume, for convenience, that the
measurable responses of the CUT, namely F, can be represented by linear
combinations of nodal voltages using an N x nF matrix C such that

F = CTV

Thus,

(II)

F = F(cj) = CT[y(cj)] - 1I (12)

To simplify the nonlinear optimization of (8) and (9), researchers have
employed two effective formulations, transforming the constraint equation
into linear forms by introducing intermediate parameters. These formula-
tions are the current/voltage source substitution model and the component
connection model. The former model will be used throughout this chapter. A
comprehensive treatment of the latter can be found in Refs. [37-39].

3.3 The Current/VoltageSourceSubstitutionModel (40-451

Changes in element values can be equivalently characterized by current or
voltage sources. Figure 14.1 shows equivalent representations for some
typical elements in linear circuits. Without loss of generality, we assume that
the changes are represented by current sources only. Let ~Ib be an n-vector
containing such sources corresponding to the n variable elements and Q be



Optimization Techniques

Ib

Dy'"
y

,. vees

eees

vevs

eevs

387

I

@Ib.6Y yb
I

..

:; Vb

..

:; Vb

~
b P.VkI

.. - b
.. I.. l:.V =l:.P.Vk
Vb I

I -

Figure 14.1 Equivalent representation of changes in element values.

an N x n incidence matrix relating the n branches containing variables to the
N nodes of the circuit. By invoking the superposition theorem, we may write

(13)

where ~ V is the deviation of actual nodal voltages from their nominal values.
Also,

~F ~ F - FO = CT~V = - CT[y(.O)] - lQ~Ib
Denote

(14)

(15)
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Then we have the constraint equation in linear form as

A'~lb = FM- FO (16)

or in real form as

Ax=b (17)

where

= [Re(A') - Im(A') ]A Im(A') Re(A')

b = [Re(FM - FOf Im(FM- FOfY
and

(18)

(19)

(20)

To compute~cj.fromx, wesimulate the networkwith all componentsheld
at nominal values and with addhional current excitations tJ.I/ = Xi + jXi+n,

i = 1,2,..., n, connected across corresponding components. After measuring
or calculating branch voltages JI/. i = 1,2. .. ., n, the component change is
evaluated as

A.I..- Xi + jXj+n (
.

)
-"

°'l"i - v,b JW,,
i = 1, 2, . . . , n (21)

where IX==(Xi'whose value can be 0, 1, or -1 depending on whether the ith
component is resistive, capacitive, or inductive [40,41].

For multifrequency diagnosis, we use tJ.cj.as optimization variables
directly. A, b, and x are redefined accordingly. For example,

Ai = - CT[y(cj.°, w;)r IQ diag {(jw;)'ZtVIb(Wi),

(jWi)"2V2b(Wj), . . . , (jWj)"nV/(w;)}

i = 1,2

A"= [~:J,

(22)

(23)

A = [
Re(A")

]Im(A"),
and

[
Re(b")

]b= Im(b") (24)

(25)
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where we have assumed that two frequency points are taken. The branch
voltages J'tb(Wi)'k = 1, 2, . . . , n, are initially assumed. An iterative procedure
updates J'tb(Wi)and at the same time computes the changes in cp[41].

If the nodal equation of (10) is replaced by a hybrid equation, a more
general form of (17) can be similarly deduced where both current and voltage
sources exist for an equivalent representation of dcp [40,41].

r 3.4 The Component Connection Model [37-39)

We assumethat the systemtopology is described by a matrix relation

(26)

Here, uf and v are the component input and output variables, respectively,
related by

v = Zu' (27)

where Z is the component parameter matrix. The u and F in (26) are the
system input and output variables related using the system matrix r as

F =ru (28)

By introducing intermediate variables R, we have the linear relation

r = L21RL12 (29)

where R is related to Z, using

R = (1 - ZLll)-IZ (30)

It has been shown [39] that for small changes in Z,

dZ::::::dR (31)

As such, R can be used instead of Z for optimization. Final results for Z can
be computed using either the exact [i.e., deduced from (30)] or the approx-
imate [i.e., deduced from (31)] relation between Rand Z.

3.5 General Formulation

The intermediate variables x defined in (20) exhibit a similar pattern to the
parameters dcp, since an equivalent source current dlb increases as the
corresponding dcp increases. Also, d]b = 0 if and only if dcp = O.Now, we can
solve the optimization problem with x as variables and use the solution to
find dcp.A simple yet reasonable objective function is the least pth function of
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x. A general formulation of diagnosis as an optimization problem is

(
ZII

)
1/P

minimize U(x) ~ .L w;jxilPx .=1

s.t. Ax - b = 0

(32a)

(32b)

where Wi' i = 1, 2, ..., 2n, are weighting factors and the constraint (32b) is
derived from (17)-(20). For the multifrequency case, (22)-(25) can be used to
define A, b, and x for the constraint equation (32b). In this case, the objective
function U is the weighted least pth function of Xi' i = 1, 2, ..., n. After
solving (32), ACPcan be found using (21) or (25).

4 DIAGNOSIS USING THE LEAST-SQUARES METHOD

The diagnosis technique using least-squares optimization was suggested by
Ransom and Saeks [39]. It is based on the assumption that the catastrophic
faults have been eliminated and the circuit failure is due to components
drifting out of tolerance (as from age, temperature changes, etc.) [39, 42].

The optimization problem can be stated as

minimize U(x) ~ xTWx
x

s.t. Ax - b = 0

(33a)

(33b)

where the constraint equation (33b) is defined consistently with (32b). W is a
diagonal matrix containing weighting factors Wi> i = 1, 2, ..., 2n. An
appropriate choice of the weightings can be such that the U of (33a)
approximates

under the assumption that ACPi,i = 1,2,..., n, are quite small. For example
[42], for 1 ~ i ~ n,

Wi= -!(Re[(jw)"iW])- Z

Wi+II= -!<Im[(jw)"'V;b])-Z (34)

The solution of the lz problem is directly obtained using generalized
matrix inversion [21,22], e.g.,

x = W-1AT(AW-IAT)-lb (35)

Such a technique using a component connection model has been presented
in [39]. The variables x consist of elements of the matrix AR. The
optimization problem is to minimize the lz norm of AR subject to
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M' = L21':1RL12 (36)
where ~r is the differencebetween the measured values and the nominal
values of r. The solution is the generalized inverse of the matrix in (36)
[21,22]. The component connection model is effectivehere since ~R :::::~z
under the assumption that no parameters have a significant deviation from
nominal.

-- 5 DIAGNOSIS USING THE QUADRATIC PROGRAMMING
METHOD

The quadratic programming technique for diagnosis was suggested by
Merrill [46]. He considered such a class of situations where a system becomes
inoperative due to the failure of one or a few components. He pointed out
that because the individual system components are generally highly reliable
and well maintained, a diagnosis that implicates many components as having
failed is probably not correct. Therefore, contrary to the 12 optimization
technique, the main assumption here is that the difference between the actual
and the nominal values for a few elements, which correspond to the faulty
elements, is much greater than that for the remaining elements that are
non faulty.

The optimization problem can be described as
2n

minimize U(x) ~ L wi.)lxil+ b
x i= 1

s.t. Ax - b = 0

(37a)

(37b)

where the constraint equation (37b) is defined consistently with (32b). The b
under the radical prevents the derivative of the objective function from
becoming unbounded.

To solve (37)efficiently, Merrill put the constraint (37b) into the objective
function in a quadratic form as a penalty term, applied uniform weightings
Wi = I, i = 1, 2, . . . , 2n, and transformed the problem into

min~mizeU(y) ~i~l..;;:+J + ~ f3(A.y- b)T(A.y - b)
(38a)

s.t. Y~ 0

where A.~ [A - A] and y is a 4n-vector related to x via

Yi = Xi and Y2n+i = 0 if Xi ~ 0

(38b)

Yi= 0 and Y2n+i= -Xi if Xi < 0 (39)

i = I, 2, . .., 2n
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Also, x can be calculated from y using

Xi = Yi - Y2n+i, i = 1, 2, . . ., 2n (40)

Furthermore, the square-root portion of U(y) is linearized at y = yj,
resultingin

Uj(Y) = A + sTy + tYTHy

where

(41)

s =![(y/ + 0)-1/2 (y/ + 0)-1/2 ... (Y4/ + 0)-112JT- pATb

and

(42)

[
ATA -AT A

]H = 13 -AT A ATA (43)

The scalar A is also a function of 13,0, yj, and b, but as its value is irrelevant to
the minimization of Uj(Y),it will never actually have to be calculated.

As Merrill indicated, the use of variables y, instead of x, can eliminate the
difficulty of derivative discontinuity of U at Xi = O.The quasi-linearizationof
U from (38a) to Uj of (41) leads to the natural application of powerful
quadratic programming methods [27]. The optimization problem of (38) is
solved iteratively by the following steps.

Step 1
Step 2
Step 3

j = 0,yj = O.
Compute s as a function of yj using (42).
Minimize Uj(Y) of (41), subject to y ~ 0, using the quadratic
programming method [27]. The solution is defined as yj+ 1.
If U(yj+ 1):::::U(yj), then calculate x using (40)and stop; otherwise,
j +-j + 1 and go to step 2.

Step 4

6 DIAGNOSIS USING THE LINEAR PROGRAMMING
METHOD

Bandler et al. proposed the diagnosis technique using the 11norm optimiza-
tion [40,41]. The main assumption is similar to that for the quadratic
programming approach. However, instead of solving a sequence of quadratic
optimization problems, a linear programming problem is formulated, taking
advantage of the nature of the 11norm as well as the linearity of the constraint
equation. A solution to such a problem tends to satisfy the constraint with a
minimum number of parameters different from zero. This is consistent with
the assumption that a few elements are actually faulty [42,43].
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The optimization problem can be expressed as
2n

minimize U(x) ~ L wdx;j
x i= 1

(44a)

s.t. Ax - b = 0 (44b)

where the constraint equation (44b) is defined consistently with (32b).
Such a problem can be solved directly using 11optimization algorithms,

,...e.g., [17, 25]. It can also be handled by using a regular linear programming
solver in a manner similar to that in [47]. Let y be defined by (39). The
problem of (44) is transformed into a standard LP problem as

minimize U(y) ~ [W1
Y

(45a)

s.t. [A - A]y= b (45b)

(45c)y~O

At the solution of (45), x can be calculated from (40).

7 MODELING USING OPTIMIZATION METHODS

In a modeling problem, it is required to find parameter values of an
equivalent device model to best fit measurement data. As Hachtel et al. have
described [29,48], the problem is of a type that is frequently encountered by
product assurance engineers. These engineers are faced with the fact that the
circuits which come off the product line differ from the circuits designed with
circuit simulation programs. Consequently, they need device models that
agree with on-chip measurements in order to estimate the statistics of the on-
chip circuit performance.

7.1 Basic Formulation

Let f = f(cI» be an m-vector containing the weighted difference between
calculated responseF(cI>,w) and measured data FM(w)in the form

ie{l, 2, ..., nF},je{l, 2, ..., n",} (46)

Due to measurement errors and nonideal effects, f = 0 may not be possible.
Therefore, the modeling problem can be stated as

minimize U(cp)
q.

s.t. CPL ~ cP :;:; CPu

(47a)

(47b)
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where U is an increasing function of 1/;(cp)I,i = I, 2, .. . , m. CPLand CPuare
lower and upper bounds, respectively, for cpo

A reasonable objective function U(cp)can be the least pth function off(cp)in
the form of (2).

With a small value of p, the objective function tends to accommodate
measurements that may contain accidental large errors. Large values of p
produce satisfactory results when all measurement errors and nonideal effects
are small. Successfully implemented algorithms have used p = I [25], p = 2
[49, 50], and p = C()[29,48].

7.2 Limitations of the Basic Formulation

The basic formulation of modeling problems is a traditional approach that is
almost entirely directed at achieving the best possible match between
measured and calculated responses. This approach has serious shortcomings
in two frequently encountered cases. The first case is when the equivalent
circuit parameters are not unique with respect to the responses selected and
the second is when nonideal effects are not modeled adequately, the latter
causing an imperfect match, even if small measurement errors are allowed for.
In both cases, a family of solutions for circuit model parameters may exist
which produce a reasonable and similar match between measured and
simulated responses [51]. Such problems become more difficult to handle
with a large number of variables, where a direct optimization is hopeless
unless started with accurate estimates of most circuit element values from
independent measurements or calculations [49,52].

Efforts to alleviate those difficulties have been made in several directions.
Straightforward approaches include seeking additional independent measu-
rements and/or predetermining some variables. Since both actions reduce the
freedom of variables, they can be effectivelyapplied ifa further exploitation of
physical properties of a given device is permitted. However, when faced with a
prescribed set of possible measurements and variables, we can proceed to
general approaches such as decomposition and multicircuit measuring.

7.3 Reduction of Model Parameters

Reduction of model parameters may be possible by full investigation of
physical properties of the device to be modeled. Such an approach was
demonstrated by Curtice and Camisa in a field effect transistor (fET)
modeling problem. Using DC and zero-bias measurements, they reduced the
number of variables from 16 to 8. The final result of the modeling was
reported to be accurate and unique [52].

In laboratory experiments, a repeated trial-and-error procedure may be
necessary. Reduction of model variables can be achieved by exploiting the
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laboratory experience with sample devices. Insensitive variables should be
removed at initial stages of an optimization process. Variables tending to
reach the upper or lower bounds during the optimization can be fixed in an
appropriate manner [29, 48].

7.4 Decomposition Approach

Tsironis and Meierer [49], Kondoh [50] and Bandler and Zhang [10] have
suggested decomposing the overall optimization problem of (47) into a
sequence of suboptimizations. They illustrated successful FET modeling by
properly defining and ordering subsets of parameters and responses.
Insensitively related parameters and responses are separated into different
subproblems. A series of suboptimizations can provide a good starting point
for the overall optimization [49]. It also improves model accuracy and
reduces the possibility of stopping at an undesired local minimum.

7.5 MulticircuitApproach

This approach was proposed by Bandler et al. [51]. The II-norm objective
function was used. Suppose that after taking measurements on a device at a
number offrequency points, we make an easy-to-achieve physical adjustment
such that one or a few components of cPare changed in a dominant fashion
and the rest remain constant or change slightly. Consider the following
optimization problem:

2 m" n

minimizeL L I.m+ L pjlcP/- cP/1
",'.",2 k=1 i=1 j=1

with superscript k identifying the original network model (k = 1) or the
model after physical adjustment (k = 2).Pj represents an appropriate weight-
ing factor and mk is an index whose value depends on k; that is, a different
number of frequencies may be used for the original and the perturbed model.
cP1and cP2are vectors containing circuit parameters of the original and
perturbed networks, respectively.

By adding the second segment to the objective function. we take advantage
of the knowledge that only one or a few components of cPshould change
dominantly by perturbing a physical component of the device. Therefore, we
penalize the objective function for any change in cPoHowever, by cleverly
selecting the II norm, we still allow for one or "afew large changes in cPo

Confidence in the validity of the equivalent circuit parameters increases if
(1) an optimization using the objective function of (48) results in a reasonable
match between calculated and measured responses for both circuits 1 and 2
(original and perturbed) and (2) the examination of the solution reveals
changes from cP1to cP2that are consistent with the physical adjustment; that

(48)
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is, only the expected components have changed significantly. We can build
our confidence even more by expanding the technique to more adjustments,
that is, formulating the optimization problem as

n. no'< .. n

minimize L L I./;kl+ L L P/I<p/- <p/I
cp' k=li=l k=2j=1

(49)

where nc circuits and their corresponding sets of responses, measurements,
and parameters are considered and the first circuit is the reference model
before any physical adjustment. cp' contains all cpk,k = 1, 2, . .. , nc'

8 TUNING USING OPTIMIZATION METHODS

Postproduction tuning is often essential in the manufacturing of electrical
circuits. Tolerances on the circuit components, parasitic effects and un-
certainties in the circuit model cause deviations in the manufactured circuit's
performance, and violation of the design specifications may result. Therefore,
postproduction tuning is included in the final stages of the production
process to readjust the network performance in an effort to meet the
specifications.

Computer-aided designers have approached the tuning problem in two
ways, each emphasizing one distinct facet. Before production, at the time of
designing a circuit, one can consider tuning as an integral part of the design
process [53, 54], the objective being to relax the tolerances on the circuit
components and compensate for the uncertainties in the model parameters.
The integral design problem is formulated and solved using optimization
such that the essential demand of production cost reduction is optimally met.
The solution of the design problem provides the manufacturer with the
allowed design tolerances and the tunable parameters.

In the final production stages, the manufactured circuit is usually tested to
check whether or not it meets design specifications. Tuning is often needed.
Here, it is required to implement necessary changes in the tunable parameters
to adjust the manufactured circuit to satisfy the design requirements [55].

8.1 Preproduction Tuning (53, 54)

Suppose t ~ [el e2 ... enY and t ~ [tl ti ... tnJT are vectors con-
taining tolerances and maximum tuning amounts, respectively, for the
parameter cp~ [<Pl <P2 ... <PnY. A nonlinear programming problem
integrating design centering, tolerancing, and tuning can be stated as

minimize U(cpo,t, t)
cpo.&.t

(50a)
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s.t. cp= cpo+ EJI.+ TpeR.

for all JI., Jl.eRp

and some p, peRp (SOb)

where E and Tare n x n diagonal matrices containing ei, i = 1,2,..., n, and
ti, i = 1, 2, . . ., n, respectively, and

JI.~ [JLI JL2 ... JLJT (51)

P~[PI P2 ... Pn]T (52)
Also, R. is a constraint region in which all responses satisfy their specifica-
tions. Rp is a group in which IJLd ~ 1, i = 1,2, . . . , n. Rp is defined as the region
{pl-l ~Pi~ l,i= 1,2,...,n}fortwo-waytuningand{pI0~Pi~ l,i= 1,
2, ..., n} or {pl-l ~ Pi ~ 0, i = 1, 2, ..., n} for one-way tuning. The
objective function can be an increasing function of It;/4>iOIand a decreasing
function of le;/4>iol,respectively.

8.2 PostproductionTuning:Probl~mFormulation

Prior to postproduction tuning, the manufactured circuit is characterized by
the actual parameter values given by

~=~+W ~
Suppose,for convenience,that the preproduction stage resultedin ti > 0 for
i = 1, 2, ..., n, and ti = 0 for i = n, + 1, ..., n. Therefore, the tunable
parametersare 4>i,i = 1,2,..., n,. Asetofcircuitperformancefunctionsgiven
by

F(cp, 00)= F(cpo + EJl.Q+ Tp, 00) ~~

are usually monitored during the tuning process. The desired values for F,
denoted as Fd, can be either an optimal response or a design specification.
Define ( = (cp) as an m-vector whose elements are in the form

wUi(OOj)(Fi(CP, OOj) - SUi(OO))

- wdOOj)(Fi(CP, OOj)- SLi(OOj)) (55)

where ie {t, 2,..., nF},je {t, 2,..., nco},and cp== cpo + EJl.Q + Tp. SUi and SLi
are upper and lower specifications, respectively. WUiand WLiare weighting
factors and are nonnegative. Ifit is required to match Fi(cp.00)with its desired
value F/(oo), one can either use (55) by setting

~~

or define elements of ( as

(57)
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Tbe postproduction tuning can be formulated as the optimization
problem

minimizeU(p)
p'

(58a)

s.t. Ipjl :s;;1, j = 1, 2, .. ., nt (58b)

where p' is an nt-vector containing the first nt elements in p. The objective
function can be a least pth or a generalized least pth function of
((cPo+ EpQ+ Tp), that is, in the forms of (2) and (3), respectively.

8.3 PostproductionTuning:FunctionalApproach

Functional tuning is a traditional approach. The tunable parameters are
sequentially adjusted until the circuit specifications are met. Here, the
network elements are generally assumed unknown.

Let J be an m x nt Jacobian matrix whose (i,nth element is defined by

60i; oi;j..=- =-t.
IJ OPj oljJj J'

The least-squares optimization of (58), namely taking V = fTf, was
proposed by Antreich et al. [56] and Adams and Manaktala [57]. The
solution is given by

i = 1,2, . . . , m,j = 1, 2, . . ., nt (59)

(60)

The minimax optimization of (58),namely taking V = maxi;, was approx-
imated by Bandler and Salama [43, 55, 58], who solved the following linear
programming problem:

minimize z
6p',;

(61a)

n,

S.t. !.{cP° + EpQ+ Tp) + L Jijllpj:S;; Z
j=l

(61b)

i = 1, 2, . . . , m, j = 1, 2, . , . , nt

p is initially set to O.After each solution of (60) or (61),p is updated using IIp'.
As proposed by Bandler and Salama, simulated sensitivities and the Broyden
formula can be used for obtaining and updating J.

8.4 Postproduction Tuning: Deterministic Approach

In contrast to the functional tuning approach, deterministictuning requires
that allcircuitparameterscPand possibleparasiticparameters (or its effects)
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can be either measured or identified. By utilizing this information, the
optimization of (58) becomes faster.

A sequential tuning algorithm has been introduced by Lopresti [59]. Let f
be the m-vector defined in (55) or (57). Initially, we set p = 0 and define

f1 ~ t 4Ji !!. A4Ji +L (i ~f A(i
i=n, + 1 04Ji 4Ji i o( (i

which represents the deviation of f from f(cpO)due to parasitic effects and
tolerances in untunable parameters. In the kth iteration, we have

fk+l = fk + [JlkJ2k JmkYAPk' k = 1,2, ..., n. (63)

By defining U of (58)as a quadratic function of fnr+ 1 and adding a term
penalizing large changes in Ap', we obtain an optimal control problem, that
is, finding Ap' such that

(62)

U = Wr+ I)TBfnr+ 1 + f. pj(Apj)2
j= 1

(64)

is minimized subject to (63). B of (64) is a positive semidefinite matrix and
Pj > 0, j = 1, 2, . . . , n.. A closed-form solution can be obtained in the form

APk= 1/fk (65)

where 1k is an m-vector calculated using the Riccatti equation [59].
Instead of using first-order sensitivity information J, which becomes

invalid when components of Ap' are not small enough, Alajajian et al.
suggested a large-change sensitivity method for deterministic tuning [60-62].
The resulting equation is

-f(cpO)][ A:] = -f(cpO)

where JL is the large-change sensitivity matrix of f with respect to p' and c is
an unknown variable.

(66)

9 EXAMPLES

In this section, we first present the application of optimization techniques for
circuit diagnosis through a simple illustrative example. This is followed by
selected problems of practical interest for diagnosis, modeling, and tuning.

9.1 Diagnosis Using Optimization: An Illustrative Example

Consider the passive resistive network of Figure 14.2. Nominal values for
elements Gi, i = 1,2,.. .,5, are equal to 1.Each element has i: 5% tolerance.
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1 2 3

Itn=1 t G1

Figure 14.2 Passive resistive circuit as an example for diagnosis using
optimization techniques.

The measurable responses are nodal voltages, F = [VI V2 V3Y, causing
the C of (11) to be a 3 x 3 identity matrix. Also for the example, N = 3,
nF = 3, and n = 5. The incidence matrix is given by

[

1 1 0 0

Q= 0 -1 1 1
o 0 0-1

The variable parameters are defined as cp= [GI G2 G3

nodal admittance matrix at nominal point cpo= [1 1 1

[

2 -1 0

]
Y(cpO) = -1 3 - 1

o -1 2

For such a circuit, all quantities are real. Therefore, the constraint
equations as well as the related definitions (l7)-(20) become

~]
(67)

G4 GsY. The
1 lY is

(68)

Ax =b (69)

where

A = - CT[y(cpO)] - IQ

[

5 3 2 1
-1

=8 2 -2 4 2
1 -1 2-3

b=FM_Fo=[VIM_V10 V2M_V20

and

X=[Mlb M/ 111/ M4b MSb]T

~]

(70)

(71)

(72)
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Ijn =1 {t

2 3

Figure 14.3 Equivalent current sources representing the effect of changes in
Gi, i = 1,2,...,5, for the circuit of Figure 14.2.M/ = ~GiJt;b,where Jt;bis the
voltage across the ith element.

where ~I/, i = 1,2,...,5 are the equivalent current sources representing ~Gi,
i = 1, 2, ..., 5, shown in Figure 14.3. The nominal responses
FO = [V10 V20 v3°F can be calculated as FO = [5/8 218 1/8F.

Case I: We assume that no elements have much greater deviation from
nominal than others. Table 14.1shows the results of diagnosis using the Ii
and 12techniques and the quadratic programming method. It is demon-
strated that the least-squares method gives a more reasonable solution,
while the other two methods have mistakenly detected, e.g., G4 as
nonfaulty while this element actually changed 30% for CUT # 1.However,
the 12optimization method may also fail to give correct results; see CUT
# 3, where the G2 and the Gs are not detected as out of tolerance.

Case 2: We assume that only a few elements are faulty and that they have
much greater deviation from nominal than the rest of the elements, which
are within the specified tolerance of :!::5%. Table 14.2shows the results of
diagnosis using the three optimization techniques presented. It can be seen
that both the Ii and quadratic techniques give much sharper results than
the 12technique. In many cases, both Ii and the quadratic optimization
produce the same solution. In some cases, as shown for CUT # 2 and CUT
# 3 in Table 14.2, one method yields a better solution than the other.

For the quadratic programming technique, we used () = 10-6 and
{3= 101°. The QPSOL FORTRAN package for quadratic programming
[28] was utilized to perform step 3 in Section 5 with a limit on the number of
iterations for each quadratic programming as 3.



Table 14.1

Case I

CUT
._-~ --. -. .

#1

#2

#3

"~.- .-

Results of Diagnosis Using Optimization Techniques for the Circuit of Figure 14.2,

~
2

Measurement
V'"

0.5730
0.2326
0.1186

0.6437
0.2241
0.1145

0.6266
0.2412
0.1307

- _._on . -----...-.-- - - -. ".."u.". ----

- .-.... ._--- 0-----.--. ... ---. "... .....-......---.- --.. .-.-. -- ._u..".... U..-....._------------

Detected !!.GdGjO%, ; = 1,2, ...,5
Actual .... '0" .-- .. .-... -. .--_._--_._---

!!.GdGjO% /2 Quadratic /.
;=1,2,...,5 optimization programming optimization
u_- --.........-..-.---................. -- ... ._.. --..-------.--.-----..

4.4 4.36 14.02 13.23
18.0 18.07 1.80 3.14
9.0 7.61 0.00 0.00

30.0 33.04 0.00 4.00
25.0 27.93 -3.85 0.00

-2.0 -2.38 0.00 0.00
-12.0 - 11.41 -15.07 - 15.07

6.0 5.28 7.92 7.92
20.0 23.73 4.35 4.35
15.0 18.58 0.00 0.00

3.0 -0.42 0.00 0.00 III
:::J

-8.0 - 2.44 -3.12 -3.12
-3.4 1.96 0.60 0.60
10.0 17.69 18.28 18.28

-7.0 -0.50 0.00 0.00 Q.

- --- __'_4-+___-



Table 14.2 Results of Diagnosis Using Optimization Techniques for the Circuit of Figure 14.2,
Case 2
--- . .n. ~ u_-- -. . on.. "..-....-.-.-.

Detected !1GJGjO%,i = I, 2, ..., 5

CUT
Measurement

VM

Actual
!1GdGjO%

i = I, 2, . . . , 5
/.

optimization

n._.'- .-........ - " . , --------

/2

optimization

Quadratic
programming

'.-"-' ' "' '.'------.--.-----------.--

~
~
:3'
j;j'
Q)

~.
:;,

~
g.
:;,
.Q'
c::
~

-I::..

2

._...-.- -.-..-.....--- ..n_._....----.W."'....-,..-.-.....-.--.-..-------- ---.---..-..... ..-.- --- ...-... ."..".".- ...-.-.".---- ------..--.------.-

#1 0.5000 0.0 16.98 0.00 0.00
0.3333 200.0 149.06 200.00 200.00
0.1667 0.0 - 8.49 0.00 0.00

0.0 - 33.96 0.00 0.00
0.0 - 33.96 0.00 0.00

#2 0.5933 2.0 1.95 1.77 5.77
0.2207 6.0 6.08 6.36 0.00
0.1755 -3.0 9.68 0.00 0.00

300.0 238.72 288.35 235.89
3.0 -12.78 0.00 - 13.51

#3 0.2688 200.0 63.71 199.62 199.04
0.1304 40.0 304.67 40.73 41.87
0.0660 -3.0 93.19 0.00 0.00

4.5 378.57 0.00 2.45
2.0 367.12 -2.39 0.00
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9.2 Diagnosisof a 28-NodeCircuit

Kellermann[63] experimentedwith the nonlinear optimization problem of
(9) with p = 1,on a 28-node circuit shown in Figure 14.4.The nominal values
of the elements Gj = 1.0 and tolerances Gj= :to.05, i = 1, 2, ..., 52. All
outside nodes are assumed to be accessible for measurements. The actual
circuit includes four faults where elements G41, G44, G4s, and G48 have - 50%
deviation from nominal. All other element values are within their tolerances.
The diagnosis was performed successfully with only one excitation. Resulting
deviations for G41, G44, G4s, and G48 are -46, -54, -45, and -53%,

21 22

27

Figure 14.4 Resistive mesh network (28 nodes).

23

G.. V
G"

G17V

G.. G" G2a G2' G4S
G.. Gu Gu Gu Gas Gu G47

25
- - -
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respectively. Deviations for other elements are mostly zero except for a few
small nonzero values.

9.3 GaAs FET Modeling: Multicircuit Approach

This example is due to Bandler et al. [51]. They used the equivalent circuit at
normal operating bias (including the carrier), as illustrated in Figure 14.5,and
created artificial measurements using TOUCHSTONE [64]. Two sets of S-

,- parameter (scattering) measurements were created, one set using the para-
meters reported by Curtice and Camisa [52] (operating bias "ds= 8.0 V,
Vgs= - 2.0V, and Ids= 128.0mA) and the other by changing the values of
C!, C2,Lg, and Ld to simulate the effectof taking different reference planes for
the carriers. Both sets of data are shown in Figure 14.6, where the S-
parameters of the two circuits are plotted on a Smith chart. Although the
maximum number of possible variables, namely 32 (16 for each circuit), were
allowed for in the optimization, the intrinsic parameters were found to be the
same between the two circuits, and, as expected, C1, C2, Lg, and Ld changed
from circuit 1 to 2. Table 14.3 summarizes the parameter values obtained.
The problem involved 128 nonlinear functions (real and imaginary parts of
four S-parameters, at eight frequencies, for two circuits), 16 linear functions,
and 32 variables. .

1-- - - - - - - -.;;;;;c ~ra-;;8Ist;-:
Lg Rg: Cdg I Rd

f:~:~

1

~ 1
I

r~ I ~ I
I v I C Gdl, ds II t". 9 Ye-I""
I m I
I R. I
I I
I I----------

drain
lead

source
lead

Figure 14.5 Equivalent circuit of carrier-mounted FET (device model
BI824-20C).
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.5

f2: 18.0000

o 511

+ 522

* 521

X 512

H: 4.00000

-.5 o -1 -3 -2

Figure 14.6 Smith chart display of scattering parameters S11'S22, S12'and
S21 for the carrier-mounted FET, before and after adjustments on para-
meters. Points a and b mark the high-frequency end of the original and
perturbed network responses, respectively.

9.4 A High-Pass Filter Example for Postproduction Tuning

The high-pass notch filter circuit shown in Figure 14.7was used by Bandler
and Salama to demonstrate postproduction tuning algorithms [55]. The
circuit example was originally employed by Alajajian [60]. R3. Rs, R6, and R7
are tunable parameters. The nominal and actual element values are given in
Table 14.4.

To use the functional tuning approach of(61), Bandler and Salama defined
j; as the absolute value of Voutfrom its nominal, that is, using (57) with F(c!>,
w) = v..ut(c!>,w) and Fd(w)= v..ut(c!>°,w). Twenty frequencies on the interval
410-505 Hz were used. The limits in (6Ib) are PUj= - PLj = 0.02.After 11
iterations, the tuned responses very closely approached the nominal re-
sponses, as shown in Figure 14.8a. After tuning, the values for tunable
parameters [R3 Rs R" R7] = [201.952 2.115 13.061 0.973].
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Parameter

Table 14.3 Results for the GaAs FET Example

Original circuit

407

Perturbed circuit

C 1 (pF)
C2 (pF)
Cdg (pF)
Cg. (pF)
Cd. (pF)
Cj (pF)

Rg (0)
Rd (0)
R. (0)
Rj (0)
Gd-1 (kO)

Lg (nH)
Ld (nH)
L. (nH)
gm (S)
1:(ps)

0.0440
0.0389
0.0416
0.6869
0.1900
0.0100
0.5490
1.3670
1.0480
1.0842
0.3761
0.3158
0.2515
0.0105
0.0423
7.4035

0.0200°
0.0200°
0.0416
0.6869
0.1900
0.0100
0.5490
1.3670
1.0480
1.0842
0.3763
0.1500°
0.1499°
0.0105
0.0423
7.4035

°Significant change in parameter value.

Figure 14.7 The high-pass notch filter circuit.
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Figure 14.8 Responses for tuning of the high-pass notch filter. (a) Fun-
ctional tuning. (b) Deterministic tuning.

Table 14.4 Element Values for the High-Pass Filter of Figure 14.7

Element Nominal value Actual value Percentage deviation

Rl (kQ) 13.260 13.260 0.0

Rz (kQ) 93.0 93.0 0.0

R3 (kQ) 214.0 192.6 -10.0
R4 (kQ) 2.0 2.0 0.0
Rs (kQ) 2.0 1.8 -10.0
R6 (kQ) 12.467 11.221 -10.0
R7 (kQ) 10.00 9.00 -10.0
C1 (JlF) 0.01 0.00973 -2.07
Cz (JlF) 0.01 0.00965 -3.35
A 10,000.0 10,000.0 0.0
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The deterministic approach of (62)-(65) was performed with
F = [F 1 F2 . . . FsF, where the Fj are coefficients in the transfer
function of the filter r = (52+ F15+ F2)-1(F352+ F45+ Fs). B of (64) was
taken as diag{4, 0.04,4,1012, 0.0625} and Pj = 0.001. The response associated
with the tuning is shown in Figure 14.8b. After tuning, the values for tunable
parameters [R3 Rs R6 R7] are [184.487 2.241 13.747 0.9993].

10 DISCUSSION

Close links and similarities exist between optimization techniques for
modeling, diagnosis, and tuning. In this section, relevant common aspects are
discussed.

10.1 Sensitivity Matrix

Supposef(cP)is definedby (46)for modelingand diagnosisand by (55)or (57)
for design and tuning. Let cPobe the design nominal. Define the n x m
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sensitivity matrix as

S(cp)~ diag{cpO}m;~cj»)diag{f(cj»°)}-1
(73)

cp* is said to be a regular point [65] of S(cp) if there exists an open
neighborhood of cp*in which S(cj»)has constant rank. Parameter identifica-
tion (or modeling) is usually performed with the assumption that the actual
parameter cpa is at a regular point and Rank[S(cj»a)] = n. Otherwise, if
Rank[S(cpa)] < n, that is, the measurement is not sufficient, we should either
use the diagnosis technique introduced in Sections 3 to 6 or seek possible
additional measurements by creating any or a combination of (1) more
accessible nodes for excitation and/or measurement, (2) more frequency
points, (3) other types of responses (e.g., voltage and current), and (4)
additional circuits obtained by perturbing a few parameters in the CUT.
Research has been performed on the selection of excitation and measurement
ports and frequencies [42] as well as the multitype response and multicircuit
concepts, e.g., [51].

In tuning problems, it is desired that the submatrix containing the first n,
rows ofS (assuming that only the first n, elements in [cPl cP2 ... cPnYare

. tunable) has a rank which should be as high as the rank of S. Such rank
comparison implicates the degree of difficulty to achieve the desired response
by tuning cPi,i = 1, 2, ..., n" only.

By checking the S matrix, possible decomposition can be carried out,
sequentially optimizing subsets of responses versus variables that are sen-
sitively related [10].

10.2 Large-Change Sensitivity

The embedding of large-change sensitivity calculations in an optimization
procedure, where only a small subset of circuit parameters are updated each
iteration, can greatly increase the efficiency.The application of Householder's
formula in fault diagnosis was reported [66-68]. Such application can reduce
reevaluation of F(cp)from the order of n to r, r being a rank measure of the
subcircuit to be updated. r is less than or equal to the number of parameters
in the subcircuit [33, 69].

10.3 Convergence

For problems using the /1 and minimax optimization method of Hald and
Madsen [17,18,23-26], superiinear or quadratic convergence is guaranteed.
The convergence for Merrill's quadratic approach was reported to be about
two or three iterations. For a:decomposed problem, sequential optimization
may diverge if the subproblems are not well defined or not reasonably
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ordered. Therefore, it may be desirable to have the system less decomposed as
the solution is being approached. Usually, an optimization converges only to
a local minimum uoless the objective and the constraints satisfy certain
conditions. Global optimization methods are being studied [70].

10.4 Possible Difficulties and Disadvantages

Poor or unacceptable results in computer-aided circuit optimization are felt
to be most likely due to bad preparation of the problem, lack of understand-

ring of the hazards that can be encountered, and the wrong choice of
algorithm [5]. Compared with other techniques for modeling, diagnosis, and
tuning (if applicable), optimization techniques often require more computer
time and storage. The choice of starting point is often a demanding task for
satisfactory solution and fast convergence.

11 CONCLUSION

We have presented basic principles of optimization techniques for modeling,
diagnosis, and tuning. Emphasis is centered on the problem formulation and
related properties rather than mathematical sophistication of optimization
procedures and detailed circuit aspects of MDT. Further research can be
directed toward effective modeling techniques to improve the validity of
identified parameters. The use and organization of decomposition need
further investigation. The desired outcome is an automatic procedure capable
of identifying circuit parameters and making decisions concerning physical
adjustments based on monitored response and identified parameters.
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