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Abstract—Neural-network computational modules have re- Neural networks are first trained to model the electrical be-
cently gained recognition as an unconventional and useful tool for havior of passive and active components/circuits. These trained

RF and microwave modeling and design. Neural networks can be o ra| networks, often referred to as neural-network models

trained to learn the behavior of passive/active components/circuits. imol | del th b d in high-l |
A trained neural network can be used for high-level design, pro- (or simply neural models), can then be used in high-leve

viding fast and accurate answers to the task it has leamed. Neural Simulation and design, providing fast answers to the task they
networks are attractive alternatives to conventional methods such have learned [2], [3]. Neural networks are efficient alternatives

as numerical modeling methods, which could be computationally to conventional methods such as numerical modeling methods,
expensive, or analytical methods which could be difficult to obtain which could be computationally expensive, or analytical

for new devices, or empirical modeling solutions whose range and - e . ,
accuracy may be limited. This tutorial describes fundamental methods, which could be difficult to obtain for new devices,

concepts in this emerging area aimed at teaching RF/microwave Of empirical models, whose range and accuracy could be
engineers what neural networks are, why they are useful, when limited. Neural-network techniques have been used for a wide

they can be used, and how to use them. Neural-network structures variety of microwave applications such as embedded passives
and their training methods are described from the RF/microwave [4], transmission-line components [5]-[7], vias [8], bends [9]

designer's perspective. Electromagnetics-based training for . S
passive component models and physics-based training for active coplanar waveguide (CPW) components [10], spiral inductors

device models are illustrated. Circuit design and yield optimiza- [11], FETs [12], amplifiers [13], [14], etc. Neural networks
tion using passive/active neural models are also presented. Ahave also been used in impedance matching [15], inverse

multimedia slide presentation along with narrative audio clips is  modeling [16], measurements [17], and synthesis [18].
included in the electronic version of this paper. A hyperlink to An increased number of RF/microwave engineers and
the NeuroModeler demonstration software is provided to allow h h tarted taki . int tin thi .
readers practice neural-network-based design concepts. researchers have star e. a '”9 sgrlous interestin this emerging
_ ] _ technology. As such, this tutorial is prepared to meet the edu-
Index  Terms—Computer-aided design ~(CAD), design c4iinnal needs of the RF/microwave community. The subject
automation, modeling, neural networks, optimization, simulation. . . . .
of neural networks will be described from the point-of-view of
RF/microwave engineers using microwave-oriented language
|. INTRODUCTION and terminology. In Section I, neural-network structural issues

EURAL networks, also called artificial neural network<'© introduced, and the po_pularly '.“'SEd multilayer pefcep'
N (ANNS), are information processing systems with theﬁron (MLP) neural network is described at length. Various

design inspired by the studies of the ability of the human brafi{ePs involved in the development of neural-network models

to learn from observations and to generalize by abstraction | € de§cr|bed n S(_actlgn lll. Practical microwave (_axamples
strating the application of neural-network techniques to

The fact that neural networks can be trained to learn any arbi- ! - N :
mponent modeling and circuit optimization are presented in

trary nonlinear input—output relationships from correspondi ) . : . .
y P b P P ections IV and V, respectively. Finally, Section VI contains

data has resulted in their use in a number of areas such d lusi To furth 4 th q .
pattern recognition, speech processing, control, biomediSummary and conclusions. 1o further ai € readers in

engineering etc. Recently, ANNs have been applied to RF awd'Ckly grasping the ANN fundamentals and practical aspects,

microwave computer-aided design (CAD) problems as weft” electronic multimedia slide presentation of the tutorial and
a hyperlink to NeuroModelerdemonstration softwate are

included in the CD-ROM accompanying this issue.
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Source  Gate Drain are defined in Fig. 1. The original physics-based FET modeling

roblem can be expressed as
W ¢ " p p
y = f(z) 3)
| | [

> where f is a detailed physics-based input—output relationship.
The neural-network model for the FET is given by
Gate length: L = . . 4
Gate width: w y=y(w w) “)
Channel thickness:  H The neural network in (4) can represent the FET behavior in
Doping density: Ny . .. . .
Bias: Vs, Vs (3) only after learning the original—y relationshipf through a
process called training. Several, fy) samples called training
Fig. 1. Physics-based FET to be modeled using a neural network. data need to be generated either from the FET's physics

simulator or from measurements. The objective of training is

processing point-of-view. The most popularly used neural-nd@ 2djust neural-network weighis such that the neural model
work structure, i.e., the MLP, is described in detail. The effecfy/tPUts best match the training data outputs. A trained neural
of structural issues on modeling accuracy are discussed. Model can be used during the microwave design process to
provide instant answers to the task it has learned. In the FET
A. Basic Components case, the neural model can be used to provide fast estimation
. of S-parameters against the FET’s physical/geometrical/bias
A typical neural-network structure has two types of basd\ﬁ

. ) arameter values.
components, namely, the processing elements and the intercon-

nections between them. The processing elements are called ReUneural Network Versus Conventional Modeling

rons and the connections between the neurons are known as .
. . . . he neural-network approach can be compared with conven-
links or synapses. Every link has a corresponding weight param-

. L . : ional approaches for a better understanding. The first approach
eter associated with it. Each neuron receives stimulus from other : X )
neurons connected to it, processes the information, and pI _the detailed modeling gpproach (€., electromagnetlc
duces an output. Neurons that receive stimuli from outside t M)-based quels fo_r passive components aqd physms—based
network are called input neurons, while neurons whose Outpmgdels for active devices), where the model is defined by a

are externally used are called output neurons. Neurons that e ll-established theory. The detailed models are accurate, but

ceive stimuli from other neurons and whose outputs are stimﬁﬁmd be computationally expensive. The second approach is an

. . agproximate modeling approach, which uses either empirical
for other neurons in the network are known as hidden neuronr. equivalent-circuit-based models for passive and active
Different neural-network structures can be constructed by usiﬁgm qonents These models are develo ped USiNg & mixture
different types of neurons and by connecting them differently. ponents. elope g e
of simplified component theory, heuristic interpretation and
B. Concept of a Neural-Network Model represent_anon, and/or f!ttmg of experimental data. Evaluat_lon
) of approximate models is much faster than that of the detailed
Letn andm represent the number of input and output neurofgodels. However, the models are limited in terms of accuracy
of a neural network. Let be am-vector containing the external ang input parameter range over which they can be accurate.
inputs to the neural networly, be anm-vector containing t_he The neural-network approach is a new type of modeling
outputs from the output neurons, aicbe a vector containing approach where the model can be developed by learning from
all the weight parameters representing various interconnectiQqitajled (accurate) data of the RF/microwave component. After

in the neural network. The definition aé, and the manner in trajning, the neural network becomes a fast and accurate model
which y is computed fronx andw, determine the structure of representing the original component behaviors.

the neural network.

Consider an FET as shown in Fig. 1. The physical/geomé&- MLP Neural Network
rical/bias parameters of the FET are variables and any changg Structure and Notation:MLP is a popularly used neural-
in the values of these parameters affects the electrical respor}%{g\,

fth losi h ork structure. In the MLP neural network, the neurons are
of the FET (e.g., small-signaf-parameters). Assume thaty,, e into layers. The first and the last layers are called input
there is a need to develop a neural model that can repre

: : . output layers, respectively, and the remaining layers are
such input-output relationship. Inputs and outputs of e, a4 hidden layers. Typically, an MLP neural network consists
corresponding FET neural model are given by of an input layer, one or more hidden layers, and an output layer,
T as shown in Fig. 2. For example, an MLP neural network with
& =[LW H Ny Vg Vas ] @ an input layer, one hidden layer, and an output layer, is referred
y =[MSy; PSyy MSyy PSyy -+ Png]T (2) to as three-layer MLP (or MLP3).
Suppose the total number of layerdisThe first layer is the
wherew is frequency, and/S;; and PS;; represent magni- inputlayer, thelth layer is the output layer, and layers 2te-1
tude and phase of thg-parameterS;;. The superscripf’ in- are hidden layers. Let the number of neurons inthéayer be
dicates transpose of a vector or matrix. Other parametersin (), l = 1, 2, ..., L. Let wﬁj represent the weight of the link
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stimulus to neurons in the ¢ 1)th layer. The most commonly
used hidden neuron activation function is the sigmoid function

Layer L given by
(Output layer) — 1 6
a(v) A7) (6)
Other functions that can also be used are the arc-tangent
Layer L - 1 function, hyperbolic-tangent function, etc. All these are smooth

switch functions that are bounded, continuous, monotonic, and
continuously differentiable. Input neurons use a relay activation
. function and simply relay the external stimuli to the hidden
. layer neurons, i.e;} = z;,i = 1,2, ..., n. In the case of
neural networks for RF/microwave design, where the purpose
is to model continuous electrical parameters, a linear activation
function can be used for output neurons. An output neuron

(Hidden layer)

Layer 2 . . .
(Hidden layer) computation is given by
Nrp_1
o) =t = ) whz (7)
j=0
Layer 1 . . .
(Input layer) 3) Feedforward ComputationGiven the input vector

z = [r1 72 --- 7,]T and the weight vectaw, neural network
feedforward computation is a process used to compute the
output vectoly = [y; y2 --- ym]T . Feedforward computation
Fig. 2. MLP neural-network structure. Typically, an MLP network consists d& useful not only during neural-network training, but also
an input layer, one or more hidden layers, and an output layer. during the usage of the trained neural model. The external
inputs are first fed to the input neurons (i.e., first layer) and the
between thgth neuron of thé — 1th layer and théth neuron of outputs from the input neurons are fed to the hidden neurons
thelth layer. Letz; represent théth external input to the MLP of the second layer. Continuing this way, the outputs of the
andz! be the output of théth neuron of théth layer. Thereis an L — 1th layer neurons are fed to the output layer neurons (i.e.,
additional weight parameter for each neurary,) representing the Lth layer). During feedforward computation, neural-net-
the bias for theth neuron of thdth layer. As suchw of the work weightsw remain fixed. The computation is given by
MLP includesw!;, j =0, 1, ..., N;_1,i=1,2, ..., N;,and

1 .
1=2,3, ..., Lie,w=[w} vl wh - wk x| zi=z; 1=1,2,...,Nt n=DN (8)
The parameters in the weight vector are real numbers, which Ny
are initialized before MLP training. During training, they are Z=0 Z wi;zi | i=1,2,..., N
changed (updated) iteratively in a systematic manner [19]. Once §=0

the neural-network training is completed, the veataremains I—9 3 I )
fixed throughout the usage of the neural network as a model. L Ty

2) Anatomy of Neuronsin the MLP network, each neuron yi=zy i1=1,2,...,No m=Ng. (10)
processes the stimuli (inputs) received from other neurons. The4) Important Features:lt may be noted that the simple
process is done through a function called the activation fung;,1as in (8)~(10) are now intended for use as RF/microwave
tion in the neuron, and the processed information becomes fhg,nonent models. It is evident that these formulas are much
output of the neuron. For example, every neuron inthéyer - gasjer to compute than numerically solving theoretical EM
r(?ixlalves stl|r_nlul|from Fhe n_eurons of t_He(l)th layer,i.e.z;™", o physics equations. This is the reason why neural-network
Zy v 2y, - Atypicalith neuron in theth layer processes nogels are much faster than detailed numerical models of
this information in two steps. Firstly, each of the inputs is MUK E/microwave components. For the FET modeling example
tiplied by the corresponding weight parameter and the produgfisc ~riped earlier, (8)—(10) will represent the modelSepa-

are added to produce a weighted stifmi.e., rameters as functions of transistor gate length, gate width,
Ni_, doping density, and gate and drain voltages. The question of

A= Z wl 2L (5) why such simple formulas in the neural network can represent

= ’ complicated FET (or, in general, EM, physics, RF/microwave)

behavior can be answered by the universal approximation
In order to create the effect of bias parametéy, we assume a theorem.
fictitious neuron in thel(— 1)th layer whose output is, ' = The universal approximation theorem [20] states that there
1. Secondly, the weighted sum in (5) is used to activate tladways exists a three-layer MLP neural network that can ap-
neuron’s activation function(-) to produce the final output of proximate any arbitrary nonlinear continuous multidimensional
the neuronz! = o(+}). This output can, in turn, become thefunction to any desired accuracy. This forms a theoretical basis
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for employing neural networks to approximate RF/microwavieaining. We also need to establish quality measures of neural
behaviors, which can be functions of physical/geometrical/biagodels. In this section, we describe the important steps and
parameters. MLP neural networks are distributed models, i.ssues in neural model development.

no single neuron can produce the overally relationship.

For a givenz, some neurons are switched on, some are off; Problem Formulation and Data Processing

and others are in transition. It is this combination of neuron 1) ANN Inputs and OutputsThe first step toward devel-
switching states that enables the MLP to represent a givgping a neural model is the identification of inputs) and
nonlinear input-output mapping. During training procesgutputs(y). The output parameters are determined based on the
the MLP’s weight parameters are adjusted and, at the endmfrpose of the neural-network model. For example, real and
training, they encode the component information from thehaginary parts ofS-parameters can be selected for passive

corresponding—y training data. component models, currents and charges can be used for
_ large-signal device models, and cross-sectional resistance—in-
E. Network Size and Layers ductance—conductance—capacitance (RLGC) parameters can

For the neural network to be an accurate model of the probldi chosen for very large scale integration (VLSI) interconnect
to be learned, a suitable number of hidden neurons are needegdels. Other factors influencing the choice of outputs are:
The number of hidden neurons depends upon the degree of nbrease of data generation; 2) ease of incorporation of the neural
linearity of f and the dimensionality af andy (i.e., values of:  model into circuit simulators, etc. Neural model input param-
andm). Highly nonlinear components need more neurons afters are those device/circuit parameters (e.g., geometrical,
smoother items need fewer neurons. However, the universal 8pysical, bias, frequency, etc.) that affect the output parameter
proximation theorem does not specify as to what should be tf@&iUes.
size of the MLP network. The precise number of hidden neurons2) Data Range and Sample Distributiofhe next step is to
required for a given modeling task remains an open questigigfine the range of data to be used in ANN model development
Users can use either experience or a trial-and-error proces@igl the distribution of—y samples within that range. Suppose
judge the number of hidden neurons. The appropriate numib@e range of input space (i.e-space) in which the neural model
of neurons can also be determined through adaptive proces¥@slld be used after training (during design)[iiin, Tmax]-
which add/delete neurons during training [4], [21]. The numbdiraining data is sampled slightly beyond the model utilization
of layers in the MLP can reflect the degree of hierarchical infofange, i.€.[Tmin — A, Tmax + A], in order to ensure reliability
mation in the original modeling problem. In general, the MLP@f the neural model at the boundaries of model utilization range.
with one or two hidden layers [22] (i.e., three- or four-layefest data is generated in the ranggin, Fmax|-

MLPs) are commonly used for RF/microwave applications. ~ Once the range of input parameters is finalized, a sampling
distribution needs to be chosen. Commonly used sample dis-
F. Other Neural-Network Configurations tributions include uniform grid distribution, nonuniform grid

In addition to the MLP, there are other ANN structures [19Eistribution, design of experiments (DOE) methodology [8], star

. . . istribution [9], and random distribution. In uniform grid dis-
e.g., radial basis function (RBF) networks, wavelet networkfs . . . .

ribution, each input parametey is sampled at equal intervals.
recurrent networks, etc. In order to select a neural-netwo ) . . .

. - . o uppose the number of grids along input dimensigis n;. The
structure for a given application, one starts by identifying tr}%tal number ofz—y samples is given by = "  For ex-
nature of thec—y relationship. Nondynamic modeling problemsam le.in an FE'FymodeIFi)n ro%lem nga;& [2"71 T‘L; freq]”
(or problems converted from dynamic to nondynamic usin dp néural model utilizag(?n ranae is gs Vds 1104
methods like harmonic balance) can be solved using MLP, RBF, 9
and wavelet networks. The most popular choice is the MLP -5V oV
since its structure and training are well-established. RBF and ov | <z<| 10v (11)
wavelet networks can be used when the problem exhibits highly -

nonlinear and localized phenomena (e.g., sharp variations).

1 GHz 20 GHz |

Time-domain dynamic responses such as those in nonlineaiining data can be generated in the range

modeling can be represented using recurrent neural networks 505 0

[13] and dynamic neural networks [14]. One of the most recent °TEe

research directions in the area of microwave-oriented ANN 0 Sz< |10+17. (12)
structures is the knowledge-based networks [6]-[9], which 1-0.5 20 + 2

combine existing engineering knowledge (e.g., empirical . o . .
equations and equivalent-circuit models) with neural networkijln nonuniform grid distribution, each input parameter is sam-

r'?l'ed at unequal intervals. This is useful when the problem be-
havior is highly nonlinear in certain subregions of thispace
and dense sampling is needed in such subregions. Modeling
The neural network does not represent any RF/microwaste characteristics/V curves) of an FET is a classic example
component unless we train it with RF/microwave data. Twr nonuniform grid distribution. Sample distributions based on
develop a neural-network model, we need to identify inplROE (e.g.,2™ factorial experimental design, central composite
and output parameters of the component in order to generak@erimental design) and star distribution are used in situations
and preprocess data, and then use this data to carry out AiNNere training data generation is expensive.

I1l. NEURAL-NETWORK MODEL DEVELOPMENT
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3) Data Generation:In this stepz—y sample pairs are gen- Output parameters in training data, i.e., elementd,inan
erated using either simulation software (e.g., three-dimensioa#o be scaled in a similar manner. Linear scaling of data can
(3-D) EM simulations using AnsoftiFSS) or measurement provide balance between different inputs (or outputs) whose
setup (e.g.,S-parameter measurements frommatwork ana- values are different by orders of magnitude. Another scaling
lyzen. The generated data could be used for training the neunaéthod is the logarithmic scaling [1], which can be applied to
network and testing the resulting neural-network model. loutputs with large variations in order to provide a balance be-
practice, both simulations and measurements could have smatten small and large values of the same output. In the training
errors. While errors in simulation could be due to truncaf knowledge-based networks, where knowledge neuron func-
tion/roundoff or nonconvergence, errors in measurement cotilons (e.g., Ohm’s law, Faraday’s law, etc.) require preservation
be due to equipment limitations or tolerances. Considering thig,physical meaning of the input parameters, training data is not
we introduce a vectod to represent the outputs from simulascaled, i.e.; = Z. At the end of this step, the scaled data is
tion/measurement corresponding to an inpuData generation ready to be used for training.
is then defined as the use of simulation/measurement to obtain
sample pairs#y, d), & = 1,2, ..., P. The total number B_ Neural-Network Training

of samplesP is chosen such that the developed neural model ) L .
best represents the given problgin A general guideline is 1) Weight Parameters Initializationin this step, we prepare

to generate larger number of samples for a nonlinear high-{i€ néural network for training. The neural-network weight pa-
mensional problem and fewer samples for a relatively smodfi"1eters #) are initialized so as to provide a good starting
low-dimensional problem. point for_ tralnlng (_opt!mlz_atlor_1)._ Th_e widely u_sed str_ategy for
4) Data Organization: The generateds( d) sample pairs MLP welght|n|t|allzat|_on is to initialize the weights with small
could be divided into three sets, namely, training data, validgandom values (e.g., in the rangeq.5, 0.5]). Another method
tion data, and test data. L&, V, 7., and D represent index suggests that the range of random welghts pe inversely propor-
sets of training data, validation data, test data, and generalf@§@! t0 the square root of number of stimuli a neuron receives
(available) data, respectively. Training data is utilized to guid¥! @verage. To improve the convergence of training, one can
the training process, i.e., to update the neural-network Weidfﬁe a variety ofdlstnbgtlons (e.g._, Gaussian distribution) and/or
parameters during training. Validation data is used to monitdffferent ranges and different variances for the random number
the quality of the neural-network model during training and tg€nerators used in initializing the ANN weights [23].
determine stop criteria for the training process. Test data is used Formulatlon of Training Process?l_'he most important
to independently examine the final quality of the trained neurSieP_in neural model development is the neural-network
model in terms of accuracy and generalization capability. ~ U@ining. The training data consists of sample pitsy, dx),
Ideally, each of the data sefs, V, andT,, should adequately @"d% € T}, wherez, andd, aren- andm-vectors repre-
represent the original component behagor f(z). In prac- sentlng the inputs and desm_ad_ outputs of the neural network.
tice, available datd can be split depending upon its quantity!Ve define neural-network training error as
WhenD is sufficiently large, it can be split into three mutually ) m
disjoint sets. WheD is limited due to expensive simulation or —— . —d..|?
measurement, it can be split into just two sets. One of the sets Br () 2 Z Z ij (5, ) djk| (13)
is used for training and validatiofY,. = V') and the other for
testing(7.) or, alternatively, one of the sets is used for training;here d;1. is the jth element ofd;, andy;(z, w) is the jth
(Tr) and the other for validation and testi(ﬂgj = Te). neural-network output for |nputk
5) Data PreprocessingContrary to binary data (0's and The purpose of neural-network training, in basic terms, is
1's) in pattern recognition applications, the orders of magnio adjustw such that the error functioR;, (w) is minimized.
tude of various input«) and output ¢) parameter values in Since Er (w) is a nonlinear function of the adjustable (i.e.,
microwave applications can be very different from one anothgfainable) weight parametets, iterative algorithms are often
As such, a systematic preprocessing of training data callgéed to explore thev-space efficiently. One begins with an
scaling is desirable for efficient neural-network training. ket injtialized value ofw and then iteratively updates it. Gradient-
Tmin, ANz .y represent a generic input element in the vectoggsed iterative training techniques updatebased on error
T, Tmin, ANATmax Of Original (generated) data, respectively. LefnformationEy, (w) and error derivative informatiahEy, /ow.
T, Tmin, ANZmax represent a generic element in the vectiors The subsequent pointin-space denoted s, is determined
Tmin, ANAZ .y Of scaled data, Wheli@.in, Tmax] is the input by a step down from the current poimt,.., along a direction
parameter range after scaling. Linear scaling is given by vectorh, i.e., Wyext = Wnow + nh. Here, Aw = nh is called
the weight update ang is a positive step size known as the

keT, j=1

T = ZTmin + % (Tmax — Lrmin) (13) learning rate. For example, the backpropagation (BP) training
A algorithm [19] updatess along the negative direction of the
and corresponding de-scaling is given by gradient of training error aw = w — n (0Er, /0w).
. 3) Error Derivative Computation:As mentioned earlier,
T = Ty 4 —min (Tmax — Tmin)- (14) 9gradient-based training techniques require error derivative
Tmax — Lmin computation, i.e.0Ez, /Ow. For the MLP neural network,

2HFSS, ver. 8.0Ansoft Corporation, Pittsburgh, PA. these derivatives are computed using a standard approach often



1344 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 4, APRIL 2003

Update neural network Compute derivatives of Evaluate Perform feedforward
weight parameters using a [® training error w.r.t. ANN #—| =" ¢—| computation for all
. . . . training error . .
gradient-based algorithm weights using EBP samples in training set
Assign random initial Perform feedforward Desired

Evaluate
validation error

accuracy

values for all the weight computation for all
achieved?,

parameters samples in validation set
/

Yes
STOP
Training

Fig. 3. Flowchart demonstrating neural-network training, neural model testing, and use of training, validation, and test data sets in ANN ppodathg a

Select a neural network
structure, e.g., MLP
[

Evaluate test error as an Perform feedforward
START independent quality |« computation for all
measure for ANN model

samples in test set

referred to as error backpropagation (EBP), which is describgdality of the neural-network model can be independently as-

here. We define a per-sample error functign given by sessed by evaluating the test etk . Neural-network training
m algorithms commonly used in RF/microwave applications in-
Ej, = 1 Z (yj(:vk, w) — djk)Q (16) clude gradient-based training techniques such as BP, conjugate-
2 = gradient, quasi-Newton, etc. Global optimization methods such

as simulated annealing and genetic algorithms can be used for
for the kth data samplé: € T.. Let 6} represent the error gjohally optimal solutions of neural-network weights. However,
between theith neural-network output and thgh output in  the training time required for global optimization methods is
training data, i.e., much longer than that for gradient-based training techniques.
) The neural-network training process can be categorized
into sample-by-sample training and batch-mode training. In
Starting from the output layer, this error can be backpropgaample-by-sample training, also called online trainiagjs
gated to the hidden layers as updated each time a training samfig, dy.) is presented to the
network. In batch-mode training, also known as offline training,

oF = yizr, w) — dig. (17

5 — N’Z“ 5| 211 — ) w is updated after each epoch, where an epoch is defined as a
i i il i i/ stage of the training process that involves presentation of all
=1 the training data (or samples) to the neural network once. In
l=L-1,L-2,...,3,2 (18)  the RF/microwave case, batch-mode training is usually more
effective.

whereé! represents the local error at tith neuron in thdth A flowchart . . ¢ . I-network
layer. The derivative of the per-sample error in (16) with respect owchart summarizing major Steps in-neural-networ

. ; . training and testing is shown in Fig. 3.
I- k h 18
to a given neural-network weig tparamedzgg 's given by 5) Over-Learning and Under-LearningThe ability of a
OF}

_ st I I —1 9 19 neural network to estimate outpyt accurately when presented
owl. %% I (19) with inputz; never seen during training (i.é:,¢ T;.) is called

) o . ) ) generalization ability. The normalized training error is defined
Finally, the derivative of the training error in (15) with respeckg

to wj; can be computed as

0Br, _ x~ 0B Brw= |1 Y%

1 1 mP:
A - T ker, j=1

1/2

i\Tp, w)— '42
J( k> zld]k (20)

Y
dmax, 7~ Wmin, j

Using EBP(0Er, /Ow) can be systematically evaluated for thevhere d,,i,, ; and d..x,; are the minimum and maximum
MLP neural-network structure and can be provided to gradiemalues of thejth element of alld,, ¥ € D, and Pr, is the
based training algorithms for the determination of weight updatember of data samples ift,.. The normalized validation
Aw. error £y can be similarly definedGood learningof a neural

4) More About Training: Validation errorE; and test error network is achieved when botfi;, and £y have small values
Er_can be defined in a manner similar to (15) using the validée.g., 0.50%) and are close to each other. The ANN exhibits
tion and test data set$ and7,. During ANN training, valida- over-learningwhen it memorizes the training data, but cannot
tion error is periodically evaluated and the training is terminategeneralize well (i.e.ETT is small, butEy > ETP). Remedies
once areasonabl@y is reached. At the end of the training, thdor over-learning are: 1) deleting a certain number of hidden
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T3

neurons or 2) adding more samples to the training data. Thi
neural network exhibitander-learningwhen it has difficulties L, 1, L, T,

in learning the training data itself (i.efr, > 0). Possible
__I_ R, % 1C2
Rl C[

remedies are: 1) adding more hidden neurons or 2) perturbin
the current solutionw to escape from a local minimum of
ji=1,...,m keT,. (21) =
Fig. 4. Circuit representation of the VLSI interconnect network showing the

Er (w), and then continuing training.
6) Quality Measures:The quality of a trained neural-net-
A quality measure based on thth norm is then defined as  connection of a source IC pin to four receiver pins. A neural model is to be
1/q developed to represent the signal delays at the four receiver pins as functions of

work model is evaluated with an independent set of data, i.e. Ve To
T.. We define a relative errdr;;, for thejth output of the neural
model for thekth test sample as

m the interconnect network parameters.
My= 13" > ol - (22)
‘ 2
keT. j=1

2 5 2 _ 4
The average test error can be calculated usihgas ] 8 \
1 5
M
Average Test Erroe ! (23) 4 ! 8
7’7’LPTe 3
4

. 5
where Pr, represents number of samples in test’BetThe 1.1,1) 1.1.2) 1.2.2)
worst case error among all test samples and all neural-netwc ~ " s T
model outputs can be calculated using

G

Source

Cy

5. =Y (Zk, w) — dji
’ dmax,j - dmin,j '

2 4 5
m 2, 4 - 3
My = max | max|6x| | . (24) /
keT. \ j=1 2
.. . - 1 4
Other statistical measures such as correlation coefficient ai ! !
standard deviation can also be used. 3 5 \5
3
IV. COMPONENTMODELING USING NEURAL NETWORKS {1,2,8} (1,2, 4} 2,22}
Component/device modeling is one of the most importar
2 3 4 5

Development of neural-network models for active devices, pa: 4
sive components, and high-speed interconnects has already b
demonstrated [6], [8], [24]. These neural models could be use 4
in device level analysis and also in circuit/system-level desig {2, 2, 3} {2,3, 3} {2,3, 4}
[10], [12]. In this section, neural-network modeling examples

are presented in each of the above-mentioned categories. Fig. 5. Possible network configurations for four interconnect lines in a
tree interconnect network. The values of the neural-network input variables

. {e1 ez e3} are shown in curly brackets. Each combination of these input
A. High-Speed Interconnect Network variables defines a particular interconnect topology [1], [24].

In this example, a neural network was trained to model signal
propagation delays of a VLSI interconnect network in printedetwork topology [1], [24], as defined in Fig. 5. The outputs
circuit boards (PCBs). The electrical equivalent circuit showingf the neural model are the propagation delays at the four
the interconnection of a source integrated circuit (IC) pin t@rminations, i.e.y = [r; 72 73 74]7, where propagation delay
the receiver pins is shown in Fig. 4. During PCB design, eath defined as the time taken for the signal to reach 80% of
individual interconnect network needs to be varied in ternis steady-state value. The corresponding three-layer MLP
of its interconnect lengths, receiver-pin load characteristiasgural-network structure, shown in Fig. 6, has a total of 18
source characteristics, and network topology. To facilitate thisput neurons and four output neurons.
a neural-network model of the interconnect configuration wasDue to large dimensionality of the input parameters (i.e.,
developed [24]. n = 18), a relatively large number of training and test data

The input variables in the model are(4500+ 4500) and 40 hidden layer neurons were used. Data
z=[L;RC;R;V,T.e;]",i =1,2,3,4andj = 1,2,3. was generated using an in-house interconnect simulator NILT
Here, L; is length of theith interconnect,R; and C; are [25]. Neural-network training was carried out using a classical
terminations of theith interconnect, R is the source BP algorithm for MLPs. The average test error of the resulting
impedance, andl, and7,. are peak value and rise time of theneural network model was observed to be 0.04%. This fast and
source voltage. The parametey identifies the interconnect accurate neural-network model was used in PCB interconnect

areas of RF/microwave CAD. The efficiency of CAD tools de- 35 4
pends largely on speed and accuracy of the component mode ) ] > 3
< 1
5
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Fig. 7. Geometry of the CPW folded double-stub filter circuit. Optimization
of the filter is carried out using fast EM-ANN models of various components in
the circuit.

Vertices

Fig. 6. Three-layer MLP structure with 18 inputs and four outputs used for
modeling the interconnect network of Fig. 4. TABLE |
ERROR COMPARISONBETWEEN THEANN MODEL AND EM SIMULATIONS FOR
. . . . . THE CPW SYMMETRIC T-JUNCTION. INPUT BRANCHLINE PORT ISPORT 1 AND
simulation, where 20000 interconnect trees (with different THE OUTPUT PORTS ON THEMAIN LINE ARE PORTS2 AND 3

interconnect lengths, terminations, and topologies) had to be
repetitively analyzed. Neural-model-based simulation wi ISul | #Su | [Sul | Su | ISsl | ZSx | ISul | £Ss
observed to be 310 times faster than existing NILT interconne rraining
network simulator. This enhanced model efficiency becom
important for the design of large VLSI circuits.

Average Error | 0.00150 | 0.754 | 0.00071 | 0.176 | 0.00084 | 0.246 | 0.00106 | 0.633

Std. Deviation | 0.00128 | 0.696 | 0.00058 | 0.172 | 0.00097 | 0.237 | 0.00109 | 0.546

B. CPW Symmetric T-Junction Testing

At microwave and millimeter-wave frequenciesl CPW cir Average Error | 0.00345 | 0.782 | 0.00088 | 0.141 | 0.00126 | 0.177 | 0.00083 | 0.838
cuits offer several advantages, such as the ease of shunt sw. Deviaton | 000337 | 0.674 | 0.00085 | 0.125 | 0.00105 | 0.129 | 0.00068 | 0.717
series connections, low radiation, low dispersion, and avoia-
ance of the need for thin fragile substrates. Currently, CAD
tools available for CPW circuits are inadequate because of fAata generation was performed for 25 physical configurations
nonavailability of fast and accurate models for CPW discontisizes) of the component over a frequency range of 1-50 GHz.
nuities such as T-junctions, bends, etc. Much effort has beEfe generated data was split into 155 training and 131 test
expended in developing efficient methods for EM simulatioh@mples. A three-layer MLP neural-network structure with 15
of CPW discontinuities. However, the time-consuming natufidden layer neurons was trained using the BP algorithm. The
of EM simulations limits the use of these tools for interactiv@ccuracy of the developed neural models is shown in Table I in
CAD, where the geometry of the component needs to be rep&ms of average error and standard deviation.
itively changed, thereby necessitating massive EM simulations.
Neural-network-based modeling and CAD approach addresSes
this challenge. Physics-based device models are CPU intensive, especially

In this example, the neural-network model of a symmetriwhen used for high-level design involving repetitive simula-
T-junction [10] is described. The T-junction configuration igions. A neural-network model will be very efficient for this kind
similar to that of the 2T junction shown in Fig. 7. Variableof devices in speeding up simulation and optimization. Two il-
neural model input parameters are the physical dimensidostrative examples are presented for neural-network transistor
Winy Gin, Wout, and Goye, and the frequency of operation,models.

e,z = [Wi,Gin Wout Gout freq)T. Parameterd¥;, and In the first example, a neural-network model representing

G;, are strip width and gap dimension of the side CPWarge-signal behavior of a MESFET was developed [12]. The

where W, and G, specify the two colinear CPW lines. neural-network model has six inputs, i.e., gate lengi,

Air bridges shown in T-junctions of Fig. 7 are also includedatewidth(W'), channel thicknes$a), doping density(Ng),

for the model development. The outputs of the ANN modegjate—source voltagéV,), and drain—source voltag€Vys).

are the magnitudes and phases of thigparameters, i.e., Under normal operating conditions, the gate is reverse biased
y = [MSy PSi3 MSy3 PS13 MSos PSaz MSs3 PS33]T.  and gate conduction currefit,.) can be neglected. As a result,

Transistor Modeling
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L e e I S e e — other ANN models or with any other models in the simulator
g 108 l to form a high-level circuit. In this section, circuit optimiza-
:7,: sl s tion examples utilizing fast and accurate neural models are
2 2 presented.
% 0 M 811 =] 3
E 5l ———— A. CPW Folded Double-Stub Filter
E_m_ i} e e v B In this example, a CPW folded double-stub filter shown in
= T S1z i Fig. 7 was designed. For this design, the substrate parameters
& (e, = 12.9, Hyyp, = 625 um, tan § = 0.0005) and the CPW
= 20t parametersif’ = 70 um, G = 60 um) were fixed, yielding
& 2l Z, =~ 50 . Fast neural-network models of CPW components,
namely, the CPW transmission line,“96ompensated bends,
W0 7 7 6 8 20 short-circuit stubs, and symmetric T-junctions (the one de-

Frequency (GHz) scribed in Section V) were trained using accurate training
i ) ) - data from full-wave EM simulations. Design and optimization
Fig. 8. Comparison of small-signab-parameter predictions from the f the fil lished . P S K
large-signal MESFET neural-network model ¢, z, +) with those from the Of the filter were accomplished using ti> MDS networ
Khatibzadeh and Trew MESFET model (—). simulator and the EM-ANN models of various components
[10].
drain and source conduction currerits and i.. are equal The filter was designed for a center frequency of 26 GHz.
o .~ Ideally, the length of each short-circuit stub and the section of
Thg neural-network model has four outputs '”C'“‘%'”g tqf%e btheen thge stubs should have a length 6f at 26 GHz.
drain current and electrode charges, Be [ia gg ¢a ] . A . However, due to the presence of discontinuities, these lengths

three-layer MLP neural-network structure was used. Tram'rr]%]ed to be adjusted. Parameters to be optimizedL.age

and test data (a total of 1000 samples) were generated fro - ;
OSA9@ simulations using a semianalytical MESFET modéi"d fmia. Initial values for these lengths were determined,
by Khatibzadeh and Trew [26]. The neural network was train d the correqundmg structure .sho.wed a less tha}n .|deal
using a modified BP algorithm including momentum adaptatiorﬁ‘?’ponse yvhen simulated. Th_e cireut was th_en _opt|m|zed,
ing gradient-descent, to provide the desired circuit response.

: : S
to improve the speed of convergence. The trained neural moége effect of optimization was a reduction in the two line

accurately_ predicted dcfac_characteristics of the I\/lESFElehgths. A comparison of circuit responses using the initial
A comparison of the MESFET neural model$%parameter EM-ANN design, optimized EM-ANN design, and full-wave

predictions versus those from the Khatibzadeh and Tr . : g ) = .
: A ) simulation of the optimized filter circuit are shown in
MESFET model is shown in Fig. 8. Since the neural model .
. . . . Fig. 9. A good agreement was obtained between the EM-ANN
directly describes terminal currents and charges as nonline

functions of device parameters, it can be conveniently used r}d full-wave EM simulations of the optimized circuit over
harmonic-balance simulations. a’frequency range of 1-50 GHz.
In the secqncj example, neural-network models representgg Three-Stage Monolithic-Microwave Integrated-Circuit

dc characteristics of a MOSFET were developed based IC) Amplifier

physics-based data obtained by using a recent automatic m eIYI P

generation algorithm [27]. The neural-network model has two In this example, MESFET neural models were used for yield

inputs, i.e., drain voltagéV,) and gate voltagéV,). Drain Optimization of a three-stag&-band MMIC amplifier shown

current (I4) is the neural model output parameter. Traininf! Fig. 10. Component ANN models were incorporated into cir-

and test data were generated using a physms-lﬂﬁd(MOS cuit simulators AgllenADSS andOSA90 Numerical results in

simulator* The average test errors of the trained MOSFEthis example were from th©@SA90implementation [12]. The

neural models were observed to be as low as 0.50%. ThRecifications for the amplifier are as follows.

fast neural model of the MOSFET can, therefore, be used to « Passband (8-12 GHz): 12.4 dBgain < 15.6 dB, Input

predict the dc characteristics of the device with physics-based voltage standing-wave ratio (VSWR) 2.8.

simulation accuracies. » Stopband (less than 6 GHz and greater than 15 GHz): gain
< 2dB.

V. CIRCUIT OPTIMIZATION USING NEURAL-NETWORKMODELS The ANN models of MESFETS (developed in Section 1V) were
u&ed in this amplifier design. There are 14 design variables, i.e.,

ANN models for RF/microwave components can be use .
in circuit design and optimization. To achieve this, the neurg?etal-plate aregsSc, ) of the metal-insulator—metal (MIM) ca-

L ; AR acitors(C;, i = 1, 2, 3, 4) and number of turngn;,;) of the
models are first incorporated into circuit simulators. FO?%iral inductors ;, j — 1-10). A total of 37 statistical vari-

designers who run the circuit simulator, the neural mode} . . . .

can be used in a similar way as other models available in t oleiﬁ mdcéﬁ'i?goﬁ%ggg#h}n%?jfg'dr;ttghag?glg;g;k:nedstsﬁigﬂfj

simulator’s library. An ANN model can be connected with Ping y ' P .
ness of capacitor models, and conductor width and spacing of

30SA90, ver. 3.00ptimization Syst. Associates, Dundas, ON, Canada (nogpiral inductor models were considered.
Agilent EEsof, Santa Rosa, CA).

4MINIMOS, ver. 6.1Inst. Microelectron., Tech. Univ. Vienna, Vienna, Aus- °MDS, Agilent Technol., Santa Rosa, CA.
tria. 6ADS Agilent Technol., Santa Rosa, CA.
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D 0T \\ Fig. 11. Monte Carlo responses of the three-stage MMIC amplifier. (a) and
z 0 A (b) Before yield optimization. (c) and (d) After yield optimization. Yield
o 0 5 optimization was carried out using neural-network models of MESFETSs.
R
?:n 50
® -100 1 EM-ANN Opt. linear statistical analysis and yield optimization from days to
4504 | W EMsim. ) hours [12].
- - - -EM-ANN Org. Considering that the Khatibzadeh and Trew models used in
-200 this example for illustration purpose are semianalytical in na-
frequency (GHz) ture, the CPU speed-up offered by neural-based design relative

to circuit design using physics-based semiconductor equations

Fig. 9. Comparison of the CPW folded double-stub filter responses befareuld be even more significant.
and after ANN-based optimization. A good agreement is achieved between
ANN-based simulations and full-wave EM simulations of the optimized circuit.

VI. CONCLUSIONS

Neural networks have recently gained attention as a fast,
accurate, and flexible tool to RF/microwave modeling, sim-
ulation, and design. As this emerging technology expands
2 from university research into practical applications, there is
Igguj a need to address the basic conceptual issues in ANN-based

C C, CAD. Through this tutorial, we have tried to build a technical

= bridge between microwave design concepts and neural-net-
L Lg .. . .

Va ; " Va work fundamentals. Principal ideas in neural-network-based
Icsx ICM techniques have been explained to design-oriented readers in
= = a simple manner. Neural-network model development from

beginning to end has been described with all the important
Fig. 10. A three-stage MMIC amplifier in which the three MESFETs argteps involved. To demonstrate the application issues, a set
represented by neural-network models. . . . L
of selected component modeling and circuit optimization
examples have been presented. The ANN techniques are

Yield optimization using a -centering algorithm [28] was also explained through a multimedia presentation including
performed with a minimax nominal design solution as the inrarrative audio clips (Appendix [) in the electronic version
tial point. The initial yield (before optimization) of the am-of this paper on the CD-ROM accompanying this issue. For
plifier using the minimax nominal design was 26% with fasthose readers interested in benefiting from neural networks
ANN-based simulations and 32% with relatively slow simularight away, we have provided a hyperlink deuroModeler
tions using the Khatibzadeh and Trew MESFET models. Aftglemonstration software (Appendix II).
yield optimization using neural-network models, the amplifier
yield improved from 32% to 58%, as verified by the Monte
Carlo analysis using the original MESFET models. The Monte
Carlo responses before and after yield optimization are shown in
Fig. 11. The use of neural-network models instead of the Khati-A multimedia Microsoft PowerPoint slide presentation in-
bzadeh and Trew models reduced the computation time for nafuding narrative audio clips is made available to the readers

ng ng Vg3 ng
R

R,
L, L,

APPENDIX |
MULTIMEDIA SLIDE PRESENTATION
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in the form of an Appendix. The presentation consisting of 5514] J. Xu, M. Yagoub, R. Ding, and Q. J. Zhang, “Neural-based dynamic

slides provides systematic highlights of the microwave-ANN modeling of nonlinear microwave circuits|EEE Trans. Microwave
Theory Tech.vol. 50, pp. 2769-2780, Dec. 2002.

methOdOIOQV and its praCt'Cal apphcatlons. Some of the ad['lS] M. Vai and S. Prasad, “Microwave circuit analysis and design by a mas-
vanced concepts are simplified using slide-by-slide illustrations sively distributed computing networklEEE Trans. Microwave Theory
and animated transitions. The audio clips further help to makF Tech, vol. 43, pp. 1087-1094, May 1995. _ _
. . . . 16] M. Vai, S. Wu, B. Li, and S. Prasad, “Reverse modeling of microwave
self-learning of this emerging area easier. circuits with bidirectional neural network modeldFEE Trans. Mi-
crowave Theory Techvol. 46, pp. 1492-1494, Oct. 1998.
[17] J. A. Jargon, K. C. Gupta, and D. C. DeGroot, “Applications of artifi-

APPENDIX || cial neural networks to RF and microwave measurements,’J. RF
HYPERLINK TO NeuroModelerSoFTWARE Microwave Computer-Aided Engrol. 12, pp. 3—24, 2002.
. . . [18] P. M. Watson, C. Cho, and K. C. Gupta, “Electromagnetic-artifi-
A hyperlink to the demonstration version NeuroModeler cial neural network model for synthesis of physical dimensions for

software is provided. The software can be used to practice var- multilayer asymmetric coupled transmission structurest! J. RF

. . . . L - _ _ Microwave Computer-Aided Engeol. 9, pp. 175-186, 1999.
ious interesting concepts in the tutorial including neural-net 19] F. Wang, V. K. Devabhaktuni, C. Xi, and Q. J. Zhang, “Neural network

work structure creation, neural-network training, neural mode structures and training algorithms for microwave applicatiohs,”J.
testing, etc. The main purpose is to enable the readers to better RF Microwave Computer-Aided Engol. 9, pp. 216-240, 1999.

_ _ ; ; [2Q] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
understand the neural-network-based design techniques and 18 networks are universal approximatorsyeural Networksvol, 2, pp.

get quick hands-on experience. 359-366, 1989.
[21] T. Y. Kwok and D. Y. Yeung, “Constructive algorithms for structure
learning in feedforward neural networks for regression probletB&E
ACKNOWLEDGMENT Trans. Neural Networks/ol. 8, pp. 630—645, May 1997.
22] J.de Villiers and E. Barnard, “Backpropagation neural nets with one and
The authors thank L. Ton and M. Deo, both of the Departmen& ] two hidden layers,1EEE Trans. NeSralegtworkon. 4, pp. 136-141,
of Electronics, Carleton University, Ottawa, ON, Canada, for  Jan. 1992
their help in preparing the multimedia Microsoft PowerPoint[23] G.Thimm and E. Fiesler, “High-order and multilayer perceptron initial-
. . . , . . ization,” IEEE Trans. Neural Networksol. 8, pp. 349-359, Mar. 1997.
slide presentation and this paper’s manuscript, respectively. 247 a. veluswami, M. S. Nakhla, and Q. J. Zhang, “The application of neural
networks to EM-based simulation and optimization of interconnects in
high-speed VLSI circuits,1TEEE Trans. Microwave Theory Teglvol.
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