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ABSTRACT: Neural networks recently gained attention as fast and flexible vehicles to
microwave modeling, simulation, and optimization. After learning and abstracting from
microwave data, through a process called training, neural network models are used during
microwave design to provide instant answers to the task learned. Appropriate neural
network structure and suitable training algorithm are two of the major issues in developing
neural network models for microwave applications. Together, they decide amount of training
data required, accuracy that could possibly be achieved, and more importantly developmen-
tal cost of neural models. A review of the current status of this emerging technology is
presented, with emphasis on neural network structures and training algorithms suitable for
microwave applications. Present challenges and future directions of the area are discussed.
Q 1999 John Wiley & Sons, Inc. Int J RF and Microwave CAE 9: 216]240, 1999.
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I. INTRODUCTION

The drive for manufacturability-oriented design
and reduced time-to-market in the microwave
industry require design tools that are accurate
and fast. Statistical analysis and optimization with

Ž .detailed physics]electromagnetic EM models of
active and passive components can be an impor-
tant step toward a design for first-pass success,
but it is computationally intensive. In recent years

Ž .a novel computer-aided design CAD approach
based on neural network technology has been
introduced in the microwave community, for the
modeling of passive and active microwave compo-

w x wnents 1]5 , and microwave circuit design 2, 4, 6,
x7 . A neural network model for a device]circuit

can be developed by learning and abstracting
from measured]simulated microwave data,
through a process called training. Once trained,
the neural network model can be used during
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microwave design to provide instant answers to
w xthe task it learned 1 . Recent work by microwave

researchers demonstrated the ability of neural
networks to accurately model a variety of mi-
crowave components, such as microstrip intercon-

w x w x w xnects 1, 3, 8 , vias 3, 9 , spiral inductors 5, 10 ,
w xFET devices 1, 11]13 , power transistors and

w x Ž .power amplifiers 14 , coplanar waveguide CPW
w xcircuit components 4 , packaging and intercon-

w xnects 15 , etc. Neural networks have been used in
w xcircuit simulation and optimization 2, 13, 16 ,

signal integrity analysis and optimization of very
Ž .large scale integrated VLSI circuit interconnects

w x w x8, 15 , microstrip circuit design 17 , microwave
w x Ž .filter design 18 , integrated circuit IC modeling

w x w x w x11 , process design 19 , synthesis 6 , Smith chart
w xrepresentation 7 , and microwave impedance

w xmatching 20 . The neural network technologies
have been applied to microwave circuit optimiza-
tion and statistical design with neural network

w xmodels at both device and circuit levels 2, 12 .
These pioneering works helped to establish the

Q 1999 John Wiley & Sons, Inc. CCC 1096-4290r99r030216-25
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framework of neural modeling technology in mi-
crowave applications. Neural models are much
faster than original detailed EM]physics models
w x1, 2 , more accurate than polynomial and empiri-

w xcal models 21 , allow more dimensions than table
w xlookup models 22 , and are easier to develop

w xwhen a new device]technology is introduced 16 .
Theoretically, neural network models are a

kind of black box models, whose accuracy de-
pends on the data presented to it during training.
A good collection of the training data, i.e., data
which is well-distributed, sufficient, and accu-
rately measured]simulated, is the basic require-
ment to obtain an accurate model. However, in
the reality of microwave design, training data
collection]generation may be very expen-
sive]difficult. There is a trade-off between the
amount of training data needed for developing
the neural model, and the accuracy demanded by
the application. Other issues affecting the accu-
racy of neural models are due to the fact that
many microwave problems are nonlinear, nons-
mooth, or containing many variables. An appro-
priate structure would help to achieve higher
model accuracy with fewer training data. For ex-
ample, a feedforward neural network with smooth
switching functions in the hidden layer is good at
modeling smooth, slowly varying nonlinear func-
tions, while a feedforward neural network with
Gaussian functions in the hidden layer could be
more effective in modeling nonlinear functions
with large variations. The size of the structure,
i.e., the number of neurons is also an important
criteria in the development of a neural network.
Too small a network cannot learn the problem
well, but too large a size will lead to overlearning.
An important type of neural network structure is
the knowledge-based neural networks where mi-
crowave empirical information is embedded into

w xneural network structures 1 , enhancing reliabil-
ity of the neural model and reducing the amount
of training data needed.

Training algorithms are an integral part of
neural network model development. An appropri-
ate structure may still fail to give a better model,
unless trained by a suitable training algorithm. A
good training algorithm will shorten the training
time, while achieving a better accuracy. The most
popular training algorithm is backpropagation
Ž .BP , which was proposed in the mid 1980s. Later,
a lot of variations to improve the convergence of
BP were proposed. Optimization methods such as
second-order methods and decomposed optimiza-
tion have also been used for neural network train-

ing in recent years. A noteworthy challenge en-
countered in the neural network training is the
existence of numerous local minima. Global opti-
mization techniques have been combined with
conventional training algorithms to tackle this
difficulty.

In Section II, the problem statement of neural
based microwave modeling is described. In Sec-
tion III, a detailed review of various neural net-
work structures useful to microwave design area

Žsuch as standard feedforward networks multi-
.layer perceptrons, radial basis functions , net-

Žworks with prior knowledge electromagnetic arti-
ficial neural networks or EM-ANN, knowledge

.based neural networks , combined networks,
wavelet and constructive networks, is presented.
Section IV discusses various training algorithms
of interest such as backpropagation, second-order

Žalgorithms conjugate gradient, quasi-Newton,
.Levenberg]Marquardt , decomposed optimiza-

tion algorithms, and global training algorithms.
Section V presents a comparison of neural net-
work structures and training algorithms, through
microwave examples. Finally, Section VI contains
conclusions and future challenges in this area.

II. NEURAL BASED MICROWAVE
MODELING: PROBLEM STATEMENT

Let x be an N -vector containing parameters of ax
given device or a circuit, e.g., gate length and gate
width of a FET transistor; or geometrical and
physical parameters of transmission lines. Let y
be an N -vector containing the responses of they
device or the circuit under consideration, e.g.,
drain current of a FET; or S-parameters of trans-
mission line. The relationship between x and y
may be multidimensional and nonlinear. In the
original EM]circuit problems, this relationship is
represented by,

Ž . Ž .y s f x . 1

Such a relationship can be modeled by a neural
network, by training it through a set of x y y
sample pairs given by,

Ž . Ž .x , d , p s 1, 2, . . . , N , 2� 4p p p

where x and d are N - and N -dimensionalp p x y
vectors representing the pth sample of x and y,
respectively. This sample data called the training



Wang et al.218

data is generated from original EM simulations
or measurement. Let the neural network model

Ž .for the relationship in 1 be represented by,

Ž . Ž .y s y x, w , 3

where w is the parameter of the neural network
model, which is also called the weight vector in
neural network literature, and x and y are called
the inputs and outputs of the neural model. The
definition of w, and how y is computed through x
and w determine the structure of the neural net-

Ž .work. The neural model of 3 does not represent
Ž .the original problem of 1 , unless the neural

Ž .model is trained by data in 2 . A basic descrip-
tion of the training problem is to determine
w such that the difference between the neural
model outputs y and desired outputs d from
simulation]measurement,

N Np y1 2Ž . Ž . Ž .E w s y x , w y d 4Ž .Ý Ý pk p pk2 ps1 ks1

Ž .is minimized. In 4 d is the kth element ofpk
Ž .vector d , y x , w is the k th output of thep pk p

neural network when the input presented to the
network is x . Once trained, the neural networkp
model can be used for predicting the output val-
ues given only the values of the input variables. In
the model testing stage, an independent set of
input]output samples, called the testing data is
used to test the accuracy of the neural model.
Normally, the testing data should lie within the
same input range as the training data. The ability
of neural models to predict y when presented
with input parameter values x, never seen during
training is called the generalization ability. A
trained and tested neural model can then be used
online during microwave design stage providing
fast model evaluation replacing original slow
EM]device simulators. The benefit of the neural
model approach is especially significant when the
model is highly repetitively used in design pro-
cesses such as, optimization, Monte Carlo analy-
sis, and yield maximization.

When the outputs of neural network are con-
tinuous functions of the inputs, the modeling
problem is known as regression or function ap-
proximation, which is the most common case in
microwave design area. In the next section, a
detailed review of neural network structures used
for this purpose is presented.

III. NEURAL NETWORK STRUCTURES

In this section, different ways of realizing y s
Ž .y x, w are described. The definition of w and how

y is computed from x and w in the model deter-
mine different neural model architectures.

A. Standard Feedforward
Neural Networks

Feedforward neural networks are a basic type of
neural networks capable of approximating generic
classes of functions, including continuous and in-

w xtegrable ones 23 . An important class of feedfor-
ward neural networks is multilayer perceptrons
Ž .MLP . Typically, the MLP neural network con-
sists of an input layer, one or more hidden layers,
and an output layer, as shown in Figure 1. Sup-
pose the total number of hidden layers is L. The
input layer is considered as layer 0. Let the num-
ber of neurons in hidden layer l be N , l sl
1, 2,, . . . , L. Let w l represent the weight of thei j
link between the jth neuron of the l y 1th hid-
den layer and ith neuron of lth hidden layer, and
u l be the bias parameter of ith neuron of lthi
hidden layer. Let x represent the ith input pa-i

lrameter to the MLP. Let y be the output of ithi
neuron of lth hidden layer, which can be com-
puted according to the standard MLP formulas

Ž .Figure 1. Multilayer perceptron MLP structure.
Typically, the network consists of an input layer, one or
more hidden layers, and an output layer.
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as,

Nly1
ll ll ly1 ly s s w ? y q u ,Ýi i j j iž /js1 Ž .5

i s 1, . . . , N , l s 1, . . . , Ll

0y s x ,i i Ž .6
i s 1, . . . , N , N s N ,x x 0

Ž .where s . is usually a monotone squashing func-
tion. Let n represent the weight of the linkk i
between the ith neuron of the Lth hidden layer
and the k th neuron of the output layer, and bk
be the bias parameter of the kth output neuron.
The outputs of MLP can be computed as,

NL
L Ž .y s n ? y q b , k s 1, . . . , N . 7Ýk k i i k y

is1

For function approximation, output neurons can
Ž .be processed by linear functions as shown in 7 .

The most commonly used function for hidden
Ž .neurons s . , also called the activation function,

is the logistic sigmoid function given by,

1
Ž . Ž .s t s , 8ytŽ .1 q e

which has the property of,

1, as t ª q`,Ž . Ž .s t ª 9½ 0, as t ª y`.

Ž .Other possible candidates for s . are the arctan-
gent function given by,

2
Ž . Ž . Ž .s t s arctan t , 10ž /p

and the hyperbolic tangent function given by,

Ž t yt .e y e
Ž . Ž .s t s . 11t ytŽ .e q e

All these functions are bounded, continuous,
monotonic, and continuously differentiable.
Training parameters w includes,

lw s w , j s 1, . . . , N , i s 1, . . . , N ,i j ly1 l

l s 1, . . . , L; u l , i s 1, . . . , N ,i l

l s 1, . . . , L;
n , i s 1, . . . , N , k s 1, . . . , N ;k i L y

Ž .b , k s 1, . . . , N . 12k y

ŽIt is well known that a two-layered MLP no
.hidden layers is not capable of approximating

w xgeneric nonlinear continuous functions 24, 25 .
w xThe universal approximation theorem 26, 27

states that a three-layer perceptron, with one
hidden sigmoidal layer, is capable of modeling
virtually any real function of interest to any de-
sired degree of accuracy, provided sufficiently
many hidden neurons are available. As such, fail-
ure to develop a good neural model can be at-
tributed to inadequate learning, inadequate num-
ber of hidden neurons, or the presence of a
stochastic rather than a deterministic relation be-

w xtween input and output 27 .
However, in reality a neural network can only

have a finite number of hidden neurons. Usually,
three- or four-layered perceptrons are used in
neural modeling of microwave circuit compo-
nents. Neural network performance can be eval-
uated based on generalization capability and

w xmapping capability 28 . In the function approxi-
mation or regression area, generalization capabil-

w xity is a major concern. It is shown in 29 that
four-layered perceptrons are not preferred in all
but the most esoteric applications in terms of
generalization capability. Intuitively, four-layered
perceptrons would perform better in defining the
decision boundaries in pattern classification tasks
because of an additional nonlinear hidden layer
resulting in hierarchical decision boundaries. This

w xhas been verified in 28 for the mapping capabil-
ity of the network.

Feedforward neural networks which have only
one hidden layer, and which use radial basis acti-
vation functions in the hidden layer, are called

Ž .radial basis function RBF networks. Radial ba-
sis functions are derived from the regularization
theory in the approximation of multivariate func-

w xtions 30, 31 . Park and Sandberg showed that
RBF networks also have universal approximation

w xability 32, 33 . Universal convergence of RBF
nets in function estimation and classification has

w xbeen proven by Krzyzak, Linder, and Lugosi 34 .
The output neurons of RBF networks are also

linear neurons. The overall input]output transfer
function of RBF networks is defined as,

N1

Ž 5 5. Ž .y s n s x y u , j s 1, . . . , N , 13Ýj ji i y
is1

where u is the center of radial basis function ofi
the ith hidden neuron, n is the weight of theji
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link from the ith hidden neuron to the jth output
neuron. Some of the commonly used radial basis

w xactivation functions are 35 ,

2t
Ž . Ž .s t s exp y , 14ž /l

b2 2Ž . Ž . Ž .s t s c q t , 0 - b - 1, 15

Ž . Ž .where 14 is the Gaussian function, 15 is the
multiquadratic function and, l, c, and b are the
function parameters. Training parameters w in-
cludes u , n , i s 1, . . . , N , j s 1, . . . , N and li ji 1 y
or c and b.

Although MLP and RBF are both feedforward
neural networks, the different nature of the hid-
den neuron activation functions makes them be-
have very differently. First, the activation function
of each hidden neuron in an MLP computes the
inner product of the input vector and the synaptic
weight vector of that neuron. On the other hand,
the activation function of each hidden neuron in
a RBF network computes the Euclidean norm
between the input vector and the center of that
neuron. Second, MLP networks construct global
approximations to nonlinear input]output map-
ping. Consequently, they are capable of generaliz-
ing in those regions of the input space where little
or no training data is available. On the contrary,
RBF networks use exponentially decaying local-

Ž .ized nonlinearities e.g., Gaussian functions to
construct local approximations to nonlinear in-
put]output mapping. As a result RBF neural
networks are capable of faster learning and ex-
hibit reduced sensitivity to the order of presenta-

w xtion of training data 36 . Consequently, a hidden
neuron influences the outputs of the network only
for inputs near to its center, and an exponential
number of hidden neurons are required to cover

w xthe entire domain. In 37 , it is suggested that
RBF networks are suited for problems with a
smaller number of inputs.

The universal approximation theorems for both
MLP and RBF only state that there exists such a
network to approximate virtually any nonlinear
function. However, they did not specify how large
a network should be for a particular problem
complexity. Several algorithms have been pro-
posed to find proper network size, e.g., construc-

w x w xtive algorithms 38 , network pruning 39 . Regu-
w xlarization 40 is also a technique used to match

the model complexity with problem complexity.
Rational functions have also been proven to uni-
versally approximate any real-valued functions. In

w x41 , a network architecture that uses a rational
function to construct a mapping neural network
has been proposed. The complexity of the archi-
tecture is still considered as a major drawback
of the rational function approach, although it
requires fewer parameters than a polynomial
function.

B. Neural Network Structures
with Prior Knowledge

Since MLP and RBF belong to the type of black
box models structurally embedding no problem
dependent information, the entire information
about the application comes from training data.
Consequently, a large amount of training data is
usually needed to ensure model accuracy. In mi-
crowave applications, obtaining a relatively larger
set of training data by either EM]physics simula-
tion, or by measurement, is expensive andror
difficult. The underlying reason is that simula-
tion]measurement may have to be performed for
many combinations of geometrical]material]
process parameters. On the contrary, if we try to
reduce the training data, the resulting neural
models may not be reliable. Neural network
structures with prior knowledge address this prob-
lem. There are two approaches to the use of prior
knowledge during neural model development pro-
cess. In the first approach, the prior knowledge is
used to define a suitable preprocessing of the
simulation]measurement data such that the in-
put]output mapping is simplified. The first
method in this approach, a hybrid EM-ANN

w xmodel was proposed in 3 . Existing approximate
models are used to construct the input]output
relationship of the microwave component. The
EM simulator data is then used to develop a
neural network model to correct for the differ-

Žence between the approximate model source
.model and the actual EM simulation results, and

as such the method is also being called the dif-
ference method. In this way, the complexity of the
input]output relationship that neural network has
to learn is considerably reduced. This reduction
in complexity helps to develop an accurate neural

w xnetwork model with less training data 3 . The
second method in this approach, is the prior

Ž . w xknowledge input PKI method 9 . In this method,
the source model outputs are used as inputs for
the neural network model in addition to the origi-
nal problem inputs. As such, the input]output
mapping that must be learned by a neural net-
work is that between the output response of the
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source model and that of the target model. In
the extreme case, where the target outputs are
the same as the source model outputs, the learn-
ing problem is reduced to a one-to-one mapping.

w xIt was shown 9 that PKI method performs better
than the difference method for 2-port GaAs mi-
crostrip ground via.

The second approach to incorporate prior
knowledge, is to incorporate the knowledge di-
rectly into neural network internal structure, e.g.,
w x42 . This knowledge provides additional informa-
tion of the original problem, which may not be
adequately represented by the limited training
data. The first method of this approach, uses
symbolic knowledge in the form of rules to estab-
lish the structure and weights in a neural network
w x42]44 . The weights, e.g., the certainty factor

w xassociated with rules 45 or both the topology
and weights of the network can be revised during

w xtraining 46 . The second method of this approach
uses prior knowledge to build a modular neural
network structure, i.e., to decide the number of
modules needed, and the way in which the mod-

w xules interact with each other 47, 48 . Another
neural network structure worth mentioning here

Ž . w xis the local model network LMN 49]52 which
is an engineering-oriented network. It is based on
the decomposition of a nonlinear dynamic
system’s operating range into a number of smaller
operating regimes, and the use of simple local
models to describe the system within each regime.
The third method restricts the network architec-
ture through the use of local connections and
constraining the choice of weights by the use of

w xweight sharing 36 . These existing approaches to
incorporate knowledge are largely using symbolic
information which exist in the pattern recognition
area. In the microwave modeling areas however,
the important problem knowledge is usually avail-
able in the form of functional empirical models
w x53, 54 .

w xIn 1 , a new microwave-oriented knowledge-
Ž .based neural network KBNN was introduced. In

this method the microwave knowledge in the form
of empirical functions or analytical approxima-
tions is embedded into the neural network struc-
ture. This structure was inspired from the fact
that practical empirical functions are usually valid
only in a certain region of the parameter space.
To build a neural model for the entire space,
several empirical formulas and the mechanism to
switch between them are needed. The switching
mechanism expands the feature of the sigmoidal

w xradial basis function 55 into high-dimensional
space and with more generalized activation func-
tions. This model retains the essence of neural
networks in that the exact location of each switch-
ing boundary, and the scale and position of each
knowledge function are initialized randomly and
then determined eventually during training. The

Ž .knowledge-based neural network KBNN struc-
ture is a nonfully connected structure as shown in
Figure 2. There are six layers in the structure,
namely, input layer X, knowledge layer Z, bound-
ary layer B, region layer R, normalized region
layer RX, and output layer Y. The input layer X
accepts parameters x from outside the model.
The knowledge layer Z is the place where mi-

Ž .Figure 2. Knowledge-based neural network KBNN structure.
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crowave knowledge resides in the form of single
Ž .or multidimensional functions c . .

The output of the ith knowledge neuron is given
by,

Ž . Ž .z s c x, w , i s 1, 2, . . . , N , 16i i i z

where x is a vector including neural network
inputs x , i s 1, 2, . . . , N and w is a vector ofi x i
parameters in the knowledge formula. The knowl-

Ž .edge function c x, w is usually in the form ofi i
empirical or semi-analytical functions. For exam-
ple, the drain current of a FET is a function of its
gate length, gate width, channel thickness, doping

w xdensity, gate voltage, and drain voltage 54 . The
boundary layer B can incorporate knowledge in
the form of problem dependent boundary func-

Ž .tions B . ; or in the absence of boundary knowl-
edge just as linear boundaries. Output of the ith
neuron in this layer is calculated by,

Ž . Ž .b s B x, n , i s 1, 2, . . . , N , 17i i i b

where n is a vector of parameters in B definingi i
an open or closed boundary in the input space x.

Ž .Let s . be a sigmoid function. The region layer
R contains neurons to construct regions from
boundary neurons,

Nb

Ž .r s s a b q u , i s 1, 2, . . . , N ,Łi i j j i j r
js1

Ž .18

where a and u are the scaling and bias param-i j i j
eters, respectively. The normalized region layer RX

w xcontains rational function based neurons 41 to
normalize the outputs of region layer,

riX Ž .X Xr s , i s 1, 2, . . . , N , N s N . 19i r r rNrÝ rjs1 j

The output layer Y contains second-order neu-
w xrons 56 combining knowledge neurons and nor-

malized region neurons,

N N Xz r
Xy s b z r r q b ,Ý Ýj ji i ji k k j0ž /is1 ks1

Ž .j s 1, 2, . . . , N , 20y

where b reflects the contribution of the ithji
knowledge neuron to output neuron y and b isj j0
the bias parameter. r is one indicating thatji k

region rX is the effective region of the ith knowl-k
edge neuron contributing to the jth output. A
total of N X regions are shared by all the outputr
neurons. Training parameters w for the entire
KBNN model includes,

ww s w , i s 1, . . . , N ; n , i s 1, . . . , N ;i z i b

a , u , i s 1, . . . , N , j s 1, . . . , N ;i j i j r b

b , j s 1, . . . , N , i s 0, . . . , N ;ji y z

r , j s 1, . . . , N , i s 1, . . . , N ,ji k y z

x Ž .Xk s 1, . . . , N . . 21r

The prior knowledge in KBNN gives it more
information about the original microwave prob-
lem, beyond that in the training data. Therefore,
such a model has better reliability when training
data is limited or when the model is used beyond
training range.

C. Combining Neural Networks

In the neural network research community, a
recent development called combining neural net-
works is presently proposed, addressing issues of
network accuracy and training efficiency. Two
categories of approaches have been developed:
ensemble-based approach and modular approach
w x w x57 . In the ensemble-based approach 57, 58 ,
several networks are trained such that each net-
work approximates the overall task in its own way.
The outputs from these networks are then com-
bined to produce a final output for the combined
network. The aim is to achieve a more reliable
and accurate ensemble output than would be
obtained by selecting the best net. Optimal linear

Ž .combinations OLCs of neural networks were
w xproposed and investigated in 58]60 , which is

constructed by forming weighted sums of the cor-
responding outputs of the individual networks.

w xThe second category, e.g., 36, 61 , features a
modular neural network structure that results
from the decomposition of tasks. The decomposi-

Žtion may be either automatic based on the blind
application of a data partitioning algorithm, such

w x.as hierarchical mixtures-of-experts 62 or ex-
Žplicit based on prior knowledge of the task or the

wspecialist capabilities of the modules, e.g., 47,
x.48 . The modular neural network consists of sev-

eral neural networks, each optimized to perform
a particular subtask of an overall complex opera-
tion. An integrating unit then selects or combines
the outputs of the networks to form the final
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output of the modular neural network. Thus, the
modular approach not only simplifies the overall

w xcomplexity of the problem 63 , but also facilitates
incorporation of problem knowledge into the net-
work structure. This leads to improved overall
network reliability andror training efficiency
w x48, 64 .

A new hierarchical neural network approach
for the development of the library of microwave
neural models, motivated by the concept of com-

w xbining neural networks, was proposed in 65 . This
approach is targeted for massively developing
neural network models for building libraries of
microwave models. Library development is of
practical significance, since the realistic power of
many CAD tools depends upon the richness,
speed, and the accuracy of their library models.
In this approach, a distinctive set of base neural
models is established. The basic microwave func-
tional characteristics common to various models
in a library are first extracted and incorporated
into base neural models. A hierarchical neural
network structure, as shown in Figure 3, is con-
structed for each model in the library with lower
level modules realized by base neural models.
The purpose of this structure is to construct an
overall model from several modules so that the
library base relationship can be maximally reused
for every model throughout the library. For each
lower level module, an index function selects the
appropriate base model, and a structural knowl-
edge hub selects inputs relevant to the base model

Figure 3. The hierarchical neural network structure.
X and Y represent the inputs and outputs of the overall
network. L is the ith low level module with an associ-i

Ž .ated ith knowledge hub U . . u and z represent thei
inputs and outputs of low-level modules.

out of the whole input vector based on the con-
figuration of the particular library component.
The lower level neural modules recall the trained
base models in the library. The higher level mod-
ule realized by another neural network, models a
much easier relationship than the original rela-
tionship since most of the information is already
contained in the base models in the lower level.
For example, even a linear two-layer perceptron
might be sufficient. Consequently, the amount of
data needed to train this higher level module is
much less than that required for training standard
MLP to learn the original problem.

The overall library development is summarized
in the following steps:

Step 1. Define the input and output spaces of the
base models, and extract basic characteristics from
the library, using microwave empirical knowledge
if available.

Step 2. Collect training data corresponding to
each base model inputs and outputs.

Step 3. Construct and train base neural models
incorporating the knowledge from Step 1.

Step 4. Take one unmodeled component from the
library. According to the base model input space
definition in Step 1, set up the structural knowl-
edge hubs, which maps the model input space
into base model input space. This automatically
sets up the lower level modules.

Step 5. Collect training data corresponding to the
model in the library.

Step 6. Preprocess the training data by propagat-
ing the inputs through knowledge hubs and lower
level modules.

Step 7. Train the higher level neural module from
preprocessed training data.

Step 8. If all done, then stop, otherwise proceed
to train the next library model and go to Step 4.

The algorithm described above permits the hier-
archical neural models to be developed systemati-
cally, and enables the library development pro-
cess to be maximally automated. Examples of
transmission line neural model libraries, useful
for the design of high-speed VLSI interconnects,

w xwere developed in 65 . Compared to standard
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neural model techniques, the hierarchical neural
network approach substantially reduces the cost
of library development through reduced need for
data generation and shortened time of training,
while yielding reliable neural models.

D. Other Neural Network Structures

As mentioned earlier, one of the major problems
in the construction of neural network structure, is
the determination of the number of hidden neu-
rons. Many techniques have been proposed to
address this problem. In this section, some of the
structures are reviewed, with emphasis on wavelet
networks which is a very systematic approach
already used in microwave area, cascade-correla-
tion network, and projection pursuit network, the
later two networks being popular constructive
networks.

The idea of combining wavelet theory with
neural networks has been recently proposed
w x66]68 . Though the wavelet theory has offered
efficient algorithms for various purposes, their
implementation is usually limited to wavelets of
small dimension. It is known that neural networks
are powerful tools for handling problems of large
dimension. Combining wavelets and neural net-
works can hopefully remedy the weakness of each
other, resulting in networks with efficient con-
structive methods and capable of handling prob-
lems of moderately large dimension. This resulted
in a new type of neural networks, called wavelet
networks which use wavelets as the hidden neu-
ron activation functions. Wavelet networks are
feedforward networks with one hidden layer. The
hidden neurons are computed as,

1 Ž Ž .. Ž .y s c d x y T , i s 1, . . . , N , 22i i i 1

Ž .where c . is the radial type mother wavelet
function, d are dilation parameters, and T arei i
translation vectors for the ith hidden wavelet
neuron. Both d and T are adapted together withi i

Ž .n and b of Eq. 7 during training.k i k
Due to the similarity between adaptive dis-

cretization of the wavelet decomposition and
one-hidden-layer neural networks, there is an ex-
plicit link between the network parameters such
as d , T , and n , and the decomposition formula.i i k i
As such, the initial values of network parameters
can be estimated from the training data using
decomposition formulas. However, if the initial-
ization uses regularly truncated wavelet frames
w x67 , many useless wavelets on the wavelet lattice

may be included in the network, resulting in
larger network size. Alternative algorithms for
wavelet network construction were proposed in
w x66 to better handle problems of large dimension.

Ž .The number of wavelets hidden neurons was
considerably reduced by eliminating the wavelets
whose supports do not contain any data points.
Some regression techniques, such as stepwise se-
lection by orthogonalization and backward elimi-
nation, were then used to further reduce the
number of wavelets. The wavelet networks with
radial wavelet functions can be considered as
RBF networks, since both of them have the local-
ized basis functions. The difference is that the
wavelet function is localized both in the input and

w xfrequency domains 68 . Besides retaining the ad-
vantage of faster training, wavelet networks have
a guaranteed upper bound on the accuracy of

w xapproximation 69 with a multiscale structure.
Wavelet networks have been used in nonparamet-

w xric regression estimation 66 and were trained
based on noisy observation data to avoid the

w x w xproblem of undesirable local minima 69 . In 14 ,
wavelet networks and stepwise selection by or-
thogonalization regression technique were used
to build a neural network model for a 2.9 GHz
microwave power amplifier. In this technique, a
library of wavelets was built according to the
training data and the wavelet that best fits the
training data was selected. Later in an iterative
manner, wavelets in the remainder of the library
that best fits the data in combination with the
previously selected wavelets were selected. For
computational efficiency, later selected wavelets
were orthonormalized to earlier selected ones.

Besides wavelet network, there are a number
of constructive neural network structures, the
most representative among them being the cas-

Ž . w xcade correlation network CasCor 70 . A CasCor
Žnetwork begins with a minimal network without

.hidden neurons , then automatically adds hidden
neurons one-by-one during training. Each newly
added hidden neuron receives a connection from
each of the network’s original inputs and also
from every pre-existing hidden neuron, thus re-
sulting in a multilayer network. For regression

w xtasks, a CasPer algorithm 71 which constructs a
neural network structure in a similar way as Cas-
Cor was proposed. CasPer does not use the maxi-
mum correlation training criterion of CasCor,
which tends to produce hidden neurons that satu-
rate, thus making Cascor more suitable for classi-
fication tasks rather than regression tasks. How-
ever, both CasCor and CasPer may lead to very
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deep networks and high fan-in to the hidden
neurons. A towered cascade network was pro-

w xposed in 72 to alleviate this problem.
Another constructive neural network structure

Ž .is the projection pursuit learning network PPLN ,
which adds neurons with trainable activation
functions one-by-one, within a single hidden layer

w xwithout cascaded connections 73 . The CasCor
learns the higher order features using cascaded
connection while PPLN learns it using the train-
able activation functions. Every time a new hid-
den neuron is added to PPLN, it first trains the
new neuron by cyclically updating the output layer
weights, the smooth activation function, and the
input layer weights associated with this neuron.
Then a backfitting procedure is employed to fine
tune the parameters associated with the existing
hidden neurons. PPLN is able to avoid the curse
of dimensionality by interpreting high-dimen-
sional data through well-chosen low-dimensional
linear projections.

IV. TRAINING ALGORITHMS

A. Training Objective

A neural network model can be developed
through a process called training. Suppose the

�Ž .training data consists of N sample pairs, x , d ,p p p
4p s 1, 2, . . . , N , where x and d are N - andp p p x

N -dimensional vectors representing the inputsy
and the desired outputs of the neural network,
respectively. Let w be the weight vector contain-
ing all the N weights of the neural network. Forw
example, for MLP neural network w is given by
Ž . Ž .12 , and for KBNN w is given by 21 .

The objective of training is to find w such that
the error between the neural network predictions
and the desired outputs are minimized,

Ž . Ž .min E w , 23
w

where

N Np y1 2Ž . Ž .E w s y x , w y dŽ .Ý Ý pk p pk2 ps1 ks1

Np1
Ž . Ž .s e w , 24Ý p2 ps1

Ž .and d is the k th element of vector d , y x , wpk p pk p
is the k th output of the neural network when the
input presented to the network is x . The termp

Ž .e w is the error in the output due to the pthp
sample.

Ž .The objective function E w is a nonlinear
function w.r.t. the adjustable parameter w. Due to

Ž .the complexity of E w , iterative algorithms are
often used to explore the parameter space effi-
ciently. In iterative descent methods, we start
with an initial guess of w and then iteratively
update w. The next point of w, denoted as w , isnext
determined by a step down from the current point
w along a direction vector d,now

Ž .w s w q hd, 25next now

where h is a positive step size regulating the
extent to which we can proceed in that direction.
Every training algorithm has its own scheme for
updating the weights of the neural network.

B. Backpropagation Algorithm
and Its Variants

One of the most popular algorithms for neural
Ž .network training is the backpropagation BP al-

w xgorithm 74 , proposed by Rumelhart, Hinton,
and Williams in 1986. The BP algorithm is a
stochastic algorithm based on the steepest de-

w xscent principle 75 , wherein the weights of the
neural network are updated along the negative
gradient direction in the weight space. The up-
dated formulas are given by,

Ž .­ E w
Dw s w y w s yh ,now next now

wsw­ w now

Ž .26a

Ž .­ e wp
Dw s w y w s yh ,now next now

wsw­ w now

Ž .26b

where h called learning rate controls the step size
Ž .of weight update. Update formula 26b is called

update sample-by-sample, where the weights are
updated after each sample is presented to the

Ž .network. Update formula 26a is called batch
mode update, where the weights are updated
after all training samples have been presented to
the network.

The basic backpropagation, derived from the
principles of steepest descent, suffers from slower
convergence and possible weight oscillation. The
addition of a momentum term to weight update

Ž . Ž . w xformulas in 26a and 26b as proposed by 74 ,
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provided significant improvements to the basic
backpropagation, reducing the weight oscillation.
Thus,

Ž .­ E w
Dw s yh q aDwnow old

wsw­ w now

Ž .­ E w
Ž .s yh q a w y w ,now old

wsw­ w now

Ž .27a

Ž .­ e wp
Dw s yh q aDwnow old

wsw­ w now

Ž .­ e wp Ž .s yh q a w y w ,now old
wsw­ w now

Ž .27b

where a is the momentum factor which controls
the influence of the last weight update direction
on the current weight update, and w representsold
the last point of w. This technique is also known

w xas the generalized delta-rule 36 . Other ap-
proaches to reduce weight oscillation have also
been proposed, such as invoking a correction

w xterm that uses the difference of gradients 76 ,
and the constrained optimization approach where
constraints on weights are imposed to achieve
better alignment between weight updates in dif-

w xferent epochs 77 .
As neural network research moved from the

state-of-the-art paradigm to real-world applica-
tions, the training time and computational re-
quirements associated with training have become

w xsignificant considerations 78]80 . Some of the
real-world applications involve large-scale net-
works, in which case the development of fast and
efficient learning algorithms becomes extremely

w ximportant 79 . A variety of techniques have been
developed, and among them are two important
classes of methods. One of them is based on
advanced learning rate and momentum adapta-
tion, and heuristic rules of BP, and the other is
based on the use of advanced optimization tech-
niques. The latter shall be discussed in Section
IV.C.

An important way to improve efficiency of
training by backpropagation is to use adaptation
schemes that allow the learning rate and the
momentum factor to be adaptive during learning
w x36 , e.g., adaptation according to training errors
w x81 . One of the most interesting works in this
area is the delta-bar-delta rule proposed by Ja-

w xcobs 82 . He developed an algorithm based on a
set of heuristics in which the learning rate for
different weights are defined separately and also
adapted separately during the learning process.
The adaptation is determined from two factors,
one being the current derivative of the training
error with respect to the weights, and the other
being an exponentially weighted sum of the cur-
rent and past derivatives of the training error.
Sparsity of hidden neuron activation pattern has

w xalso been utilized in 80, 83, 84 to reduce the
computation involved during training. Various
other adaptation techniques have also been pro-
posed, for example, a scheme in which the learn-
ing rate was adapted in order to reduce the
energy value of the gradient direction in a close-

w xto-optimal way 85 , an enhanced backpropaga-
w xtion algorithm 86 with a scheme to adapt the

learning rate according to values of weights in the
neural net, and a learning algorithm inspired from
the principle of ‘‘forced dynamics’’ for the total

w x w xerror function 87 . The algorithm in 87 updates
the weights in the direction of steepest descent,
but with the learning rate as a specific function of
the error and the error gradient form. An inter-
esting adaptation scheme based on the concept of
dynamic learning rate optimization is presented

w xin 88 , in which the first- and second-order
derivatives of the objective function w.r.t. the
learning rate are calculated from the information
gathered during the forward and backward propa-

w xgation. Another work 76 , which is considered as
an extension of Jacob’s heuristics, corrects the
values of weights near the bottom of the error
surface ravine with a new acceleration algorithm.
This correction term uses the difference between
gradients, to reduce the weight oscillation during
training. In general, during neural network train-
ing, the weights are updated after each iteration
by a certain step size along an updating direction.
The standard backpropagation uses learning rate
to adjust the step size, with the advantage that
the method is very simple and does not require
repetitive computation of the error functions. A
different way to determine the step size, is to use

w xline search methods 75 , so that the training
error is reduced or optimized along the given
updating direction. Examples in this category are

w xline search based on quadratic model 89 , and
w xline search based on linear interpolation 90, 91 .

One other way to improve training efficiency is
w xthe gradient reuse algorithm 92 . The basic idea

of this method is that gradients which are com-
puted during training are reused until the result-
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ing weight updates no longer lead to a reduction
in the training error.

C. Training Algorithms Using
Gradient-Based Optimization Techniques

The backpropagation based on the steepest de-
scent principle is relatively easy to implement.
However, the error surface of neural network
training usually contains planes with a gentle
slope due to the squashing functions commonly
used in neural networks. This gradient is too
small for weights to move rapidly on these planes,
thus reducing the rate of convergence. The rate
of convergence could also be very slow when the
steepest descent method encounters ‘‘narrow val-
ley’’ in the error surface where the direction of
the gradient is close to the perpendicular direc-
tion of the valley. The update direction oscillates
back and forth along the local gradient.

Since supervised learning of neural networks
can be viewed as a function optimization prob-
lem, higher order optimization methods using
gradient information can be adopted in neural
network training to improve the rate of conver-
gence. Compared to the heuristic approach dis-
cussed in the earlier backpropagation section,
these methods have a sound theoretical basis and
guaranteed convergence for most of the smooth
functions. Some of the early work in this area was

w xdemonstrated in 93, 94 with the development of
second-order learning algorithms for neural net-

w xworks. Papers 90, 95 reviewed the first- and
second-order optimization methods for learning
in feedforward neural networks.

Let d be the direction vector, h be the learning
rate, w be the current value of w, then thenow
optimization updates w such that,

Ž . Ž . Ž . Ž .E w s E w q hd - E w . 28next now now

The principal difference between various descent
algorithms lies in the procedure to determine

Ž . w xsuccessive update directions d 96 . Once the
update direction is determined, the optimal step
size could be found by line search,

U Ž . Ž .h s min f h , 29
h)0

where

Ž . Ž . Ž .f h s E w q hd . 30now

When downhill direction d is determined from
the gradient g of the objective function E, such
descent methods are called gradient-based de-
scent methods. The procedure for finding a gradi-
ent vector in a network structure is generally

w xsimilar to backpropagation 74 in the sense that
the gradient vector is calculated in the direction
opposite to the flow of output from each neuron.
For MLP as an example, this is done by means of
a derivative chain rule starting from output layer,

l­ E ­ E ­ y ­ y
Ž .s ? ? , l s L, 31al l l­ y­ w ­ y ­ w

and then through the various layers down toward
the input layer,

lq1 l­ E ­ E ­ y ­ y ­ y
s ? ??? ? ,l L l l­ y­ w ­ y ­ y ­ w

Ž .l s L y 1, L y 2, . . . , 1, 31b

where y represents the final outputs of the neural
lnetwork, and y represents the outputs of the lth

hidden layer of the neural network.

1. Conjugate Gradient Training Algorithms. The
conjugate gradient methods are originally derived
from quadratic minimization and the minimum of
the objective function E can be efficiently found
within N iterations. With initial gradient g sinitial
­ Er­ w N , and direction vector d swsw initialinitial

yg , the conjugate gradient method recur-initial
w xsively constructs two vector sequences 91 ,

Ž .g s g q l Hd , 32next now now now

Ž .d s yg q g d , 33next next now now

gT gnow now Ž .l s , 34now Td Hdnow now

gT gnext next Ž .g s , 35now Tg gnow now

or,

TŽ .g y g gnext now next Ž .g s , 36now Tg gnow now

where d is called the conjugate direction and H is
the Hessian matrix of the objective function E.

Ž .Here, 35 is called the Fletcher]Reeves formula
Ž .and 36 is called the Polak]Ribiere formula. To
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avoid the need of the Hessian matrix to compute
the conjugate direction, we proceed from wnow
along the direction d to the local minimum ofnow
E at w through line minimization, and then setnext

<g s ­ Er­ w . This g can be used aswswnext nextnext

Ž . Ž .the vector of 32 , and as such 34 is no longer
needed. We make use of this line minimization
concept to find the conjugate direction in neural
network training, thus avoiding intensive Hessian
matrix computations. In this method, the descent
direction is along the conjugate direction which
can be accumulated without computations involv-
ing matrices. As such, conjugate gradient meth-
ods are very efficient and scale well with the
neural network size.

Two critical issues have to be considered in
applying conjugate gradient methods to neural
network learning. First, computation required
during the exact one-dimensional optimization is
expensive because every function evaluation in-
volves the neural network feedforward operation
for a complete cycle of samples. Therefore, effi-
cient approximation in one-dimensional optimiza-
tion has to be used. Second, since for neural
network training, the error function is not

Ž .quadratic w.r.t. the variable as defined in 24 , the
convergence properties of the method are not
assured a priori but depend on the degree to
which a local quadratic approximation can be

w xapplied to the training error surface. In 85 ,
inexact line search was proposed and a modified
definition of the conjugate search direction was
used to achieve this purpose. To further reduce
computational complexities, a scaled conjugate

Ž . w xgradient SCG algorithm was introduced in 97
which avoids the line search per learning iteration
by using the Levenberg]Marquardt approach to
scale the step size.

2. Quasi-Newton Training Algorithms. Similar to
the conjugate gradient method, the quasi-Newton
method was derived from quadratic objective
function. The inverse of the Hessian matrix B s
Hy1 is used to bias the gradient direction, follow-
ing Newton’s method. In the quasi-Newton train-
ing method, the weights are updated using,

Ž .w s w y hB g . 37next now now now

The B matrix here is not computed. It is succes-
sively estimated employing rank 1 or rank 2 up-
dates, following each line search in a sequence of

w xsearch directions 98 ,

Ž .B s B q DB . 38now old now

There are two major rank 2 formulas to compute
DB ,now

ddT B Dg DgT Bold old Ž .DB s y , 39now T Td Dg Dg B Dgold

or,

DgT B Dg ddT
old

DB s 1 qnow T Tž /d Dg d Dg

dDgT B q B DgdT
old old Ž .y , 40Td Dg

where

Ž .d s w y w , Dg s g y g , 41now old now old

Ž . Ž .39 is called the DFP Davidon]Fletcher]Powell
Ž . Žformula and 40 is called the BFGS Broyden]

.Fletcher]Goldfarb]Shanno formula.
Standard quasi-Newton methods require N 2

w
storage space to maintain an approximation of
the inverse Hessian matrix and a line search is
indispensable to calculate a reasonably accurate
step length, where N is the total number ofw
weights in the neural network structure. Limited-

Ž .memory LM or one-step BFGS is a simplifica-
tion in which the inverse Hessian approximation
is reset to the identity matrix after every iteration,

w xthus avoiding the need to store matrices. In 99
a second-order learning algorithm is proposed
based on a LM BFGS update. A reasonably ac-
curate step size is efficiently calculated in a one-
dimensional line search by a second-order ap-
proximation of the objective function. Parallel
implementation of second-order gradient-based
MLP training algorithms featuring full and lim-
ited memory BFGS algorithms were presented in
w x100 . Wavelet neural networks trained by the
BFGS algorithm are used for the modeling of
large-signal hard-nonlinear behavior of power

w xtransistors in circuit design 14 . The quasi-New-
ton training algorithm that employs the exact line
search possesses the quadratic termination prop-
erty. Through the estimation of the inverse Hes-
sian matrix, quasi-Newton has a faster conver-
gence rate than the conjugate gradient method.

3. Le©enberg–Marquardt and Gauss-Newton Train-
ing Algorithms. Neural network training is usually
formulated as a nonlinear least-squares problem.
Methods dedicated to least-squares such as
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Gauss]Newton can be employed to estimate the
neural model parameters. The Gauss]Newton
method is a linearization method. Let r be a
vector containing the individual error terms in
Ž . Ž .24 . Let J be the N = N = N Jacobian ma-p y w
trix including the derivative of r w.r.t. w. J has Nw
columns and N = N rows, where N is thep y p
number of samples and N is the number ofy
outputs. The Gauss]Newton update formula can
be expressed as,

y1T TŽ . Ž .w s w y J J J r . 42next now now now now now

Ž . TIn the preceding formula 42 J J is posi-now now
tive definite unless J is rank deficient. Thenow

w xLevenberg]Marquardt 101 method can be ap-
plied when J is rank deficient and the corre-now
sponding weight update is given by,

y1T TŽ . Ž .w s w y J J q mI J r , 43next now now now now now

where m is a nonnegative number. A modified
Levenberg]Marquardt training algorithm using a
diagonal matrix instead of the identity matrix I in
Ž . w x43 was proposed 102 for the efficient training
of multilayer feedforward neural networks. In
w x103 , to reduce the size of the Jacobian matrix,
the training samples are divided into several
groups called local batches. The training is per-
formed successively through these local batches.
The computational requirement and memory
complexity of the Levenberg]Marquardt methods
were reduced by utilizing the deficient Jacobian

w xmatrix 104 . A combined Levenberg]Marquardt
and quasi-Newton training technique was used in
w x1 to train the KBNN structure. When training
parameters are far from the local minimum of the
error surface Levenberg]Marquardt algorithm
was used, and when they are close to local mini-
mum quasi-Newton was used for faster conver-
gence.

It has been proved that the conjugate gradient
method is equivalent to error backpropagation

w xwith momentum term 90 . The theoretical con-
vergence rate and practical performance of sec-
ond-order gradient-based methods are generally
superior to the first-order methods.

D. Training Algorithms Utilizing
Decomposed Optimization

As seen in the earlier discussions, implementa-
tion of powerful second-order optimization tech-
niques for neural network training has resulted in

significant advantages in training. The second-
order methods are typically much faster than BP
but could require the storage of the inverse Hes-
sian matrix, and its computation or an approxima-
tion thereof. For large neural networks, training
could be a very large scale optimization. Decom-
position is an important way to solve the large
scale optimization problems. Several training al-
gorithms that decompose the training task by
training the neural network layer-by-layer have

w x w x Ž .been proposed 105]107 . In 106 , the weights V
Ž L.of the output layer and the output vector y of

the previous layer are treated as two sets of
Ž L.variables. An optimal solution pair V, y is first

determined to minimize the sum-squared-error
between the desired neural network outputs and
the actual outputs. The current solution y L is
then set as the desired output of the previous
hidden layer, and optimal weight vectors of the
hidden layers are recursively obtained. In the case

w xof the continuous function approximation, 107
optimizes each layer with an objective to increase
a measure of linearity between the internal repre-
sentations and the desired output.

Linear programming can be used to solve large
scale linearized optimization problems. Neural
network training was linearized and formulated as

w xa constrained linear programming in 108 . In this
work, weights are updated with small local changes
satisfying the requirement that none of the indi-
vidual sample errors should increase, subject to
the constraint of maximizing the overall reduction
in the error. However, extension of such a method
for efficient implementation in large networks

w xneeds special considerations. In 105 , a layer-by-
layer optimization of a neural network with lin-
earization of the nonlinear hidden neurons was
presented, which does not rely on the evaluation
of local gradients. To limit the unavoidable lin-
earization error, a special penalty term is added
to the cost function and layers are optimized
alternately in an iterative process.

A combination of linear]nonlinear program-
ming techniques could reduce the degree of non-
linearity of the error function with respect to the
hidden layer weights and decrease the chances of
being trapped in a local minima. As such, a hy-
brid training algorithm would be favorable for a

w xlarge-scale problem 52 . For a feedforward neu-
ral network with the linear or linearized output
layer weights, training algorithms were developed
by adapting the nonlinear hidden layer weights

w x w xusing BP 109 or BFGS 52 , while employing a
Ž .linear least mean square error LMS algorithm
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to compute the optimum linear output layer
weights.

RBF networks are usually trained by the de-
composed process. The nonlinear hidden layer
weights of the RBF network can be interpreted as
centers and widths, thus making it possible to
organize these neurons in a manner which re-
flects the distribution of the training data. Utiliz-
ing this concept, the hidden layer weights can be
fixed through unsupervised training, such as k-

w xmeans clustering algorithm 110 . The output layer
weights can then be obtained through the linear
LMS algorithm. On the other hand, the develop-
ment of heuristics to initially assign the hidden
layer weights of MLP, is very hard due to it’s
black box characteristics. Consequently, it is not
possible to train MLP neural networks with this
decomposed strategy. However, the hybrid lin-

w xear]nonlinear training algorithm presented in 52
integrates the best features of the linear LMS
algorithm of RBF, and the nonlinear optimization
techniques of MLP into one routine. This routine
could be suitable for any feedforward network
with linear output layer weights. The advantages
of this technique are the reduced number of
independent parameters and guaranteed global

w xminimum w.r.t. to output layer weights 52 .

D. Global Training Algorithms

Another important class of methods use random
optimization techniques which are characterized
by a random search element in the training pro-
cess allowing the algorithms to escape from local
minima and converge to the global minimum of
the objective function. Examples in this class are,
e.g., simulated annealing which allows the opti-
mization to jump out of a local minimum through
an annealing process controlled by a parameter

w xcalled temperature 111 ; genetic algorithms which
evolve the structure and weights of the neural
network through generations in a manner that is

w xsimilar to biological evolution 112 ; the Langevin
Ž .updating LV rule in multilayer perceptron, in

which noise is added to the weights during train-
w xing 113 ; and a stochastic minimization algorithm

w xfor training neural networks 114 , which is basi-
cally a random optimization method with no gra-
dient information needed. Since the convergence
of pure random search techniques tends to be
very slow, a more general method is the hybrid
method which combines the conventional gradi-
ent-based training algorithms with random opti-

w xmization, e.g., 89 . This work introduced a hybrid

algorithm combining the conjugate gradient
method with line search, and the random opti-
mization method to find the global minimum of
the error function. During training with the con-
jugate gradient method, if a flat error surface is
encountered, the training algorithm switches to
the random optimization method. After train-
ing escapes from the flat error surface, it once
again switches back to the conjugate gradient
algorithm.

V. EXAMPLES

A. Feedforward Neural Networks
and Their Training

Standard feedforward neural networks, MLP and
RBF, have been used in many microwave applica-
tions. This section demonstrates the use of these
neural model structures in several microwave ex-
amples and their training by various training algo-
rithms.

MLP and RBF were used to model a physics-
based MESFET. Device physical]process param-

Žeters channel length L, channel width W, doping
.density N , channel thickness a and terminald
Ž .voltages, i.e., gate-source voltage V and drain-G

Ž .source voltage V , are neural network inputD
parameters. Drain-current, i.e., i , is the neurald
network output. The training data and test data

w xwere simulated using OSA90 115 . Three sets of
training data with 100, 300, and 500 samples, and
one set of test data with 413 samples were used.
The model accuracy is shown in Table I.

Generally, RBF will need more hidden neu-
rons than MLP to achieve similar model accuracy
due to their localization nature of activation func-
tion. RBF training requires a sufficient amount of
data. On the other hand, the training of RBF is
easy to converge. The generalization capability of
MLP is better than RBF as seen in the table as
the available amount of training data becomes
less.

The most popular training algorithms for stan-
dard feedforward neural networks are adaptive
backpropagation, conjugate gradient, quasi-
Newton, and Levenberg]Marquardt. Two exam-
ples, i.e., 3-conductor microstrip line and physics-
based MESFET, were used to illustrate the
performance of these algorithms.

For the microstrip line example, there are five
input neurons corresponding to conductor width
Ž . Ž .w , spacing between conductors s , s , sub-1 2
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TABLE I. Model Accuracy Comparison Between Multilayer Perceptrons and Radial Basis Functions

Model Type MLP RBFTraining
Sample No. of Hidden

Size Neurons 7 10 14 18 25 20 30 40 50

%
100 Avg. Test Error 1.65 2.24 2.60 2.12 2.91 6.32 5.78 6.15 8.07
300 Avg. Test Error 0.69 0.69 0.75 0.69 0.86 1.37 0.88 0.77 0.88
500 Avg. Test Error 0.57 0.54 0.53 0.53 0.60 0.47 0.43 0.46 0.46

Ž . Ž .strate height h , and relative permittivity « asr
shown in Figure 4. There are six output neurons
corresponding to the self inductance of each con-
ductor l , l , l and the mutual inductance be-11 22 33
tween any two conductors l , l , l . There are12 23 13
totally 600 training samples and 640 test samples

w xgenerated by LINPAR 116 . A three-layer MLP
structure with 28 hidden neurons is chosen as
the sample structure. The training results are
shown in Table II. CPU time is given for Pentium
Ž .200 MHz .

The total CPU time used by the Leven-
berg]Marquardt method is around 20 min. The
adaptive backpropagation used many epochs and
settled down to good accuracy of 0.252%, with
around 4 h of training time. On the contrary, the
quasi-Newton method achieved similar accuracy
only within 35 min. This confirms the faster con-
vergence rate of the second-order method. Usu-
ally quasi-Newton has a very fast convergence

Figure 4. A 3-conductor microstrip line.

rate when approaching the minimum. However,
at the beginning of training, its performance may
not be very strong. Another strategy is to use the
conjugate gradient method at the first stage of
training, then followed by the quasi-Newton
method. If we take the MLP network already
trained by the conjugate gradient and then con-
tinue training by the quasi-Newton method, the
model test error was reduced to 0.167%. Total
training time is around 2 h.

For the MESFET example, the inputs to the
Ž .neural model include frequency f , channel

Ž . Ž .thickness a , gate-bias voltage V , and drain-g
Ž .bias voltage V . This particular MESFET has ad

fixed gate length of 0.55 m and a gate width of
1 mm. The outputs include real and imaginary
parts of S , S , S and S . Training and test11 12 21 22

samples are obtained using the simulator OSA90
w x115 with the Katibzadeh and Trew model. This
is a relatively complicated example compared to
the microstrip line example. The sample neural
network structure has 60 hidden neurons. The
training results by the four training algorithms
are shown in Table III. This example demon-
strates that as the size of the neural network
becomes large, Levenberg]Marquardt becomes

TABLE II. Comparison of Various Training Algorithms for the Microstrip Line Example

Training No. of Training Error Avg. Test
Ž . Ž . Ž .Algorithm Epochs % Error % CPU s

Adaptive 10,755 0.224 0.252 13,724
backpropagation

Conjugate 2169 0.415 0.473 5511
gradient

Quasi-Newton 1007 0.227 0.242 2034
Levenberg] 20 0.276 0.294 1453

Marquardt
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TABLE III. Comparison of Various Taining Algorithms for the MESFET Example

Training No. of Training Error Avg. Test
Ž . Ž . Ž .Algorithm Epochs % Error % CPU s

Adaptive 15,319 0.98 1.04 11,245
backpropagation

Conjugate 1605 0.99 1.04 4391
gradient

Quasi-Newton 570 0.88 0.89 1574
Levenberg] 12 0.97 1.03 4322

Marquardt

slow as compared to the quasi-Newton method,
due to repeated inversion of the large matrix

Ž .in 43 .

B. Knowledge-Based Neural
Network and Training

This example demonstrates the knowledge based
Ž .neural network KBNN described in Section III.B

in modeling cross-sectional resistance-inductance-
Ž .capacitance-conductance RLCG parameters of

transmission lines for analysis of high-speed VLSI
w xinterconnects 16 and its comparison with tradi-

Ž .tional multilayer perceptrons MLP . The output
of the model is the cross-sectional mutual induc-

Ž .tance per unit length , l , between two conduc-12
tors of a coupled microstrip transmission line.
The inputs of the neural models are width of
conductor x , thickness of conductor x , separa-1 2
tion between two conductors x , height of sub-3
strate x , relative dielectric constant x , and fre-4 5
quency x . There exist mutual inductance empiri-6

w xcal formula, e.g., 53 ,

2Ž .m m 2 xr 0 4 Ž .l s ln 1 q . 4412 24p Ž .x q x1 3

This equation becomes the knowledge to be in-
corporated into the knowledge neurons of Section
III.B as,

Ž .z s c x, wi i i

2Ž .x y w4 i2w i1s ln 1 q e q w xi4 22Ž .x q x y w1 3 i3

q w x q w x q w ,i5 5 i6 6 i7

Ž .i s 1, 2, . . . , N . 45z

Linear boundary neurons were used in the layer
B. Notice that this empirical formula is incorpo-

Ž .rated multiple times N times , each with differ-z
Ž .ent values of w, w , i s 1, 2, . . . , N . KBNN pro-i z

vides a complete]integrated x y y relationship
including those not available in the original em-

Ž .pirical formula e.g., y with respect to x , x , x .2 5 6
Five sets of data were generated by EM simu-

w xlation 117 . The first three sets have 100, 300,
and 500 samples and were used for training pur-
poses. The fourth set of another 500 samples was
generated in the same range as the first three sets
to test the trained neural models. These testing
data were never used in training. The last set of
data with 4096 samples were deliberately selected
around]beyond the boundary of the model effec-
tive region in the input parameter space in order
to compare extrapolation accuracy of KBNN
and MLP.

Two KBNNs of different sizes were trained
Žand compared with three MLPs with the number

.of hidden neurons being 7, 15, and 20 . All these
neural networks were trained by the Levenberg]
Marquardt algorithm. Figure 5 shows the error
from individual trainings of KBNN and MLP in
terms of the average testing error. The overall
tendency suggests that the accuracy of KBNN
trained by a small set of training data is compara-
ble to that of MLP trained by a larger set of
training data. A much more stable performance
of KBNN over MLP is observed when making an
extrapolation prediction.

C. Hierarchical Neural Network
and Its Training

This example demonstrates the usage of hierar-
chical neural networks in the development of a
library of neural models for N-conductor striplines

w xshown in Figure 6 for different values of N 65 .
In the example there are five models in the li-
brary, n s 1, 2, 3, 4, 5. In addition, for each nth
model, N s n. Table IV defines the inputs and
outputs of each model.
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Figure 5. Comparison of error from individual train-
ings of KBNN and MLP in terms of the average testing
error.

Base Model Selections. Two base models, B1
for self inductance and B for mutual inductance2
are defined. The inputs to the base models in-
clude physical]geometrical parameters such as

Ž . Ž .conductor width w , conductor height g , sub-
Ž .strate height h , separation between conductors

Ž . Ž .s , and relative dielectric constant « . The out-r
puts of B and B are self and mutual induc-1 2
tances, respectively. The training strategy for base
models is to use the conjugate gradient at the first
stage and followed by the quasi-Newton method.
The base models B and B are trained to1 2
an average testing accuracy of 0.39 and 0.16%,
respectively.

Example of Library Model: n s 3. For library
model n s 3, we reuse the base models as the
low-level neural modules shown in Figure 3. The
high-level neural module is realized by a two-layer
perceptron with six inputs and six outputs. Only a

Ž .small amount of training data 15 samples is
needed to train this 3-conductor stripline model
since the raw]fundamental relationships of the
model have already been captured in the base
models. Since this is a linear network, the training
problem is actually a quadratic minimization. The
conjugate gradient method was used here to find
the unique global minimum. However, with the
conventional MLP neural model, even 500 sam-

Figure 6. N-conductor stripline component. For the
nth component in the stripline library, N s n.

TABLE IV. Stripline Library Components

Library Component Neural Model Neural Model Reuse of Base
Ž .Component Name Inputs Outputs Models B and B1 2

n s 1 1-conductor w g h « L Br 11 1
model

n s 2 2-conductor w w s g h « L , L , L 2 = B , 1 = B1 2 r 11 12 22 1 2
model

n s 3 3-conductor w w w s s L , L , L , L , L , 3 = B , 3 = B1 2 3 1 2 11 12 13 22 23 1 2
model g h « Lr 33

n s 4 4-conductor w w w w s s L , L , L , L , L , 4 = B , 6 = B1 2 3 4 1 2 11 12 13 14 22 1 2
model s g h « L , L , L , L , L3 r 23 24 33 34 44

n s 5 5-conductor w w w w w L , L , L , L , L , 5 = B , 10 = B1 2 3 4 5 11 12 13 14 15 1 2
model s s s s g h « L , L , L , L , L ,1 2 3 4 r 22 23 24 25 33

L , L , L , L , L34 35 44 45 55
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ples are not enough to achieve a model of similar
accuracy, as shown in Figure 7.

All Library Models. All library models in the
library can be developed systematically in a simi-
lar way as model 3. It should be noted that efforts
in developing those additional models are small
and incremental, since only few training data are
needed, and only the high-level neural modules
need to be trained.

O¨erall Library Accuracy and De¨elopment Cost.
A Comparison. Using standard MLP for each
model, the total training time for all library mod-
els is 6 h 30 min on SparcStation 5. Using the
hierarchical approach, the total training time is
36 min. The total amount of training data needed
by standard MLP is 2664 samples and by the

Hierarchical neural network approach is only 649
Žincluding 564 samples for the base model, and 85

.samples for subsequent library models as shown
in Table V. The hierarchical neural network
structure yields reliable neural models even with
a very small amount of training data.

VI. CONCLUSIONS

Neural network technology is an emerging tech-
nology in the microwave area for microwave mod-
eling, simulation, optimization, and design. The
efficient development of an accurate neural model
requires a proper neural network structure and
suitable training algorithms, two important as-

Ž .Figure 7. Model accuracy comparison average error on test data between standard MLP
and the hierarchical neural network models for the 3-conductor stripline component.

TABLE V. Comparison of the Number of Training Samples Needed and Model Accuracy
for the Stripline Library when Developed by Standard Multilayer Perceptrons
and the Hierarchical Neural Network Structure, respectively

Model AccuracyStripline
Ž .No. of Training Samples Needed Average Error on Test Data %Component

Name Standard MLP Hierarchical NN Standard MLP Hierarchical NN

1 2Overhead 0 264 q 300
1-conductor 264 0 0.42 0.39

model
2-conductor 300 10 1.01 0.56

model
3-conductor 500 15 1.25 0.40

model
4-conductor 700 25 1.30 0.79

model
5-conductor 900 35 0.99 0.63

model
Library Total s 2664 Total s 649 Average s 0.99 Average s 0.55

1Base model B training.1
2 Base model B training.2
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pects in successful applications of neural net-
works in solving microwave design problems. This
paper presented a review of the current status of
this area. The subject of neural network architec-
tures and training algorithms in general is large
and we have omitted many advances suitable for
other applications such as in signal processing,
pattern recognition, and so on. Instead, our paper
focuses on the structures and algorithms which
we feel are relevant or useful to RF and mi-
crowave applications. Standard feedforward neu-
ral networks, neural network structures with prior
knowledge, combining neural networks and con-
structive network structures, are described. Also
discussed are various training algorithms includ-
ing the backpropagation algorithm and its vari-
ants, training algorithms based on classical opti-
mization techniques such as conjugate gradient
and quasi-Newton algorithms, training algorithms
based on decomposed optimization, and global
minimization techniques.

Neural networks have a very promising future
in the microwave design area. Benefits of apply-
ing neural network technology can be potentially
achieved at all levels of microwave design from
device, components, to circuits and systems, and
from modeling, simulation, to optimization and
synthesis. From the research point of view, future
work in structures and training algorithms will
shift from demonstration of basic significance of
the neural network technology to addressing chal-
lenges from real microwave applications. Model-
ing of complicated 3D EM problems is one of
such work. In this case, the cost of generating
training data by EM simulations is very high. How
to develop a reliable neural model with a very
small amount of data remains an important re-
search. In many practical cases, training data
from simulation]measurement contains acciden-
tal but large errors due to convergence difficulties
in simulators or equipment limits that may hap-
pen when data generation goes to extreme points
in the parameter space. Existing training algo-
rithms can be susceptible to such large errors,
and consequently the neural model obtained is
not reliable. Robust algorithms automatically
dealing with such cases need to be developed,
avoiding manual debugging for clues of model
inaccuracy. Filter design with full EM simulation
is one of the important, yet difficult tasks for
many engineers. Research on neural networks to
help for such designs is already underway. The
highly nonlinear, and nonsmooth relationship in

such microwave models needs to be addressed by
an effective neural network structure. Using stan-
dard structures, more neurons are typically
needed for such cases leading to the requirement
of more training data, and higher accuracy is
difficult to obtain. Another scenario leading to
the same challenge is when models contain many
variables, for example, many geometrical and
physical parameters in a microwave model. Ad-
dressing these challenges will be an important
direction in future research. The potential of
combining microwave and circuit information with
neural networks, continues to motivate research
leading to advanced knowledge-based neural
models. Another significant milestone in this area
would be to incorporate the microwave-oriented
features and techniques of this emerging technol-
ogy into readily usable software tools. These tools
would enable more microwave engineers to
quickly benefit from this technology, and their
feedback could further stimulate advanced re-
search in the area. Neural networks, with their
unparalleled speed advantage, and their ability to
learn and generalize wide variety of problems,
promise to be one of the powerful vehicles help-
ing microwave design today and tomorrow.
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