## ANN Tutorial Examples, Q.J. Zhang

## **Exercise 1**

For the MLP network with 1 input neuron, 2 hidden neurons with sigmoid functions, and 1 output neuron with linear function as shown in Figure A1, train the neural network using sample-by-sample backpropagation with learning rate  $\lambda = 0.1$  and no momentum. Specifically, using the initial guess of weights in Figure A1, calculate the new weight values for 1 epoch. In the calculation, assume no scaling to x or y, and the training error is defined as

$$E(w) = \frac{1}{2} (y(x, w) - \hat{y})^2$$

per sample and where  $\hat{y}$  represents the training data corresponding to output neuron.



| Training Data |   |   |  |
|---------------|---|---|--|
|               | x | ŷ |  |
|               |   |   |  |
|               | 0 | 2 |  |
|               | 1 | 4 |  |
|               |   |   |  |

Figure A1

Solution :

(1) 
$$y = y(x, w)$$
 relation:  
 $y = w_{10}^3 + W_{11}^3 z_1 + W_{12}^3 z_2$   
 $= v_0 + v_1 z_1 + v_2 z_2$   
 $z_1 = \frac{1}{1+e^{-(w_{10}^2 + W_{11}^2 x)}} = \frac{1}{1+e^{-(w_0 + w_1 x)}}$   
 $z_2 = \frac{1}{1+e^{-(w_{20}^2 + W_{21}^2 x)}} = \frac{1}{1+e^{-(u_0 + u_1 x)}}$ 

$$W = \begin{bmatrix} v_0 \\ v_1 \\ w_0 \\ w_0 \\ w_1 \\ u_0 \\ u_1 \end{bmatrix}$$

(2) 37 3W:

$$\frac{\partial y}{\partial v_0} = 1$$
$$\frac{\partial y}{\partial v_1} = Z_1$$
$$\frac{\partial y}{\partial v_2} = Z_2$$

$$\frac{\partial Y}{\partial W_{0}} = V_{1} \cdot \frac{\partial Z_{1}}{\partial W_{0}} = U_{1} Z_{1} (1-Z_{1}) (-1)$$

$$Note: \frac{\partial (\frac{1}{1+e^{-r}})}{\partial r} = \frac{-1}{(1+e^{-r})^{2}} (e^{-r}) (-1)$$

$$= (\frac{1}{1+e^{-r}}) (\frac{e^{-r}+1-1}{1+e^{-r}})$$

$$= \frac{-1}{1+e^{-r}} (1-\frac{1}{1+e^{-r}})$$

$$\frac{\partial Y}{\partial W_{1}} = V_{1} Z_{1} (1-Z_{1}) \times$$

$$\frac{\partial Y}{\partial W_{1}} = V_{2} Z_{2} (1-Z_{2})$$

$$\frac{\partial Y}{\partial U_{1}} = V_{2} Z_{2} (1-Z_{2}) \chi$$
(3) Initially:
$$W = \begin{bmatrix} 4\\-1\\0\\-1\\0\\-1 \end{bmatrix}$$
Feed 1st training Sample:

3

$$Z_{1} = \frac{1}{1+e^{\circ}} = 0.5$$

$$Z_{2} = \frac{1}{1+e^{-1}} = 0.731$$

$$Y = 4 \times Z_{1} - Z_{2} = 1.269$$

$$E = \frac{1}{2}(Y-2)^{2}$$

$$\frac{\partial E}{\partial W} = (Y-2) \begin{bmatrix} \frac{1}{Z_{1}} \\ \frac{Z_{2}}{Z_{2}} \\ \frac{V_{1}Z_{1}(1-Z_{1})}{V_{2}Z_{2}(1-Z_{2})} \\ \frac{V_{2}Z_{2}(1-Z_{2})}{V_{2}Z_{2}(1-Z_{2})} \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \\ 0.731 \\ 0 \\ -0.197 \\ 0 \end{bmatrix} \times (1.269-2) = \begin{bmatrix} -0.731 \\ -0.366 \\ -0.534 \\ -0.731 \\ 0 \\ 0.144 \\ 0 \end{bmatrix}$$

$$W = W - \lambda \frac{\partial E}{\partial W} = \begin{bmatrix} 0 \\ 4 \\ -1 \\ 0 \\ 2 \\ 1 \\ 0.1 \end{bmatrix} - 0.1 \begin{bmatrix} -a.731 \\ -0.366 \\ -0.534 \\ -0.534 \\ -0.731 \\ 0 \\ 0.144 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.073 \\ 4.037 \\ -0.947 \\ 0.073 \\ 2 \\ 0.986 \\ 0.1 \end{bmatrix}$$

(4) Feed next training sample:  
with new values of 
$$\mathcal{W}$$
,  
 $Z_1 = \frac{1}{1+e^{-2.073}} = 0.888$   
 $Z_2 = \frac{1}{1+e^{-1.086}} = 0.748$   
 $\mathcal{Y} = 0.073+4.037 \times 0.888 - 0.947 \times 0.748$   
 $= 2.950$ 

G

$$\frac{\partial E}{\partial W} = (Y-4) \begin{pmatrix} I \\ Z_{1} \\ Z_{2} \\ V_{1}Z_{1}(I-Z_{1}) \\ V_{1}Z_{1}(I-Z_{1}) \\ V_{2}Z_{2}(I-Z_{2}) \\$$

## **Exercise 2**:

This exercise is the same as Exercise 1 except that we use the Conjugate Gradient method instead of backpropagation, and the training error here is:

$$E = \frac{1}{2} \sum_{i=1}^{P} (y(x_i, w) - \hat{y}_i)^2$$

where index *i* means training data sample #i, i = 1, 2, ..., P; P is the total number of samples in training data; and  $\hat{y}_i$  is the target value for neural network output neuron, i.e.,  $\hat{y}_i$  is a value of sample #i in the training data. Assume a step length  $\lambda = 0.1$ .

Solutions:  
Steps (1) 
$$f(z)$$
: Same as Exercise 1.  
(3) Initially:  

$$W = \begin{bmatrix} 0\\ -1\\ 0\\ 2\\ 1\\ 0 \end{bmatrix}$$
Feed (st training sample,  $X = 0$ ,  

$$Z_{1} = 0.5$$

$$Z_{2} = 0.731$$

$$Y = 1.269$$

$$\frac{\partial Y}{\partial W} = \begin{bmatrix} 1\\ Z_{2}\\ V_{1}Z_{1}(1-Z_{1})X\\ V_{2}Z_{2}(1-Z_{2})X\\ V_{2}Z_{2}(1-Z_{2})X \end{bmatrix} = \begin{bmatrix} 0.5\\ 0.5\\ 0.731\\ 1\\ 0\\ -0.197\\ 0 \end{bmatrix}$$

Feed Znd Sample: 
$$X = 1$$
,  
 $z_i = \frac{1}{1 + e^{-z}} = 0.881$ 

-

$$Z_2 = \frac{1}{1 + e^{-1.1}} = 0.75$$

$$\begin{array}{l}
y = 4 \cdot Z_{1} - Z_{2} = 2 \cdot 774 \\
\frac{\partial y}{\partial W} = \begin{pmatrix} \frac{1}{Z_{1}} \\ & & \\ & & \\ V_{1}Z_{1} (1 - Z_{1}) \\ & & \\ V_{1}Z_{1} (1 - Z_{1}) \chi \\ & & \\ V_{2}Z_{2} (1 - Z_{2}) \\ & & \\ V_{2}Z_{2} (1 - Z_{2}) \chi \end{pmatrix} = \begin{pmatrix} 1 \\ & 881 \\ & 75 \\ & 419 \\ & & \\ & 419 \\ & & \\ & & 1875 \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Θ

$$\overline{\nabla} E = \frac{\overline{\nabla} E}{\overline{\partial} W} = \sum_{i=1}^{P} (y - \hat{y}_{i}) \frac{\overline{\partial} \psi}{\overline{\partial} W}$$

$$(1.269 - 2) \begin{bmatrix} 1.5 \\ 1.731 \\ 1 \\ -..197 \\ -..197 \end{bmatrix} + (2.774 - 4) \begin{bmatrix} ..881 \\ ..75 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..419 \\ ..41$$

For let epoch:  

$$f = -\nabla E$$

$$W = W + \lambda f = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 2 \\ 0 \\ 1 \end{pmatrix} - 0.1 \begin{pmatrix} -1.757 \\ -1.446 \\ 1.454 \\ -1.245 \\ -1.245 \\ -.514 \\ .374 \\ .374 \\ .23 \end{pmatrix}$$

$$= \begin{pmatrix} 0.1957 \\ 4.1446 \\ -0.8546 \\ 0.1245 \\ 2.0514 \\ 0.9626 \\ 0.0771 \end{bmatrix}$$
This Finishes 1st epoch

. . . .

(8)