

Q.J. Zhang, Carleton University

Training of Neural Networks

Q.J. Zhang, Carleton University

 Notation:

 x: input of the original modeling problem or the neural network

 y: output of the original modeling problem or the neural network

 w: internal weights/parameters of the neural network

 m: number of outputs of the model

 y = f(x , w) : neural network model

 d: data for y (e.g., trainining data)

Q.J. Zhang, Carleton University

Define Model Input-Output

Define model input-output (x, y), for example,

 x: physical/geometrical parameters of the component

 y: S-parameters of the component

Q.J. Zhang, Carleton University

 Data Generation:

 (a)Generate (x,y) samples: , k = 1, 2, …, P, such that

 the finished NN best (accurately) represent original x~y

 problem

 (b)Data generator

• Measurement : for each given , measure values of ,

 k=1,2,…, p

• Simulation: for each given , use a simulator to

 calculate , k=1,2,…, p

),(kk yx

kx ky

kx

ky

Q.J. Zhang, Carleton University

Basis of Comparison Neural Model Development Using

Measurement Data

Neural Model Development Using

Simulation Data

Availability of Problem

Theory-Equations

Model can be developed even if

the theory-equations are not

known, or difficult to implement in

CAD.

Model can be developed only for

the problems that have theory that

is implemented in a simulator.

Assumptions No assumptions are involved and

the model could include all the

effects, e.g., 3D-fullwave effects,

fringing effects etc.

Often involves assumptions and the

model will be limited by the

assumptions made by the simulator,

e.g., 2.5D EM.

Input Parameter Sweep Data generation could either be

expensive or infeasible, if a

geometrical parameter, e.g.,

transistor gate-length needs to be

sampled/changed.

Relatively easier to sweep any

parameter in the simulator, because

the changes are numerical and not

physical/manual.

Comparison of Neural Network Based Microwave Model Development

Using Data from Two Types of Data Generators

Q.J. Zhang, Carleton University

Basis of Comparison Neural Model Development Using

Measurement Data

Neural Model Development Using

Simulation Data

Sources of Small and

Large/Gross Errors

Equipment limitations and

tolerances.

Accuracy limitations and non-

convergence of simulations.

Feasibility of Getting

Desired Output

Development of models is possible

for measurable responses only. For

example, drain charge of an FET

may not be easy to measure.

Any response can be modeled as

long as it can be computed by the

simulator.

Comparison of Neural Network Based Microwave Model Development

Using Data from Two Types of Data Generators (continued)

Q.J. Zhang, Carleton University

 Data Generation:

 (c) Range of x to be sampled

• For Testing Data and Validation data:

 : Should represent the user-intended range

in which the NN is to be used by user

• For Training Data:

Default range of x samples should be equal to user-

intended range, or if feasible, slightly beyond the user

intended range

maxmin xx

Q.J. Zhang, Carleton University

(d) Distribution of x samples

• Uniform grid distribution

• Non-uniform grid distribution

• Design of Experiments (DOE) methodology

 central-composite design

 2n factorial design

• Star distribution

• Random distribution

Data Generation
- where data should be sampled

x1

x3

x2

Q.J. Zhang, Carleton University

 Data Generation (continued):

 (e) Number of samples P -- Theoretical factor:

•For grid distribution case: Shannon’s Theorem

•For random distribution case: statistical confidence

Q.J. Zhang, Carleton University

 Input / Output Scaling

The orders of magnitude of various x and d values in

microwave applications can be very different from one

another.

Scaling of training data is desirable for efficient neural

network training

The data can be scaled such that various x (or d) have

similar order of magnitude

Q.J. Zhang, Carleton University

 Input / Output Scaling:

Notation:

 x and y -- Original x and y

 and -- Scaled x and y

 -- Obtained from data

 -- Dictated by NN trainer

• Linear scale

 Scale formula:

 De-scaled formula:

• Log scale

 Scale formula:

 De-scale formula:

x~ y~

minmax, xx

)~~(~~
minmax

minmax

min
min xx

xx

xx
xx

)(~~

~~

minmax

minmax

min
min xx

xx

xx
xx

)ln(~
minxxx
x

exx
~

min

minmax
~,~ xx

Q.J. Zhang, Carleton University

 d

Training data

 x

Scaling

Scaling

De-scaling

Trained Neural network

model

Scaling

Neural network

 x

 x

Data

generation

Data

scaling

Neural network

training

Finished model

for user

Scaled

Data

 x

 y

Illustration of Data Scaling

Q.J. Zhang, Carleton University

Divide Data into Training Set,

Validation Set and Testing Set

 Notation:

 P – total number of data samples generated

 D – Set for all data, D = {1, 2, …, P}

 – Training data set

 V -- Validation data set

 -- Test data set

 Ideally: Each data set (, ,) should be an adequate

 representation of original problem in the

 entire range. Three sets have no overlap.

rT

eT

rT V eT

)(xfy

maxmin ~ xx

Q.J. Zhang, Carleton University

 Divide Data into Training Set,

 Validation Set and Testing Set

 Case 1: When original data is quite sufficient, split D into

 non-overlapping sets

 Case 2: When data is very limited, duplicate D, such that

 Case 3: Split data D into 2 sets.

DTVT er

Q.J. Zhang, Carleton University

 Training / Validation and Testing

Training error:

 Validation error:

 Test error:

q
1

Vk

m

1j

q

jminjmax

jkkj

V
yy

d)w,x(y

msize(V)

1
)w(E

q
1

Tk

m

1j

q

jminjmax

jkkj

e
T

e

e yy

d)w,x(y

m)size(T

1
)w(E

q
1

Trk

m

1j

q

jminjmax

jkkj

Tr
yy

d)w,x(y

msize(Tr)

1
)w(E

Q.J. Zhang, Carleton University

w

E
rT

Where to Use Each Error Criteria

Training error: The training error ETr(w) and its derivative

 are used to determine how to update w during training

Validation error: The validation error EV(w) is used as a stopping

 criteria during training, i.e., to determine if training

 is sufficient.

Test error: The test error ETe(w) is used after training has finished

 to provide a final assessment of the quality of the trained

 neural network. Test error is not involved during training.

Q.J. Zhang, Carleton University

Flow-chart Showing Neural Network Training, Validation and Testing

Desired

accuracy

achieved?

Desired

accuracy

achieved?

Yes

Evaluate

validation error

Perform feedforward

computation for all

samples in validation set

Assign random initial

values for all the weight

parameters

Select a neural network

structure, e.g., MLP

 STOP

Training

Evaluate test error as

an independent quality

measure for ANN

model reliability

Perform feedforward

computation for all

samples in test set

START

Perform feedforward

computation for all

samples in training set

Compute derivatives of

training error w.r.t. ANN

weights

Update neural network weight

parameters using a gradient-based

algorithm (e.g., BP, quasi-Newton)

Evaluate

training error

Evaluate

validation error

Perform feedforward

computation for all

samples in validation set

Assign random initial

values for all the weight

parameters

Select a neural network

structure, e.g., MLP

Evaluate test error as

an independent quality

measure of the trained

neural network

Perform feedforward

computation for all

samples in test set

STOP

Training

Perform feedforward

computation for all

samples in training set

Compute derivatives of

training error w.r.t.

neural network

internal weights

Update neural network weight

parameters using a gradient-based

algorithm (e.g., backpropagation)

Evaluate

training error

START

No

Yes

Desired

accuracy

achieved?

Desired

accuracy

achieved?

Evaluate

validation error

Perform feedforward

computation for all

samples in validation set

Desired

accuracy

achieved?

Desired

accuracy

achieved?

Q.J. Zhang, Carleton University

 Initial Value of NN Weights Before Training

 MLP: small random values

 RBF/Wavelet: estimate center & width of RBF

 or translation & dilation of Wavelet

Knowledge Based NN: use physical/electrical

 experience

Q.J. Zhang, Carleton University

 Overlearning

 Definition (strict):

 Math

Observation: NN memorized training data, but can not

 generalize well

Possible reasons:

a) Too many hidden neurons

b) Not enough training data

Actions:

a) Add training data

b) Delete hidden neurons

c) Backup/retrieve previous solution

r

r

TV

T

EE

E 0

Q.J. Zhang, Carleton University

-0.8

-0.4

0.0

0.4

0.8

1.2

-5.0 0.0 5.0 10.0 15.0

Neural network

Training data

Validation data

input (x)

output (y)

Neural Network Over-Learning

Q.J. Zhang, Carleton University

 Underlearning
 Definition (strict):

 Math

 Observation: NN can not even represent the problem at

 training points

 Possible reasons:

 a) Not enough hidden neurons

 b) Training stuck at local solution

 c) Not enough training

 Actions:

 a) Add hidden neurons

 b) More training

 c) Perturb solution, then train

0
rTE

Q.J. Zhang, Carleton University

Input (x)

Output (y)

 -1

-0.5

0.0

0.5

 1

1.5

-5.0 0.0 5.0 10.0 15.0

Neural network

Training data

Validation data

Neural Network Under-Learning

Q.J. Zhang, Carleton University

Perfect Learning:

Definition (strict):

Math

Observation: generalized well

0 VT EE
r

Q.J. Zhang, Carleton University

Perfect Learning of Neural Networks

-0.8

-0.4

0.0

0.4

0.8

1.2

-5 0 5 10 15

Neural network

Training data

Validation data

input (x)

output (y)

.

.
.

.
.

.

Q.J. Zhang, Carleton University

• Sample-by-sample (or online) training: ANN weights are updated

every time a training sample is presented to the network, i.e., weight

update is based on training error from that sample

• Batch-mode (or offline) training: ANN weights are updated after each

epoch, i.e., weight update is based on training error from all the

samples in training data set

 where an epoch is defined as a stage of ANN training that

 involves presentation of all the samples in the training data set to

 the neural network once for the purpose of learning

• Supervised training: using (x & y) data for training

• Un-supervised training: using only x data for training

Types of Training

Q.J. Zhang, Carleton University

Neural Network Training

The error between training data and neural network outputs

is fedback to the neural network to guide the internal

weight update of the network

 Neural

Network

x

Training

 Data

Training

Error

- y d

w

Q.J. Zhang, Carleton University

 Training Problem Statement:
 Given training data

 Validation data

 NN model y(x, w)

 Find values of w, such that validation error is minimized

 where

 = user’s / software initial guess

 is the update determined by the optimization

algorithm (training algorithm) which minimizes the training

error

Trk),,d(x kk

Vk),d,(x kk

) (min epoch E V
epoch

)(VsizePV

)1()1()(epochwepochwepochw

0| epochw

)1(epochw

q
1

Vk

m

1j

q

jminjmax

jkkj

V

Δ

V
yy

d(epoch))w,x(y

mP

1
(epoch)E

Q.J. Zhang, Carleton University

Steps of Gradient Based Training Algorithms:

Step 1: w = initial guess

 epoch = 0

Step 2: If (given accuracy criteria)

 or epoch > max_epoch (max number of epochs),

 stop

Step 3: Calculate and using partial or all

 training Data

Step 4: Use optimization algorithm to find

Step 5: If all training data are used, then

 , go to Step 2, else go to Step 3

)(epochEV

)(wE
rT

w

wE
rT

)(

w

www

1 epochepoch

Q.J. Zhang, Carleton University

 Update w in Gradient-based Methods

w = h h

where h is the direction of the update of w

h is the step size of the update of w

 Gradient based methods use information of and

 to determine update direction of w .

 Step size h is determined by:

 Small fixed constant set by user

 Adaptive constant during training

 Line minimization method to find best value of h

)(wE
rT

w

wE
rT

)(

Q.J. Zhang, Carleton University

method Cubic

method Quadratic
methods ionInterpolat

method Bisection

method Fibonacci

method section Golden

methods Sectioning

Line Minimization Problem Statement

Let a scalar function of one variable be defined as

 f(h) ETr(w + h h)

Given present value of w and direction h

Find h such that f(h) is minimized.

Solution method: (1-dimensional optimization method):

Q.J. Zhang, Carleton University

Back-Propagation (BP), (Rumelhart, Hinton

& Williams, 1986)

 We use the negative gradient direction: h = -

 for

 The neural network weights are updated during training as:

 or

 where h is called the learning rate

 a is called the momentum factor

hw h

w

)w(E

ww
rT

 h

1epoch

T

|w
w

)w(E

ww
r

 ah

w

wE
rT

)(

Q.J. Zhang, Carleton University

 Determining h and a for BP :

• Set h and a as fixed constant

• h and a can be adaptive

• h = c / epoch, c is a constant

• STC (Darkens, 1992)

 where are user defined

• Delta-bar-delta (Jacobs, 1988)

 (a) A hi for each weight in of NN,

 (b) h is adjusted during training using present and previous

 information of

iw w
w

)w(E

ww
rT

iii

 h

i

T

w

wE
r

)(

22

0

0
0

)
epoch

()
epoch

()
c

(1

)
epoch

()
c

(1

h

h
hh

c,,0 h

Q.J. Zhang, Carleton University

 Conjugate Gradient Method

 Let

 Then

 where

 (Fletcher/Reeves)

 (Polak – Ribiere)

 h is determined by

 Speed: generally fast than BP

 Memory: A few vectors of long, where is the total # of NN

 weights/parameters in w

hw h

w

)w(E
E rT

)1epoch(hE)epoch(h

Eh 0

2

2

)1epoch(E

)epoch(E

2

T

)1epoch(E

)epoch(E))1epoch(E)epoch(E(

methodRegionTrust

methodonminimizatiLine

WN
WN

Q.J. Zhang, Carleton University

 Quasi-Newton Method

 Let H be the Hessian matrix of ETr
 w.r.t. w

 B be the inverse of H

Weight update: w = h h, where

Use information of w and g to approximate B:

 (DFP formula)

 where w = w(epoch) – w(epoch-1)

 Speed: fast

 Main Memory Needed: (Large)

IB
0epoch

2
WN

EBh

gBg

BggB

gw

ww
BB

1epoch

T

1epoch

T

1epoch

T

T

1epochepoch

)1()(epochEepochEg

Q.J. Zhang, Carleton University

 Levenberg-Marquardt Method

 Obtain from solving linear equations, e.g.

 where e = [e1 , e2 , . . . , eNe]
T ,

 J is Jacobian,

 This method is good if can be very small, e.g., small residue

 problems.

 Computation needs LU decomposition

 Main Memory Needed: , (Large)

w

eJwIJJ
TT

)(

jj

jkkj

jki
yy

dwxy

e
min,max,

),(

T

T

w

e

J)(

NewtonGauss

MarquardtLevenbergTypical

0

0

e

2
WN

Q.J. Zhang, Carleton University

 Other Training Methods

 Huber-Quasi-Newton

 Similar to Quasi-Newton, except that the error function

 for training is based on Huber function, and not the

 conventional least square error function.

 The Huber formulation allows the training algorithm

 to robustly handle both small random errors

 and accidental large error in training data.

Q.J. Zhang, Carleton University

 Other Training Methods (continued)

 Simplex Method using information only

 The method starts with several initial guesses of w. These

 initial points form a simplex in the w space.

 The method then iteratively updates the simplex using basic

 moves such as reflection, expansion, and contraction, according

 to the information of at vertices of the simplex

 The error generally decreases as the simplex is updated.

)(wE
rT

)(wE
rT

)(wE
rT

Q.J. Zhang, Carleton University

 Other Training Methods (continued)

 Genetic Algorithm using information ETr(w) only, searching

 for global minimum

 The algorithm starts with several initial points of w

 called a population of w

 A fitness value is defined for each w such that w with

 lower error ETr(w) has a high fitness

 w points with high fitness values are more likely selected

 as parents from whom new points of w called offspring

 are produced

 This process continues, and fitness among the population

 improves

Q.J. Zhang, Carleton University

 Other Methods (continued)

 Particle Swarm Optimization (PSO) using information ETr(w) only,

 searching for global minimum

 The algorithm starts with several initial points of w. Each point

 of w is called a particle, and all the particles together is

 called a swarm of w.

 Let pb represent the historical best of a particle w. Let gb represent

 the historical best of all particles w in the swarm.

 Let v be defined as the velocity of a particle w, computed as:

 v = c0 vold + c1r1 (pb - w) + c2r2 (gb - w)

 where c0, c1 and c2 are constant weight parameters, r1 and r2

 are random values between 0 and 1, and vold represent the v of the particle

 in the previous iteration.

 Each particle is updated by w = w+ v

Q.J. Zhang, Carleton University

Memory need and

effort in implementation

Convergence

 Rate

fast

slow

more

less

Levenberg Marquardt (for small-residue problems)

Quasi-Newton

Conjugate Gradient

BP

Qualitative Comparison of Different Algorithms

Q.J. Zhang, Carleton University

Training Algorithm No. of Epochs Training Error (%) Avg. Test Error (%) CPU (in Sec)

Adaptive

Backpropagation 10755 0.224 0.252 13724

Conjugate-gradient

2169 0.415 0.473 5511

Quasi-Newton

1007 0.227 0.242 2034

Levenberg-

Marquardt 20 0.276 0.294 1453

Comparison of Training Algorithms for 3-Conductor Microstrip Line

Example (5 input neurons, 28 hidden neurons, 5 output neurons)

Q.J. Zhang, Carleton University

Training Algorithm No of Epochs Training Error (%) Ave. Test Error (%) CPU (in Sec)

Adaptive

Backpropagation 15319 0.98 1.04 11245

Conjugate Gradient

1605 0.99 1.04 4391

Quasi-Newton 570 0.88 0.89 1574

Levenberg-

Marquardt 12 0.97 1.03 4322

Comparison of Training Algorithms for MESFET Example

(4 input neurons, 60 hidden neurons, 8 output neurons)

