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 Notation: 
 

  x: input of the original modeling problem or the neural network 

 

  y: output of the original modeling problem or the neural network 

 

  w: internal weights/parameters of the neural network 

 

  m: number of outputs of the model 

 

  y = f(x , w) : neural network model 

 

  d:  data for y  (e.g., trainining data) 
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Define Model Input-Output 
  

 
Define model input-output (x, y), for example, 

 

 x: physical/geometrical parameters of the component 

  y: S-parameters of the component 
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     Data Generation: 

 
        (a)Generate (x,y) samples:            , k = 1, 2, …, P, such that     

             the finished NN best (accurately) represent original  x~y 

             problem 

 

 

        (b)Data generator 

• Measurement : for each given      , measure values of     ,  

  k=1,2,…, p 

• Simulation: for each given      , use a simulator to            

  calculate     ,  k=1,2,…, p 
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kx ky
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Basis of Comparison Neural Model Development Using

Measurement Data

Neural Model Development Using

Simulation Data

Availability of Problem

Theory-Equations

Model can be developed even if

the theory-equations are not

known, or difficult to implement in

CAD.

Model can be developed only for

the problems that have theory that

is implemented in a simulator.

Assumptions No assumptions are involved and

the model could include all the

effects, e.g., 3D-fullwave effects,

fringing effects etc.

Often involves assumptions and the

model will be limited by the

assumptions made by the simulator,

e.g., 2.5D EM.

Input Parameter Sweep Data generation could either be

expensive or infeasible, if a

geometrical parameter, e.g.,

transistor gate-length needs to be

sampled/changed.

Relatively easier to sweep any

parameter in the simulator, because

the changes are numerical and not

physical/manual.

Comparison of Neural Network Based Microwave Model Development  

Using Data from Two Types of Data Generators 
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Basis of Comparison Neural Model Development Using

Measurement Data

Neural Model Development Using

Simulation Data

Sources of Small and

Large/Gross Errors

Equipment limitations and

tolerances.

Accuracy limitations and non-

convergence of simulations.

Feasibility of Getting

Desired Output

Development of models is possible

for measurable responses only. For

example, drain charge of an FET

may not be easy to measure.

Any response can be modeled as

long as it can be computed by the

simulator.

Comparison of Neural Network Based Microwave Model Development  

Using Data from Two Types of Data Generators (continued) 
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     Data Generation: 
         

  (c) Range of x to be sampled 

 

• For Testing Data and Validation data: 

                    : Should represent the user-intended range 

in which the NN is to be used by user 

 

• For Training Data: 

Default range of  x samples should be equal to user- 

intended range, or if feasible, slightly beyond the user 

intended range 

maxmin xx 
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(d) Distribution of  x samples 
  

•  Uniform grid distribution 

•  Non-uniform grid distribution 

•  Design of Experiments (DOE) methodology 

 central-composite design 

 2n factorial design 

•  Star distribution  

•  Random distribution 

Data Generation 
- where data should be sampled 

 

x1 

x3 

x2 
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          Data Generation (continued): 
 

    

 

   (e) Number of samples P -- Theoretical factor: 

•For grid distribution case:  Shannon’s Theorem  

•For random distribution case: statistical confidence 
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                  Input / Output Scaling 
 

 

 

 

 

The orders of magnitude of various x and d values in 

microwave applications can be very different from one 

another. 

 

Scaling of training data is desirable for efficient neural 

network training 

 

The data can be scaled such that various x (or d ) have 

similar order of magnitude 
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    Input / Output Scaling: 
 

 

Notation: 

        x and y   -- Original  x and y 

           and      -- Scaled x and y  

                   -- Obtained from data 

                   -- Dictated by NN trainer 

 

•  Linear scale   

 Scale formula: 

     

 

 De-scaled formula:   

 

• Log scale 

 Scale formula:   

 De-scale formula:  
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Illustration of Data Scaling 



 

Q.J. Zhang, Carleton University 

 

 

 

 
 

 

 

 

Divide Data into Training Set,      

Validation Set and Testing Set 

     Notation: 

       P – total number of data samples generated 

       D – Set for all data, D = {1, 2, …, P} 

           – Training data set 

      V  -- Validation data set 

          -- Test data set 

 

  Ideally: Each data set (   ,   ,    ) should be an adequate              

                       representation of original                problem in the      

                       entire                  range. Three sets have no overlap. 

 

         

rT

eT

rT V eT

)(xfy 

maxmin ~ xx
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    Divide Data into Training Set,         

   Validation Set and Testing Set 
        

 

      Case 1: When original data is quite sufficient, split D into  

                      non-overlapping sets        

 

        Case 2: When data is very limited, duplicate D, such that  

 

          

       Case 3: Split data D into 2 sets. 

 

               
 

DTVT er 



 

Q.J. Zhang, Carleton University 

 

     Training / Validation and Testing  

            
 

 

Training error: 

 

 

 

  

 

 Validation error: 

  

 

 
 Test error: 
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Where to Use Each Error Criteria 

Training error:  The training error ETr(w) and its derivative         

                           are used to determine how to update w during training 

 

Validation error:  The validation error EV(w) is used as a stopping 

                              criteria during training, i.e.,  to determine if training  

                              is sufficient.  

 

Test error:         The test error ETe(w) is used after training has finished 

                           to provide a final assessment of the quality of the trained  

                           neural network.  Test error is not involved during training. 
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Flow-chart Showing Neural Network Training, Validation and Testing 

  

 

Desired 
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achieved? 

Desired 

accuracy 
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Yes 

 

Evaluate 

validation error 

 

 

Perform feedforward 

computation for all 

samples in validation set 

 

 

Assign random initial 

values for all the weight 

parameters 

 

 

Select a neural network 

structure, e.g., MLP 

 STOP 

Training 

 
 

Evaluate test error as 

an independent quality 

measure for ANN 

model reliability 

 

 

Perform feedforward 
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samples in test set 
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Compute derivatives of 
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weights 

 

 

 

Update neural network weight 

parameters using a gradient-based 

algorithm (e.g., BP, quasi-Newton) 
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training error 
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  Initial Value of  NN Weights Before Training 
  

 MLP:     small random values 

  

 RBF/Wavelet:  estimate center & width of RBF  

              or translation & dilation of Wavelet 

 

Knowledge Based NN:  use physical/electrical                        

                                         experience 
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    Overlearning  

 

      Definition (strict):   

              

              Math 

 

 

Observation: NN memorized training data, but can not   

                        generalize well 

Possible reasons:  

a) Too many hidden neurons 

b) Not enough training data 

Actions:  

a) Add training data 

b) Delete hidden neurons 

c) Backup/retrieve previous solution 
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    Underlearning 
 Definition (strict): 

 Math   

 

 Observation:  NN can not even represent the problem at   

                          training points 

 

 Possible reasons:  

  a) Not enough hidden neurons 

  b) Training stuck at local solution 

  c) Not enough training 

 

 Actions:  

 a) Add hidden neurons 

 b) More training  

 c) Perturb solution, then train 
 

 

0
rTE
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Perfect Learning: 
 

 

 

 

Definition (strict): 

Math   

 

 

Observation: generalized well 
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Perfect Learning of Neural Networks 
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• Sample-by-sample (or online) training: ANN weights are updated 

every time a training sample is presented to the network, i.e., weight 

update is based on training error from that sample    

 

• Batch-mode (or offline) training: ANN weights are updated after each 

epoch, i.e., weight update is based on training error from all the 

samples in training data set  

 

      where an epoch is defined as a stage of ANN training that 

 involves presentation of all the samples in the training data set to 

 the neural network once for the purpose of learning 

 

• Supervised training: using (x & y) data for training 
 

• Un-supervised training: using only x data for training 

Types of Training 
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Neural Network Training  
 

The error between training data and neural network outputs  

is fedback to the neural network to guide the internal 

weight update of the network 

  Neural 

Network 

x

Training   

   Data 

Training 

Error  

- y d 

w 
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      Training Problem Statement: 
 Given training data  

         Validation data  

         NN model  y(x, w) 

 Find values of  w, such that validation error is minimized 

 

   

 where  

 

 

 

 

 

   = user’s / software initial guess 
 

                        is the update determined by the optimization 

algorithm (training algorithm) which minimizes the training 

error 
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Steps of Gradient Based Training Algorithms: 
 

Step 1:   w = initial guess 

                     epoch = 0 

 

Step 2:  If                              (given accuracy criteria) 

        or epoch > max_epoch (max number of epochs), 

       stop 

 

Step 3: Calculate              and             using partial or all  

              training Data 

 

Step 4:  Use optimization algorithm to find  

 

 

Step 5: If all training data are used, then 

                                  ,  go to Step 2, else go to Step 3 
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 Update w in Gradient-based Methods  

 
w = h h  

 

where  h  is the direction of the update of  w 

h  is the step size of the update of  w 

 

        Gradient based methods use information of             and                 

        to determine update direction of  w . 

        

        Step size h is determined by: 

  Small fixed constant set by user 

  Adaptive constant during training 

  Line minimization method to find best value of h 
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Line Minimization Problem Statement 
 

Let a scalar function of one variable be defined as 
 

 f(h)  ETr(w + h h) 
 

Given present value of  w  and direction h 

Find h such that f(h) is minimized. 
 

Solution method: (1-dimensional optimization method): 
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Back-Propagation (BP),  (Rumelhart, Hinton  

& Williams, 1986) 
  

           We use the negative gradient direction:  h = - 

 

           for  

 

           The neural network weights are updated during training as: 

   

 

       

     or 

 

            

  where h  is called the learning rate 

             a  is called the momentum factor 
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        Determining  h  and  a  for BP : 
 

• Set h and a as fixed constant 

• h and a can be adaptive 

• h = c / epoch,  c is a constant 

 

• STC (Darkens, 1992) 

 

         

 

  

     where                 are user defined 

 

• Delta-bar-delta (Jacobs, 1988) 

      (a)  A  hi  for each weight        in      of NN, 

 

       (b)  h  is adjusted during training using present and previous          

              information of   
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       Conjugate Gradient Method 
   

 

     Let  

   

     Then   

     where 

 

         (Fletcher/Reeves) 

 

                                                                                            (Polak – Ribiere) 
    

    

           h is determined by  

 

          Speed: generally fast than BP 

         Memory: A few vectors of        long, where        is the total # of NN        

                          weights/parameters in w 
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    Quasi-Newton Method 

      Let   H  be the Hessian matrix of ETr
 w.r.t. w  

         B be the inverse of H 
 

Weight update:  w = h h, where 
 

Use information of  w and g to approximate  B: 

 

        

    (DFP formula)        

       where    w = w(epoch) – w(epoch-1) 

        
  

       Speed: fast 

        Main Memory Needed:         (Large) 
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     Levenberg-Marquardt Method 
          

            Obtain         from solving linear equations, e.g. 
 

  

            

           where  e  = [ e1 , e2 , . . . , eNe ]
T ,  

 
 

                J   is Jacobian, 

 

 

 

     

           This method is good if        can be very small, e.g., small residue         

            problems. 
 

            Computation needs LU decomposition  

            Main Memory Needed:       , (Large) 
 

w

eJwIJJ
TT

 )( 

jj

jkkj

jki
yy

dwxy

e
min,max,

),(





 

T

T

w

e

J )(














NewtonGauss

MarquardtLevenbergTypical

0

0


e

2
WN



 

Q.J. Zhang, Carleton University 

 

     

      Other Training Methods 
 

         Huber-Quasi-Newton  

 

              Similar to Quasi-Newton, except that the error function 

              for training is based on Huber function, and not the 

              conventional least square error function. 

 

              The Huber formulation allows the training algorithm 

               to robustly handle both small random errors 

               and accidental large error in training data. 
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      Other Training Methods (continued) 
 

         Simplex Method using information            only  

 

              The method starts with several initial guesses of w.   These 

               initial points form a simplex in the w space. 

 

              The method then iteratively updates the simplex using basic  

              moves such as reflection, expansion, and contraction, according 

              to the information of            at vertices of the simplex 

 

              The error             generally decreases as the simplex is updated. 

 

 

)(wE
rT

)(wE
rT

)(wE
rT



 

Q.J. Zhang, Carleton University 

 

     

       Other Training Methods (continued) 
 

           Genetic Algorithm using information ETr(w) only, searching 

           for global minimum 
 

       The algorithm starts with several initial points of w 

        called a population of w 
 

       A fitness value is defined for each w such that w with 

       lower error ETr(w) has a high fitness 
 

       w points with high fitness values are more likely selected 

       as parents from whom new points of w called offspring 

       are produced 
 

       This process continues, and fitness among the population 

       improves 
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       Other Methods (continued) 
 

          Particle Swarm Optimization (PSO) using information ETr(w) only,  

           searching for global minimum 
 

       The algorithm starts with several initial points of w. Each point  

        of w is called a particle, and all the particles together is  

       called a swarm of w.  
 

       Let pb represent the historical best of a particle w.  Let gb represent      

       the historical best of all particles w in the swarm. 
 

       Let v be defined as the velocity of a particle w, computed as:   

         v = c0 vold  + c1r1 (pb  - w) + c2r2 (gb  - w) 

       where c0, c1 and c2 are constant weight parameters, r1 and r2  

       are random values between 0 and 1, and vold represent the v of the particle 

       in the previous iteration. 

  

       Each particle is updated by w = w+ v 
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Memory need and 

effort in implementation 

Convergence 

 Rate 

fast 

slow 

more 

less 

Levenberg Marquardt (for small-residue problems) 

Quasi-Newton 

Conjugate Gradient 

BP 

Qualitative Comparison of Different Algorithms 
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Training Algorithm No. of Epochs Training Error (%) Avg. Test Error (%) CPU (in Sec)

Adaptive

Backpropagation 10755 0.224 0.252 13724

Conjugate-gradient

2169 0.415 0.473 5511

Quasi-Newton

1007 0.227 0.242 2034

Levenberg-

Marquardt 20 0.276 0.294 1453

Comparison of Training Algorithms for 3-Conductor Microstrip Line 

Example (5 input neurons, 28 hidden neurons, 5 output neurons) 
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Training Algorithm No of Epochs Training Error (%) Ave. Test Error (%) CPU (in Sec)

Adaptive

Backpropagation 15319 0.98 1.04 11245

Conjugate Gradient

1605 0.99 1.04 4391

Quasi-Newton 570 0.88 0.89 1574

Levenberg-

Marquardt 12 0.97 1.03 4322

Comparison of Training Algorithms for MESFET Example 

(4 input neurons, 60 hidden neurons, 8 output neurons) 

 


