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A Quick Illustration Example: 

 

Neural Network Model for Delay 

Estimation in a High-Speed 

Interconnect Network  
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High-Speed VLSI  

Interconnect Network  
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Circuit Representation of the  

Interconnect Network 
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Massive Analysis of Signal Delay 
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• A PCB contains large number of interconnect networks, 

each with different interconnect lengths, terminations, and 

topology, leading to need of massive analysis of 

interconnect networks 

 

• During PCB design/optimization, the interconnect 

networks need to be adjusted in terms of interconnect 

lengths, receiver-pin load characteristics, etc, leading to 

need of repetitive analysis of interconnect networks 

 

• This necessitates fast and accurate interconnect network 

models and neural network model is a good candidate 

Need for a Neural Network Model 
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Neural Network Model for Delay Analysis 
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Neural Net Training 

Training Data 

 

by simulation/ 

measurement 

  d = d(x) 

Neural 

Network 

y = y(x) 

Objective:  

 

to adjust W,V such that 

 

minimize      (y - d)2 

  W,V        x 
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Simulation Time for  20,000 

Interconnect Configurations 

Method                        CPU  

Circuit Simulator (NILT)      34.43 hours 

AWE                                  9.56 hours 

Neural Network Approach      6.67 minutes 
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• Neural networks have the ability to model multi-dimensional 
nonlinear relationships 

• Neural models are simple and the model computation is  fast 

• Neural networks can learn and generalize from available data 
thus making model development possible even when component 
formulae are unavailable 

• Neural network approach is generic, i.e., the same modeling 
technique can be re-used for passive/active devices/circuits 

• It is easier to update neural models whenever device or 
component technology changes 

Important Features of Neural Networks 
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Inspiration 

“Stop” 

“Start” 

“Help” 

  

      

     Mary    Lisa       John 
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A Biological Neuron 

Figure from Reference [L.H. Tsoukalas and R.E. Uhrig, Fuzzy and Neural Approaches in Engineering, Wiley, 1997.] 
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Neural Network Structures 
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• A neural network contains 

• neurons (processing elements)   

• connections (links between neurons)  
 

• A neural network structure defines  

• how information is processed inside a neuron  

• how the neurons are connected 
 

• Examples of  neural network structures 

• multi-layer perceptrons (MLP) 

• radial basis function (RBF) networks 

• wavelet networks 

• recurrent neural networks 

• knowledge based neural networks 
 

• MLP is the basic and most frequently used structure 

Neural Network Structures 
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MLP Structure 
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Information Processing In a Neuron 
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• Input layer neurons simply relay the external inputs to the 
neural network 

 

• Hidden layer neurons have smooth switch-type activation 
functions 

 

• Output layer neurons can have simple linear activation 
functions 

Neuron Activation Functions 
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Forms of Activation Functions: z = ()  
 

 Sigmoid function: 

 

 

 

 Arctangent function: 

 

 

   

 Hyperbolic Tangent function: 
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         Multilayer Perceptrons (MLP): 
 

Structure: 
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where:  L = Total No. of the layers 

 Nl = No. of neurons in the layer #l 

  l = 1, 2, 3, …, L 

     = Link (weight) between the neuron #i in the layer 

     #l and the neuron #j in the layer #(l-1)  

 

 NN inputs =                   (where n = N1) 

  

 NN outputs =                      (where m = NL) 

 

Let the neuron output value be represented by z, 

  = Output of neuron #i in the layer #l 

 

Each neuron will have an activation function: 
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Neural Network Feedforward: 
 

Problem statement: 

 

    

   Given:         , get                  from NN. 

 

 

Solution: feed  to layer #1, and feed outputs of layer #l-1 to l.  
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Question: How can NN represent an arbitrary 

nonlinear input-output relationship? 
        
 

Summary in plain words: 
   

     Given enough hidden neurons, a 3-layer-perceptron can  

     approximate an arbitrary continuous multidimensional function  

     to any required accuracy. 
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        Theorem (Cybenko, 1989): 

Let        be any continuous sigmoid function, the finite sums of 

the form:  

 

   

are dense in C(In). In other words, given any                and        , 

there is a sum,           , of the above form, for which  

                                        for all 

 

             where:  

      In -- n-dimensional unit cube  

 
                       

       C(In): Space of continuous functions on In .  

 

e.g.,  Original problem is               , where                ,  

             the form of          is a 3-layer-perceptron NN. 
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Illustration of the Effect of Neural Network Weights 
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affect the figure horizontally (or vertically). 

Values of the w’s are not unique, e.g.,  by changing 

signs of the 3 values in the example above.  
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Illustration of the Effect of Neural Network Weights 

- Example with 1 input 

bias: -20 bias: -2.5 
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Illustration of the Effect of Neural Network Weights  

  - Example with 2 inputs 

bias: 
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Illustration of the Effect of Neural Network Weights  

  - Example with 2 inputs 

Assuming arctan activation function 
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  - Example with 2 inputs 

Assuming arctan activation function 
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Illustration of the Effect of Neural Network Bias Parameters 

  - Example with 2 inputs 

Assuming arctan activation function 
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 x2 

Effect of Neural Network Weights, and Inputs on  

Neural Network Outputs  

As the values of the neural 

network inputs x change, 

different neurons will respond 

differently, resulting in y being a 

“rich” function of x.  In this way,    

y becomes a nonlinear a function 

of x. 

 

When the connection weights and 

bias change,  y will become a 

different function of x. 

 

y = f(x, w) 
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  Question: How many neurons are needed? 
 

          Essence: The degree of non-linearity in original problem.      

      

     Highly nonlinear problems need more neurons, more smooth 

     problems need fewer neurons. 

      

     Too many neurons – may lead to over learning 

      

     Too few neurons – will not represent problem well enough 

 

 

 

 

 

   

 

Solution:  
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     Question: How many layers are needed? 

 
  3 or more layers are necessary and sufficient for arbitrary           

   nonlinear approximation 

 

  3 or 4 layers are used more frequently 

 

 more layers allow more effective representation of  

   hierarchical information in the original problem 
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      Radial Basis Function Network (RBF) 

   
    Structure: 
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RBF Function  (Gaussian) 

))/(exp()(
2 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-4 -3 -2 -1 0 1 2 3 4

=1 

=0.2 

 

() 



 

Q.J. Zhang, Carleton University 

 

 

 

 

 

    RBF  Feedforward: 
 

    

          where                           

                                                

                    

   is the center of radial basis function,        is the width factor. 

           

          So a set of parameters     (i = 1, 2, …, N, j = 1, …, n) represent    

          centers of the RBF. Parameters      , (i = 1, 2, …, N, j = 1, …, n)   

          represent “standard deviation” of the RBF. 

 

Universal Approximation Theorem (RBF) – 

(Krzyzak, Linder & Lugosi, 1996): 
An RBF network exists such that it will approximate an 

arbitrary continuous               to any accuracy required. 
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    Wavelet Neural Network Structure: 
 

 

 

 

 

 

 

 

 
For hidden neuron     :      

  

      where tj  = [ tj1  , tj2 , . . . , tjn]T  is the translation vector,        is the dilation 

      factor,           is a wavelet function: 
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Wavelet Function 
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         Wavelet Transform: 
R  – space of a real variable 

          -- n-dimensional space, i.e. space of vectors of n real                  

              variables 

A function f :                is radial, if a function g :            ,  

exists such that              ,  

 

If        is radial, its Fourier Transform           is also radial. 

Let                     ,        is a wavelet function, if 

 

 

Wavelet transform of           is: 
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    The neural network accepts the input information sent to input 

neurons, and proceeds to produce the response at the output 

neurons.  There is no feedback from neurons at layer l back to 

neurons at layer k, k     l. 

    Examples of feedforward neural networks: 

          Multilayer Perceptrons  (MLP) 

          Radial Basis Function Networks (RBF) 

          Wavelet Networks 

Feedforward Neural Networks 
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Recurrent Neural Network (RNN): 

Discrete Time Domain 

…. 

      y(t) 

     

x(t) 

y(t-2)  y(t-3) y(t-) x(t-)  x(t-2) 

Feedforwad neural  

network 

The neural network output is a function of its present input, and a history of its 

input and output. 
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Dynamic Neural Networks (DNN) 

(continuous time domain) 

…. 

      y(t) 

     

x(t) 

y’’(t)   y’’’(t) y’(t) x’(t)    x’’(t) 

Feedforwad neural  

network 

The neural network directly represents the dynamic input-output relationship of 

the problem.  The input-output signals and their time derivatives are related 

through a feedforward network. 
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         Self-Organizing Maps (SOM), (Kohonen, 1984) 

    Clustering Problem: 

          Given training data xk, k = 1, 2, …, P, 

            Find cluster centers ci, i = 1, 2, …, N 

 

    Basic Clustering Algorithm: 
    For each cluster i, (i=1,2, .., N), initialize an index set Ri={empty}, and set 

     the center ci to an initial guess. 

     

            For xk, k = 1, 2, …, P, find the cluster that is closest to xk,    

     i.e. find ci ,  such that ,                                                 

      

      

     Let Ri= Ri {k}.  Then the center is adjusted:  

jijxcxc kjki  ,,
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i

i x
Rsize
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1

  and the process continues until  ci  does not move any more. 
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     Self Organizing Maps  (SOM) 

SOM is a one or two dimensional array of neurons where the          

neighboring neurons in the map correspond to the neighboring 

cluster centers in the input data space. 

  

   Principle of Topographic Map Information: (Kohonen, 1990) 

The spatial location of an output neuron in the topographic map 

corresponds to a particular domain or features of the input data 

 

 

Two-dimensional array of 

neurons 

input 
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   Training of SOM: 

 
For each training sample  xk, k = 1, 2, …, P, find the nearest  

cluster cij , such that 
 

 

Then update      and neighboring centers: 

  

 

       where                        , 

  

Nc – size of neighborhood 

 

         -- a positive value decaying as training proceeds 
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Specific MLP for 

group 1 

Specific MLP for 

group 2 

 

Specific MLP for 

group 3 

 

Specific MLP for 

group 4 
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Filter Clustering Example (Burrascano et al) 
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Other Advanced Structures: 
 

 Knowledge Based Neural Networks embedding application    

   specific knowledge into networks 

Empirical formula 

Equivalent Circuit 

Pure  

Neural Networks 
+ 


