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Small Signal Component Models: direct 
modeling of component external behaviors

NN inputs:
Physical / geometrical parameters and/or 
electrical parameters

NN outputs:
-- for 2-port components (explicitly compatible 

to nodal analysis of circuits)
-- for 2-port components (popular form 

for high frequency circuit design)
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Example – HBT Modeling by NN
(Devabhaktuni, Xi and Zhang, 1998)
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DC Model: (Wang & Zhang, 1997)

Direct  modeling of component external behaviors
Example – physics based FET and its NN model:

where L – Gate length
W – Gate width
a  – Channel thickness
Nd – Doping density

Training data obtained from OSA90 simulation with
Khatibzadeh  & Trew  model
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Large-Signal Model (Zabaab, Zhang 
& Nakhla, 1994):

Direct  modeling of component external behaviors
Example -- same active component FET

This form is explicitly compatible to harmonic balance analysis 
of nonlinear circuits

Training data obtained from OSA90 simulation with Khatibzadeh 
& Trew model
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Implementation of neural network models into circuit simulator
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Time-Varying Volterra Kernel Based 
Model  (Harkouss et al., 1998):

•Time-varying Volterra series

• The global neural network architecture modeling the device 
is composed of 10 neural networks (DC currents and 4 
Volterra admittance), which is shown in next page

• Training data is obtained from measurements. DC term  
is defined by DC device measurements, and the time 
varying kernel  is directly related to the measured device 
bias dependent Y parameters, on all the frequency range
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DC/Small/Large-Signal Component Model:
indirect modeling through a known equivalent
circuit model

Linear or nonlinear, small signal or large signal, static 
or dynamic

General neural model:

Equivalent model

Original model inputs

Typical: equivalent circuit model with 
known topology but unknown values of 
parameters

Typical: parameters in equivalent circuit 
model

Typical: physical parameters

Neural Networks

Intermediate
Parameters

NN
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Example -- Small Signal FET

NN Training Data:

Model parameter extraction using s-parameter measurement 
to find C1, C2, C3, r, gm from given biases (VG , VD)
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Example – NN Modeling of HEMT 
(Shirakawa et al., 1997):

• Characterize large-signal behavior with a conventional  
small-signal equivalent-circuit analysis, compatible to 
standard harmonic balance simulators

• Neural network models the bias-dependent intrinsic     
elements (                                     and with inputs of 
Vgs and Vds

• Five layer perceptrons of total 28 neurons

dsmgdigs ggCRC ,,,,, ττττ )dsC
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Equivalent Circuit

Cgs Ri Cgd gm τ gds Cds

•The VGS and VDS
dependent intrinsic 
elements data are 
extracted from 
the S-parameter 
measurements 
performed at various 
bias settings

VGS VDS
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Macromodel of Nonlinear Circuits Based 
On Recurrent Neural Networks (RNN) 

(Fang, Yagoub, Wang, and Zhang, 2000)

Input-output waveforms of nonlinear circuit
are used as training data

Additional circuit parameters can also be added as neural 
network inputs

Macromodel represents dynamic behavior of nonlinear
circuits
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The Nonlinear Macromodeling Structure

Nonlinear
Microwave Circuit

Original Training Data

Input 
waveform 

u(k)

Circuit 
parameter p

Output 
waveform (k)

Recurrent Neural Network macromodel

Time varying 
input u(k)

Time invariant 
input p

y layer

x layer
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Power amplifier circuit to be represented by RNN macromodel
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Comparison between original amplifier waveform (ο) and that 
from a trained RNN macromodel with 3 buffers (_). (freq. = 0.9, 
1.1 GHz, Amplitude = 0.55, 1.15V)



Q.J. Zhang, Carleton  University

Number of Hidden

Neurons in z layer

Recurrent Training Error

 (3 buffers)

Recurrent Testing Error

(3 buffers)

30 1.35e-2 1.43e-2

40 1.08e-2 1.11e-2

50 1.06e-2 1.04e-2

60 1.12e-2 1.19e-2

Amplifier: Recurrent training and  testing vs. different 
number of hidden neurons in z layer
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No. of buffers (K0) Recurrent Training Error Recurrent Testing Error

1 3.11e-2 3.00e-2

2 1.81e-2 1.83e-2

3 1.06e-2 1.04e-2

4 9.10e-3 9.33e-3

Amplifier: Comparison of recurrent model against different 
numbers of buffers
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Discussion:

Neural Models in general:
Allow the design/adjustment of component physical parameters 
and tolerance analysis of physical parameter variations.

Direct modeling of external behaviors:
! Overall model could include all practical effects, non-ideal

effects, new semiconductor effects not covered in available  
commercial models

! Easier to develop even without theory / experience / knowledge 
of the component when using measured data to train a NN

! With no or much less assumptions than circuit based models

Indirect modeling through a equivalent circuit model:
! Easily compatible with circuit simulator, including time-domain and

frequency-domain simulations
! Possible with dynamic models
! Limited by equivalent circuit model assumptions


