ANN Based Modeling of
Active Components



Small Signal Component M odels. direct
modeling of component external behaviors

NN inputs:
Physical / geometrical parametersand/or
electrical parameters

NN outputs:
Yo, -- for 2-port components (explicitly compatible
to nodal analysis of circuits)
Soxo-- for 2-port components (popular form
for high frequency circuit design)
Zor H
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Example—HBT Modeling by NN
(Devabhaktuni, Xi and Zhang, 1998)
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Training data obtained from S-parameter measur ements
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DC Model: (Wang & Zhang, 1997)

Direct modeling of component external behaviors
Example—physicsbased FET and its NN model:
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where L — Gatelength
W — Gate width

a —Channel thickness
N4 — Doping density

Training data obtained from OSA90 simulation with
Khatibzadeh & Trew mode
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L arge-Signal Model (Zabaab, Zhang
& Nakhla, 1994).

Direct modeling of component external behaviors

Example -- same active component FET
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Thisform isexplicitly compatible to harmonic balance analysis
of nonlinear circuits

Training data obtained from OSA90 simulation with K hatibzadeh
& Trew model
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| mplementation of neural network modelsinto circuit ssmulator
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Time-Varying Volterra Kernel Based
Model (Harkousset al., 1998).

Time-varying Volterra series
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e The global neural network architecture modeling the device
Iscomposed of 10 neural networks (DC currentsand 4
Volterra admittance), which is shown in next page

e Training data is obtained from measurements. DC term
Isdefined by DC device measurements, and thetime
varying kernel isdirectly related to the measured device
bias dependent Y parameters, on all the frequency range
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Time-Varying Volterra Kernel Based

M odel

DC Neural Networks
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DC/Small/L arge-Signal Component M odd!.:

Indirect modeling through a known equivalent
circuit model

Linear or nonlinear, small signal or large signal, static
or dynamic

General neural modd:

Typical: equivalent circuit model with

Equivalent model known topology but unknown values of
parameters
Intermediate  Typical: parameters in equivalent circuit
Parameters model
NN Neural Networks
Original model inputs Typical: physical parameters
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Example -- Small Signal FET

JoL

NN Training Data:

Model parameter extraction using s-parameter measur ement
tofind C1, C2, C3, r, g, from given biases (V. , V)
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Example— NN Modeling of HEMT
(Shirakawa et al., 1997):

e Characterizelarge-signal behavior with a conventional
small-signal equivalent-circuit analysis, compatibleto
standard harmonic balance ssmulators

* Neural network modelsthe bias-dependent intrinsic
elements( Cyy, R;,Cypy, 8T, 845 @NA 4 ) With Inputs of
V,,and V,

e Fivelayer perceptronsof total 28 neurons
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Equivalent Circuit

*The V.¢and Vg
dependent intrinsic
elementsdata are
extracted from

the S-parameter
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performed at various

bias settings

measur ements



Macromodel of Nonlinear Circuits Based
On Recurrent Neural Networ ks (RNN)
(Fang, Yagoub, Wang, and Zhang, 2000)

| nput-output waveforms of nonlinear circuit
are used astraining data

Additional circuit parameters can also be added as neural
network inputs

Macromodel represents dynamic behavior of nonlinear
circuits
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The Nonlinear Macromodeling Structure

TTraining Error

il 11 Input layer
Time |varyi ng Time i}\\llariant
input u(K) input p
— — _

Recurrent Neural Networ k macromodel

AN
N

Output
waveform (k)

Nonlinear
M icrowave Circuit

| |

Input Circuit
waveform  parameter p
u(k)
— _/
g

Original Training Data

Q.J. Zhang, Carleton University



Power amplifier circuit to be represented by RNN macromodel
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Comparison between original amplifier waveform (o) and that
from atrained RNN macromodel with 3 buffers (-). (freq. = 0.9,
1.1 GHz, Amplitude = 0.55, 1.15V)
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Amplifier: Recurrent training and testing vs. different
number of hidden neuronsin z layer

Number of Hidden | Recurrent Training Error | Recurrent Testing Error
Neuronsin z layer (3 buffers) (3 buffers)

30 1.35e-2 1.43e-2

40 1.08e-2 1.11e-2

50 1.06e-2 1.04e-2

60 1.12e-2 1.19e-2
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Amplifier: Comparison of recurrent model against different
numbers of buffers

No. of buffers (Kg) | Recurrent Training Error | Recurrent Testing Error
1 31le?2 3.00e-2
2 1.81e-2 1.83e-2
3 1.06e-2 1.04e-2
4 9.10e-3 9.33e-3
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Discussion:

Neural Modelsin general:
Allow the design/adjustment of component physical parameters
and tolerance analysis of physical parameter variations.

Direct modeling of external behaviors:

» Overall model could include all practical effects, non-ideal
effects, new semiconductor effects not covered in available
commer cial models

» Easier to develop even without theory / experience/ knowledge
of the component when using measured datatotrain a NN

= With no or much less assumptionsthan circuit based models

I ndirect modeling through a equivalent circuit model:

= Easily compatiblewith circuit ssmulator, including time-domain and
frequency-domain ssimulations

» Possible with dynamic models

» Limited by equivalent circuit model assumptions
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