Layout Compaction

 ELEC 5402Pavan Gunupudi
Dept. of Electronics, Carleton University

January 10, 2012

Introduction

- General goal is to minimize layout area
- Layout is a collection of polygons
- Generally we have rectilinear polygons
- Some technologies allow polygons to have 45-degree segments

Rectilinear Polygon

b)

45 degree segments

Design Rules

a) Minimum width b) Minimum separation c) Minimum overlap

- Can only place rectangles on grid points
- Constraints imposed through design rules
- Constraints for polygons on same layer and different layers
- Expressed as minimum/maximum distance rules

Applications of Layout Compaction

- Removing redundant area from geometric layout
- Adapting geometric layout to new technologies
- If technology changes, design rules change
- geometric layout has to be converted to symbolic layout and then reconverted to geometric layout with new design rules
- Correcting small design rule errors
- Converting symbolic layout to geometric layout

Problem Formulation

- Layout is a collection of rectangles
- Two groups of rectangles: rigid and stretchable
- Rigid: e.g. Transistors, contact cuts etc.
- Stretchable: e.g. Wires (not width but length)
- Layout compaction is a 2-D problem
- 2-D layout compaction is NP-Complete (heuristics needed)
- 1-D layout compaction is in P
- Repeated 1-D layout compaction in each dimension is a valuable heuristic for 2-D layout compaction

2-D, 1-D Layout Compaction

(a)
(b)

(c)
(d)

2-D, 1-D Layout Compaction

(c)
(d)

Graph Formulation

- Rigid rectangle - one variable
- Stretchable rectangle - two variables
- Minimum distance rule: $x_{j}-x_{i} \geq d_{i j}$

$$
\begin{gathered}
x_{2}-x_{1} \geq a ; \quad x_{3}-x_{2} \geq b ; \quad x_{3}-x_{6} \geq b \\
x_{6}-x_{5} \geq a ; \quad x_{4}-x_{3} \geq a
\end{gathered}
$$

Constraint Graph

- Vertices of the graph $v_{i}=>x_{i}$ (source vertex v_{0})
- Edges (branches) $\left(v_{i}, v_{j}\right)$ with weight $w\left(\left(v_{i}, v_{j}\right)\right)=d_{i j}$ for each inequality $x_{j}-x_{i} \geq d_{i j}$
- The graph can be denoted as $G(V, E) ; V$ is the set of vertices and E is the set of edges

Constraint Graph Solution

- Length of the longest path from v_{0} to v_{i} gives the minimal x-coordinate x_{i} associated with the vertex v_{i}
- By taking the longest path to v_{i} we make sure that all inequalities in which x_{i} participates are satisfied

Maximum-Distance Constraints

- Written as $x_{C}-x_{W} \geq-d$ and $x_{W}-x_{C} \geq-d$
- Leads to cycles; solution still longest path

EXAMPLE 1

Example 1

$$
\begin{aligned}
& x_{3}-x_{2} \geq d_{1}=2 \\
& x_{2}-x_{1} \geq d_{2}=2 \\
& x_{4}-x_{3} \geq d_{2}=2 \\
& x_{6}-x_{5} \geq d_{2}=2
\end{aligned}
$$

ExAmple 2

Example 2

$$
\begin{gathered}
x_{3}-x_{2} \geq d_{1}=1 ; \quad x_{2}-x_{1} \geq d_{2}=2 \quad x_{4}-x_{3} \geq d_{2}=2 \\
x_{6}-x_{5} \geq d_{2}=2 ; \quad\left|x_{w}-x_{c}\right| \leq C_{2}=0.25 ; \quad x_{c}-x_{3} \geq C_{1}=0.5 \\
x_{4}-x_{c} \geq C_{1}=0.5 ; \quad x_{c}-x_{5} \geq C_{1}=0.5 ; \quad x_{6}-x_{c} \geq C_{1}=0.5
\end{gathered}
$$

Longest-Path Algorithm FOR DAGs

- Applicable only to directed acyclic graphs (DAGs)
- Set Q contains a list of all vertices v_{i} for which the longest distance from v_{0} is known.
- Initially only $v_{0} \in Q$; Gradually other vertices will be added.
- Once the vertex is "processed" it is removed from Q
- A variable p_{i} is associated with each vertex v_{i} to keep track of the vertices incident on v_{i} that still have to be processed

EXAMPLE

LPA - Example

Q	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
ϕ	1	2	1	2	1	0	0	0	0	0
$\left\{v_{0}\right\}$	0	1	1	2	1	1	5	0	0	0
$\left\{v_{1}\right\}$	0	0	1	2	0	1	5	0	0	3
$\left\{v_{2}, v_{5}\right\}$	0	0	0	1	0	1	5	6	6	3
$\left\{v_{3}, v_{5}\right\}$	0	0	0	1	0	1	5	6	6	3
$\left\{v_{5}\right\}$	0	0	0	0	0	1	5	6	7	3
$\left\{v_{4}\right\}$	0	0	0	0	0	1	5	6	7	3

LPA - Pseudocode

```
longest-path(G)
{
    for }(i\leftarrow1;i\leqn;i\leftarrowi+1
        pi}\leftarrow "in-degree of vil"
        Q}\leftarrow{\mp@subsup{v}{0}{}}
    while (Q\not=\emptyset) {
            vi}\leftarrow"\mathrm{ "any element from Q";
            Q}\leftarrowQ\{\mp@subsup{v}{i}{}}
            for each v}\mp@subsup{v}{j}{}\mathrm{ "such that" (}\mp@subsup{v}{i}{},\mp@subsup{v}{j}{})\inE
            x
            pj}\leftarrow\mp@subsup{p}{j}{}-1
            if ( }\mp@subsup{p}{j}{}\leq0
                Q}\leftarrowQ\cup{\mp@subsup{v}{j}{}}
            }
    }
}
main ()
{
    for (i\leftarrow0;i\leqn;i\leftarrowi+1)
        x}\leftarrow\leftarrow0
    longest-path(G);
}
```


DIRECTED GRAPHS WITH CYCLES

- The previous algorithm only works for acyclic graphs
- Two cases of cyclic graphs
- Negative cycles: Sum of edges in a cycle is negative
- Positive cycles: Sum of edges in a cycle is positive
- Finding longest path for positive cycles is NP-hard
- But positive cycle in a layout means conflicting constraints
- Such a layout is over-constrained
- Detecting positive cycles is enough
- Two algorithms to calculate longest path for negative cyclic graphs
- Liao-Wong algorithm
- Bellman-Form algorithm

Example

Liao-Wong Algorithm

- All edges are partitioned into forward edges E_{f} and backward edges E_{b}
- E_{f} - Minimum inequality constraints
- E_{b} - Maximum inequality constraints
- Idea is to start with graph with only E_{f} edges
- Use the DAG longest path algorithm on it
- Add one edge from E_{b}, call the DAG longest path algorithm again
- Iterate until all the edges in E_{b} are added

Solution - LW

Step	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
Initialize	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$
Forward 1	1	5	6	7	3
Backward 1	2	5	6	7	3
Forward 2	2	5	6	8	4
Backward 2	2	5	7	8	4
Forward 3	2	5	7	8	4
Backward 3	2	5	7	8	4

LW - Pseudocode

```
count }\leftarrow0\mathrm{ ;
for (i\leftarrow1;i\leqn;i\leftarrowi+1)
    x
x
do { flag }\leftarrow0\mathrm{ ;
    longest-path(G}\mp@subsup{G}{f}{})
    for each (vi, vj) \in E E
        if (\mp@subsup{x}{j}{}<\mp@subsup{x}{i}{}+\mp@subsup{d}{ij}{}){
            x
            flag \leftarrow }\leftarrow\mathrm{ ;
        }
    count }\leftarrow\mathrm{ count +1;
    if (count > | E 
        error("positive cycle")
}
while (flag);
```


Bellman-Ford Algorithm

- This does not discriminate between forward and backward edges
- This algorithm goes through several iterations until it converges to the longest paths
- First we start with a set S_{1} containing the source vertex
- Update distances to all the vertices that edges of this vertex go to: add these new vertices to S_{1} and remove the source vertex
- Repeat this process with the vertices present in set S_{1}
- Continue until convergence is attained
- If convergence does not occur in n iterations (n is the number of vertices in the graph then it indicates the presence of positive cycles

Solution - BF

S_{1}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
"not initialized"	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$
$\left\{v_{0}\right\}$	1	5	$-\infty$	$-\infty$	$-\infty$
$\left\{v_{1}, v_{2}\right\}$	2	5	6	6	3
$\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$	2	5	6	7	4
$\left\{v_{4}, v_{5}\right\}$	2	5	6	8	4
$\left\{v_{4}\right\}$	2	5	7	8	4
$\left\{v_{3}\right\}$	2	5	7	8	4

BF - Pseudocode

$$
\begin{aligned}
& \text { for }(i \leftarrow 1 ; i \leq n ; i \leftarrow i+1) \\
& \quad x_{i} \leftarrow-\infty ; \\
& x_{0} \leftarrow 0 ; \\
& \text { count } \leftarrow 0 ; \\
& S_{1} \leftarrow\left\{v_{0}\right\} ; \\
& S_{2} \leftarrow \emptyset ; \\
& \text { while (count } \left.\leq n \& \& S_{1} \neq \emptyset\right)\{ \\
& \text { for each } v_{i} \in S_{1} \\
& \quad \text { for each } v_{j} \text { "such that", }\left(v_{i}, v_{j}\right) \in E \\
& \quad \text { if }\left(x_{j}<x_{i}+d_{i j}\right)\{ \\
& x_{j} \leftarrow x_{i}+d_{i j} ; \\
& S_{2} \leftarrow S_{2} \cup\left\{v_{j}\right\} \\
& \quad\} \\
& \quad S_{1} \leftarrow S_{2} ; \\
& S_{2} \leftarrow \emptyset ; \\
& \text { count } \leftarrow \text { count }+1 ; \\
& \} \\
& \text { if (count }>n) \\
& \text { error("positive cycle"); }
\end{aligned}
$$

