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INTRODUCTION

General goal is to minimize layout area
Layout is a collection of polygons
Generally we have rectilinear polygons

Some technologies allow polygons to have 45-degree
segments

a) b)
Rectilinear Polygon 45 degree segments



DESIGN RULES

a) Minimum width b) Minimum separation ¢) Minimum overlap

Can only place rectangles on grid points
Constraints imposed through design rules
Constraints for polygons on same layer and different layers

Expressed as minimum/maximum distance rules



APPLICATIONS OF LAYOUT
COMPACTION

Removing redundant area from geometric layout
Adapting geometric layout to new technologies

o If technology changes, design rules change
e geometric layout has to be converted to symbolic layout and
then reconverted to geometric layout with new design rules

Correcting small design rule errors

Converting symbolic layout to geometric layout



PROBLEM FORMULATION

Layout is a collection of rectangles

Two groups of rectangles: rigid and stretchable

Rigid: e.g. Transistors, contact cuts etc.

Stretchable: e.g. Wires (not width but length)

Layout compaction is a 2-D problem

2-D layout compaction is NP-Complete (heuristics needed)
1-D layout compaction is in P

Repeated 1-D layout compaction in each dimension is a
valuable heuristic for 2-D layout compaction



2-D, 1-D LAyourT COMPACTION
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2-D, 1-D LAyourT COMPACTION
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GRAPH FORMULATION

e Rigid rectangle - one variable
e Stretchable rectangle - two variables

e Minimum distance rule: z; — x; > d;
e 7 —a; z3 — T3 > b; 3 —Tg = b

ZTg — L5 = G; api, = sy 2 (@



CONSTRAINT GRAPH

e Vertices of the graph v; => x; (source vertex vg)

o Edges (branches) (v;, v;) with weight w((vs, v;)) = d;; for
each inequality z; — x; > d;;

e The graph can be denoted as G(V, E); V is the set of
vertices and F is the set of edges



CONSTRAINT GRAPH -
SOLUTION

e Length of the longest path from vy to v; gives the minimal
x-coordinate x; associated with the vertex v;

e By taking the longest path to v; we make sure that all
inequalities in which z; participates are satisfied



MAXIMUM-DISTANCE
CONSTRAINTS

e Written as x¢ — xw > —d and xw — x¢ > —d

e Leads to cycles; solution still longest path



EXAMPLE
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EXAMPLE 2
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EXAMPLE 2
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BONCEST-PATH ALGORITHR
FOR DAGS

Applicable only to directed acyclic graphs (DAGs)

Set () contains a list of all vertices v; for which the longest
distance from vg is known.

Initially only vy € @Q; Gradually other vertices will be
added.

Once the vertex is “processed” it is removed from @

A variable p; is associated with each vertex v; to keep track
of the vertices incident on v; that still have to be processed



EXAMPLE




LPA - EXAMPLE
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LPA - PSEUDOCODE

longest-path(G)
{
for(i < ;i <nji<i+1)
pi < “in-degree of v;”;
0 < {vok
while (Q # 9) {
v; < “any element from Q”;
0 < 0 \{ui}:
for each v; “such that” (v;, v;) € E {
Xj < max(xj, x; +djj);
Py <= =18
if (pj <0)
0 < QU {vjk
}
}
}

main ()
{
for(( < 0;i <nji <i+1)
x;j <05
longest-path(G);
}



DIRECTED GRAPHS WITH
CYCLES

The previous algorithm only works for acyclic graphs
Two cases of cyclic graphs

Negative cycles: Sum of edges in a cycle is negative
Positive cycles: Sum of edges in a cycle is positive

e Finding longest path for positive cycles is NP-hard

e But positive cycle in a layout means conflicting constraints
e Such a layout is over-constrained

e Detecting positive cycles is enough

Two algorithms to calculate longest path for negative cyclic
graphs

e Liao-Wong algorithm
e Bellman-Form algorithm



EXAMPLE




[BFAG-\WONG ALGORITEEI

All edges are partitioned into forward edges E; and
backward edges Fj

E¢ - Minimum inequality constraints

Ep - Maximum inequality constraints

Idea is to start with graph with only E; edges
Use the DAG longest path algorithm on it

Add one edge from Ej, call the DAG longest path
algorithm again

Iterate until all the edges in F} are added



SOLUTION - LW
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LW - PSEUDOCODE

count < 0;

for(i < 1;i<mi<i+1)
Xj < —00;

xg < 0;

do { flag < 0;
longest-path(G f);
for each (v;, vj) € Ep
if(x]- < Xi +dij){
Xj < x; + d,’j;
flag < 1;
}
count < count +1;
if (count > |Ep| && flag)
error(“positive cycle”)
}
while (flag);



BELLMAN-FORD ALGORITHM

This does not discriminate between forward and backward
edges

This algorithm goes through several iterations until it
converges to the longest paths

First we start with a set S1 containing the source vertex

Update distances to all the vertices that edges of this
vertex go to: add these new vertices to S; and remove the
source vertex

Repeat this process with the vertices present in set Sp
Continue until convergence is attained

If convergence does not occur in n iterations (n is the
number of vertices in the graph then it indicates the
presence of positive cycles



SOLUTION - "BIF

Sil a5 T T3 T4 T5
“not initialized” || —oco | —00 | —00 | —00 | —00
{vo} 1 5 | —o0 | —00 | —00
{Ul, UQ} 2 5 6 6 3
{7)1,1]3,1)4,1)5} 2 5) 6 7 4
{124, U5} 2 ) 6 8 4
{v4} % ) 7 8 4
{vs} 2 5 7 8 4




BF - PSEUDOCODE

for(i < 1l;i<mi<i+1)
Xj < —0OQ0;
xg < 05
count < 0;
S1 < {vo};
Sy < 0
while (count < n && S| # 9) {
for each v; € S
for each v; “such that” (v;, vj) € E
if (xj < x; +dij){
xj < x; +dij;
Sy < S U {Uj}
}
S1 <« Sy
Sy < 0
count < count + 1;
}
if (count > n)
error(“positive cycle”);



