Measurement Guide and Programming Examples

Agilent CSA Spectrum Analyzer

This manual provides documentation for the following instruments:

Agilent CSA
N1996A-503 (100 kHz to 3 GHz)
N1996A-506 (100 kHz to 6 GHz)

For firmware revision A.01.00 and above

Manufacturing Part Number: N1996-90003
Printed in USA
January 2006
© Copyright 2006 Agilent Technologies
Notice

The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement will control.”

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as “Commercial computer software” as defined in DFAR 252.227-7014 (June 1995), or as a “commercial item” as defined in FAR 2.101(a) or as “Restricted computer software” as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies’ standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.
Where to Find the Latest Information

Documentation is updated periodically. For the latest information about Agilent Technologies CSA spectrum analyzers, including firmware upgrades and application information, please visit the following URL:

http://www.agilent.com/find/csa

Microsoft® is a U.S. registered trademark of Microsoft Corporation.
Contents

1. Installation and Setup
 - Introduction .. 11
 - Initial Inspection .. 12
 - Safety Information .. 14
 - Power Requirements .. 27
 - Physically Securing Your Analyzer 31
 - Turning on the Analyzer for the First Time 32
 - Firmware Revision .. 34
 - Printer Setup and Operation .. 35
 - Protecting Against Electrostatic Discharge 36
 - Using the Soft Carrying Case 37

2. Options and Accessories
 - Ordering Options and Accessories 40
 - Options ... 41
 - Option Descriptions .. 44
 - Accessories .. 47

3. Front and Rear Panel Features
 - Front Panel Overview .. 52
 - Rear-Panel Features ... 61
 - Key Overview .. 63

4. Recommended Test Equipment
 - Test Equipment for Making Measurements 66

5. Spectrum Analyzer
 - Making a Basic Measurement 71
 - Measuring Multiple Signals .. 77
 - Measuring a Low-Level Signal 88
 - Making Distortion Measurements 95
 - Using the Analyzer as a Fixed Tune Receiver 102
 - Occupied Bandwidth (OBW) Measurement 105

6. Channel Analyzer Measurements
 - Making Adjacent Channel Power (ACP) Measurements 111

7. Stimulus Response Measurements (Option N8995A)
 - Two Port Insertion Loss ... 117
 - One Port Insertion Loss .. 120
 - Return Loss .. 123
 - Distance to Fault ... 125
Contents

8. Concepts
- Resolving Closely Spaced Signals .. 130
- Trigger Concepts .. 132
- AM and FM Demodulation Concepts .. 133
- Stimulus Response Measurement Concepts 134

9. Programming Examples
- Finding Examples and More Information 138
- Programming Examples Information and Requirements 139
- Programming in C Using the VISA .. 140

10. Basic System Operations
- System Reference Introduction ... 151
- Setting System References .. 152
- Printing a Screen To a File .. 153
- Saving Data .. 154
- File Naming Options .. 155
- Managing Media Types .. 157
- Configuring for Network Connectivity .. 158
- Saving, Recalling, and Deleting Instrument States 160
- Viewing System Statistics .. 163
- Using the Option Manager .. 164
- Testing System Functions ... 165

11. Working with Batteries
- Installing Batteries ... 169
- Viewing Battery Status ... 170
- Charging Batteries ... 172
- Recalibrating Batteries ... 174
- Battery Care ... 175
- Battery Specifications ... 178

12. Connector Care
- Using, Inspecting, and Cleaning RF Connectors 183

13. In Case of Difficulty
- Types of Spectrum Analyzer Messages ... 189
- Before Calling Agilent Technologies ... 190
- Returning an Analyzer for Service ... 193

14. Copyright Information
1 Installation and Setup
This chapter provides the following information that you may need when you first receive your spectrum analyzer:

- “Introduction” on page 11
- “Initial Inspection” on page 12
- “Power Requirements” on page 27
- “Physically Securing Your Analyzer” on page 31
- “Turning on the Analyzer for the First Time” on page 32
- “Printer Setup and Operation” on page 35
- “Protecting Against Electrostatic Discharge” on page 36
- “Safety Information” on page 14
Introduction

The Agilent CSA spectrum analyzer is designed to enable engineers and technicians in a wide variety of industries to make precision RF measurements with speed, ease and confidence. Flexible measurement functionality and high performance are combined with an intuitive user interface to allow faster insight into engineering challenges. Innovative measurement science ensures fast, accurate, and repeatable results. Equipped with USB and LAN connectivity, the Agilent CSA simplifies common tasks such as remote control, data transfer and firmware upgrade. An expandable architecture and rich set of options allow further configuration of the basic analyzer to keep up with solution needs.

Basic test functionality includes:

- Spectrum Analysis Mode
- Channel Analyzer Mode including the following measurements:
 - Adjacent Channel Power
- Stimulus/Response Mode (requires N8995A and either option TG3 or TG6) includes the following measurements:
 - Two Port Insertion Loss
 - One Port Insertion Loss
 - Return Loss
 - Distance to Fault

In this chapter, you will learn how to set up the N1996A, and you will learn to perform one basic measurement to start getting familiar with the range of features contained in the analyzer.

After the Installation and Setup chapter, you will find chapters on each N1996A measurement mode with each measurement in that mode, general information on batteries, caring for the N1996A, and how to return the instrument for service.
Initial Inspection

Inspect the shipping container and the cushioning material for signs of stress. Retain the shipping materials for future use, as you may wish to ship the analyzer to another location or to Agilent Technologies for service. Verify that the contents of the shipping container are complete. The following table lists the items shipped with the analyzer.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td></td>
</tr>
<tr>
<td>AC/DC converter</td>
<td>External power supply 15 VDC 130 W</td>
</tr>
<tr>
<td>Power Cable (See Table 1-2 on page 29)</td>
<td>Connection for AC/DC converter power source.</td>
</tr>
<tr>
<td>Stimulus /Response Calibration kit</td>
<td></td>
</tr>
<tr>
<td>Option SRK (pn N1996A-SRK) includes:</td>
<td>This item is included ONLY when you have ordered Option SRK.</td>
</tr>
<tr>
<td>Coax Accessories Case</td>
<td>Coax Accessories Case, plastic and foam (5000-0912)</td>
</tr>
<tr>
<td>Open/Short</td>
<td>Open/Short, 50 ohm, N-type male (85032-60011)</td>
</tr>
<tr>
<td>Termination</td>
<td>Termination, 50 ohm, N-type male (00909-60009)</td>
</tr>
<tr>
<td>Standard Documentation Set</td>
<td></td>
</tr>
<tr>
<td>Quick Started Guide</td>
<td>Covers unpacking and setting up the analyzer, analyzer features, and what to do if you have a problem.</td>
</tr>
<tr>
<td>Documentation CD-ROM</td>
<td>Includes electronic (PDF) versions of the documents in the standard set (“Manual Set on CD-ROM” on page 47). You can view and print the information as needed. See the CD-ROM jacket for installation information.</td>
</tr>
</tbody>
</table>
If There Is a Problem

If the shipping materials are damaged or the contents of the container are incomplete:

- Contact the nearest Agilent Technologies office to arrange for repair or replacement (“Calling Agilent Technologies” on page 191). You will not need to wait for a claim settlement.

- Keep the shipping materials for the carrier’s inspection.

- If you must return an analyzer to Agilent Technologies, use the original (or comparable) shipping materials (see “Returning an Analyzer for Service” on page 193).
Safety Information

General
This product and related documentation must be reviewed for familiarization with safety markings and instructions before operation.

This product has been designed and tested in accordance with IEC Publication 61010-1+A1+A2:1992 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use and has been supplied in a safe condition. This instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.

Safety Earth Ground
An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals, power cord, or supplied power cord set.

Chassis Ground Terminal
To prevent a potential shock hazard, always connect the rear-panel chassis ground terminal to earth ground when operating this analyzer from a dc power source.

Safety Information
The following safety conventions are used throughout this manual. Familiarize yourself with the symbols and their meaning before operating this instrument.

WARNING
A Warning denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met.

CAUTION
A Caution denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, could result in damage to or destruction of the instrument. Do not proceed beyond a caution sign until the indicated conditions are fully understood and met.

NOTE
A Note calls out special information for the user’s attention. It provides operational information or additional instructions of which the user should be aware.
Safety Symbols and Product Markings

The following safety symbols and product markings are located on the analyzer or the external power supply. Familiarize yourself with the symbols and their meaning before operating this analyzer.

The instruction documentation symbol. The product is marked with this symbol when it is necessary for the user to refer to the instructions in the documentation.

Indicates hazardous voltages.

Indicates earth (ground) terminal

This symbol is used to mark the on position of the power line switch.

This symbol is used to mark the standby position of the power line switch.

This symbol indicates that the input power required is AC.

The CE mark shows that the product complies with all relevant European legal Directives (if accompanied by a year, it signifies when the design was proven).

The CSA mark (not to be confused with the Agilent CSA spectrum analyzer) is a registered trademark of the Canadian Standards Association.

The C-Tick mark is a registered trademark of the Australian Spectrum Management Agency.

This is a marking of an Industrial Scientific and Medical Group 1 Class A product, and to indicate product compliance with the Canadian Interference-Causing Equipment Standard (ICES-001).

Separate collection symbol.

Safety Considerations For This Analyzer

WARNING This is a Safety Class 1 Product (provided with a protective earth ground incorporated in the power cord). The mains plug shall be inserted only in a socket outlet provided with a protected earth contact. Any interruption of the protective conductor inside or outside of the product is likely to make the product dangerous. Intentional interruption is prohibited.

WARNING Failure to ground the analyzer properly when using the external power supply can result in personal injury. Before turning on the analyzer, you must connect its protective earth terminals to the protective conductor of the main power cable. Only insert the main power cable plug into a socket outlet that has a protective earth contact. DO NOT defeat the earth-grounding protection by using an extension cable, power cable, or autotransformer without a protective ground conductor.

WARNING If this analyzer is to be energized via an autotransformer (for voltage reduction), make sure the common terminal is connected to the earth terminal of the power source.

WARNING If this product is not used as specified, the protection provided by the equipment could be impaired. This product must be used only in a normal condition (in which all means for protection are intact).

WARNING Whenever it is likely that the protection has been impaired, the analyzer must be made inoperative and be secured against any unintended operation.

WARNING To prevent electrical shock, disconnect the Agilent Technologies spectrum analyzer from mains before cleaning. Use a dry cloth or one slightly dampened with water to clean the external case parts. Do not attempt to clean internally.

WARNING When operating from an AC power source, always use the three-prong ac power cord supplied with this product. Failure to ensure adequate earth grounding by not using this cord may cause personal injury and/or product damage.

This product is designed for use in Installation Category II and Pollution Degree 3 per IEC 61010 and IEC 60664 respectively.
WARNING The front panel switch is a standby switch only; it is not a LINE switch (power disconnecting device).

WARNING Install the product so that the detachable power cord is readily identifiable and easily reached by the operator. The detachable power cord is the product disconnecting device. It disconnects the mains circuits from the mains supply before other parts of the product. The front panel switch is only a standby switch and is not a LINE switch. Alternatively, an externally installed switch or circuit breaker (which is readily identifiable and is easily reached by the operator) may be used as a disconnecting device.

WARNING Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended. Discard used batteries according to manufacturer's instructions.

WARNING No operator serviceable parts inside. Refer servicing to qualified personnel. To prevent electrical shock do not remove covers.

WARNING Servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing unless you are qualified to do so.

The opening of covers or removal of parts is likely to expose dangerous voltages. Disconnect the product from all voltage sources while it is being opened.

Adjustments described in the service manual are performed with power supplied to the analyzer while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

CAUTION If you are charging the batteries internally—even while the analyzer is powered off—the analyzer may become warm. Take care to provide proper ventilation.

CAUTION To avoid overheating, always disconnect the analyzer from the external power supply before storing the analyzer in the soft carrying case.

If you prefer to leave the analyzer connected to the external power supply while inside the soft carrying case, you can disconnect the external power supply from its power source to prevent overheating.
Installation and Setup

Safety Information

CAUTION
The external power supply has autoranging line voltage input. Be sure the supply voltage is within the specified range. (Refer to the specifications guide for your analyzer.)

CAUTION
When operating this product with the external power supply, always use the three-prong power cord supplied with this product. Failure to ensure adequate earth grounding by not using this cord can cause product damage.

CAUTION
VENTILATION REQUIREMENTS: When installing the product in a cabinet, the convection into and out of the product must not be restricted. The ambient temperature (outside the cabinet) must be less than the maximum operating temperature of the product by 4°C for every 100 watts dissipated in the cabinet. If the total power dissipated in the cabinet is greater than 800 watts, then forced convection must be used.

Lifting and Handling

When lifting and handling the Agilent N1996A Spectrum Analyzer use ergonomically correct procedures. If so equipped, lift and carry the analyzer by the bail handle.
Battery Pack Product Safety Data Sheet

SECTION I--MANUFACTURER INFORMATION

Inspired Energy, Inc. Telephone: (888) 5-INSPiRE (888-546-7747)
12705 N US Hwy 441 Date Prepared: Jan 13th 2003
Alachua, FL 32615

SECTION II--HAZARDOUS INGREDIENTS

Important Note:
The battery should not be opened or burned. Exposure to the ingredients contained within or their combustion products could be harmful

Material Safety Data Sheet Attached:
Review cell manufacturer’s MSDS

SECTION III--OPERATING PARAMETERS

Maximum Charge Voltage: 12.6 V
Minimum Charge Voltage: 7.5 V
Maximum Charge Current: 3.0 A
Maximum Discharge Current: 3.0 A
Recommended Charging Method: Use an SMBus charger of level 2 or higher to provide a 3.0 A current limited constant voltage of 12.6 V. The charging cycle shall terminate when the average current falls below 150mA.

The information contained within is provided for your information only. This battery is an article pursuant to 29 CFR 1910.1200 and, as such, is not subject to the OSHA Hazard Communication standard requirement for preparation of a material safety data sheet. The information and recommendations set forth herein are made in good faith and are believed to be accurate as of the date of preparation. However, INSPIRED ENERGY, INC. MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS INFORMATION AND DISCLAIMS ALL LIABILITY FROM RELIANCE ON IT.
Battery Pack Declaration of Conformity

Declaration of Conformance

PRODUCT: Standard Battery for Inspired Energy
Inspired Energy Part Number: NF2040

SECTION I - MANUFACTURER INFORMATION
Inspired Energy, Inc.
25440 NW 8th Place, Newberry FL 32669, USA
Telephone: +1 386 462 3676
Date Prepared: December 21st 2004

SECTION II - CONFORMANCE INFORMATION

The listed products have been tested in accordance with the UN document
on the Transport of Dangerous Goods, Manual of Tests & Criteria” and found to comply with
the stated criteria

<table>
<thead>
<tr>
<th>Test #</th>
<th>Description</th>
<th>Date Tested</th>
<th>Test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Altitude Simulation</td>
<td>June 21, 2004</td>
<td>Pass</td>
</tr>
<tr>
<td>T2</td>
<td>Thermal Cycling</td>
<td>July 23, 2004</td>
<td>Pass</td>
</tr>
<tr>
<td>T3</td>
<td>Shock</td>
<td>September 30 2004</td>
<td>Pass</td>
</tr>
<tr>
<td>T4</td>
<td>Vibration</td>
<td>October 01 2004</td>
<td>Pass</td>
</tr>
<tr>
<td>T5</td>
<td>Short Circuit</td>
<td>November 09, 2004</td>
<td>Pass</td>
</tr>
<tr>
<td>T6</td>
<td>Impact (Cell-Level test)</td>
<td>July 2nd 2003</td>
<td>Pass</td>
</tr>
<tr>
<td>T7</td>
<td>Overcharge</td>
<td>November 15, 2004</td>
<td>Pass</td>
</tr>
<tr>
<td>T8</td>
<td>Forced Discharge (Cell-level test)</td>
<td>July 2nd 2003</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Signed:

David W. Hellriegel
Product Test Laboratory manager

The information contained within is provided for your information only. The information and recommendations set forth
herein are made in good faith and are believed to be accurate as of the date of preparation. However, INSPIRED ENERGY,
INC. MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS INFORMATION AND DISCLAIMS ALL
LIABILITY FROM RELIANCE ON IT.
Batteries: Safe Handling and Disposal

SECTION 1 - PRODUCT IDENTIFICATION AND USE

<table>
<thead>
<tr>
<th>Product:</th>
<th>Molicel - Cobalt based Lithium-Ion cell (up to and including 2.4 Ah)</th>
<th>P.I.N.:</th>
<th>Not Regulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use:</td>
<td>High performance lithium-ion rechargeable battery system.</td>
<td>W.H.M.I.S.:</td>
<td>exempt. manufactured article</td>
</tr>
<tr>
<td>Manufacturer:</td>
<td>E-One Moli Energy (Canada) Limited 20,000 Stewart Cres. Maple Ridge, BC, Canada V2X 9E7 (604) 466-6654 (MOLI)</td>
<td>24 HOUR EMERGENCY NUMBER</td>
<td>(604) 466-6654 (MOLI)</td>
</tr>
<tr>
<td>FAX:</td>
<td>(604) 466-6600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 2 - HAZARDOUS INGREDIENTS

<table>
<thead>
<tr>
<th>Hazardous Ingredients</th>
<th>%</th>
<th>CAS Number</th>
<th>LD$_{50}$(mg/kg) (oral-rat)</th>
<th>LC$_{50}$(mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium foil</td>
<td>0.1- 1 w/w</td>
<td>7429-90-5</td>
<td>N/AV</td>
<td>N/AV</td>
</tr>
<tr>
<td>Biphenyl (BP)</td>
<td>0-0.3 w/w</td>
<td>92-52-4</td>
<td>2400</td>
<td>N/AV</td>
</tr>
<tr>
<td>Copper foil</td>
<td>0.1- 1 w/w</td>
<td>7440-50-8</td>
<td>3.5</td>
<td>N/AV</td>
</tr>
<tr>
<td>Dioxathiolane 2,2-Dioxide (DTD)</td>
<td>0 - 3 w/w</td>
<td>1072-53-3</td>
<td>1600</td>
<td>N/AV</td>
</tr>
<tr>
<td>Linear and Cyclic Carbonate Solvents (See Other Information)</td>
<td>5- 17 w/w</td>
<td>N/APP</td>
<td>~11000 (weighted avg)</td>
<td>N/AV</td>
</tr>
<tr>
<td>Graphite, powder</td>
<td>10- 30 w/w</td>
<td>7440-44-0</td>
<td>440 (mum-mouse)</td>
<td>N/AV</td>
</tr>
<tr>
<td>Lithium Carbonate</td>
<td>0-0.3 w/w</td>
<td>554-13-2</td>
<td>525</td>
<td>N/APP</td>
</tr>
<tr>
<td>Lithium Cobaltite (LiCoO$_2$)</td>
<td>10- 30 w/w</td>
<td>12190-79-3</td>
<td>N/AV</td>
<td>N/AV</td>
</tr>
<tr>
<td>Lithium Hexaflurophosphate (LiPF$_6$)</td>
<td>1- 5 w/w</td>
<td>21324-40-3</td>
<td>1702</td>
<td>Rat: >20</td>
</tr>
<tr>
<td>Poly (vinylidene fluoride) (PVDF)</td>
<td>0.1- 1 w/w</td>
<td>24937-79-9</td>
<td>N/AV</td>
<td>N/AV</td>
</tr>
<tr>
<td>Propane Sulfone (PS)</td>
<td>0 - 3 w/w</td>
<td>1120-71-4</td>
<td>100</td>
<td>N/AV</td>
</tr>
<tr>
<td>Steel, nickel and inert polymer</td>
<td>Balance</td>
<td>N/APP</td>
<td>N/APP</td>
<td>N/APP</td>
</tr>
</tbody>
</table>
SECTION 3 - PHYSICAL DATA

<table>
<thead>
<tr>
<th>Physical state:</th>
<th>Nickel plated metal canister under label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odour</td>
<td>None</td>
</tr>
<tr>
<td>Odour threshold:</td>
<td>N/APP</td>
</tr>
<tr>
<td>Vapour pressure (mmHg)</td>
<td>N/APP</td>
</tr>
<tr>
<td>Vapour Density (air = 1)</td>
<td>N/APP</td>
</tr>
<tr>
<td>Evaporation rate:</td>
<td>N/APP</td>
</tr>
<tr>
<td>Boiling Point</td>
<td>N/APP</td>
</tr>
<tr>
<td>Freezing point</td>
<td>N/APP</td>
</tr>
<tr>
<td>pH (10% in water)</td>
<td>N/APP</td>
</tr>
<tr>
<td>Specific gravity:</td>
<td>1.5-2.0</td>
</tr>
<tr>
<td>Coeff. of water/foil distribution</td>
<td>N/APP</td>
</tr>
<tr>
<td>Water solubility:</td>
<td>insoluble</td>
</tr>
<tr>
<td>Percent Volatiles:</td>
<td>NONE</td>
</tr>
</tbody>
</table>

SECTION 4 - FIRE AND EXPLOSION DATA

Flammability: NO

Conditions: Organic components will burn if cell incinerated. Combustion of cell contents will cause evolution of Hydrogen Fluoride.

Means of Extinction and Special Procedures:
Water spray, Carbon Dioxide, Dry chemical powder or appropriate foam. Use agent appropriate for surrounding materials.
Wear self-contained breathing apparatus and protective clothing to prevent contact with skin and eyes. Extremely corrosive Hydrogen Fluoride gas is produced upon combustion of cell contents.

Flashpoint: NONE

Upper Flammable Limit: NONE

Lower Flammable Limit: NONE

Auto-Ignition Temp: NONE

Hazardous Combustion Products:
Hydrogen Fluoride, Phosphorus Oxides, Carbon Oxides, Lithium Hydroxide, Cobalt Oxides, Aluminium Oxide, Sulphuric acid, Sulphur oxides, possible fluoro-compounds, Carbon soot

Impact sensitive: NO

Static Discharge Sensitive: NO, but cell may contain up to 4.2 volts.

SECTION 5 - REACTIVITY DATA

Stability: STABLE

Hazardous polymerization will not occur.
Spontaneous decomposition at normal temperatures will not occur.

Incompatibilities:
Do not crush, puncture, incinerate, immerse in water or heat over 100°C. Steel casing slowly dissolves in strong mineral acids.

Reactivities:
None known

Hazardous Decomposition Products:
Hydrogen Fluoride, Phosphorus Oxides, Carbon Oxides, Lithium Hydroxide, Cobalt Oxides, Aluminium Oxide, Sulphuric acid, Sulphur oxides, possible fluoro-compounds, Carbon soot
SECTION 6 - TOXICOLOGICAL PROPERTIES

<table>
<thead>
<tr>
<th>Routes of Entry</th>
<th>Acute Exposure</th>
<th>Chronic Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin Contact</td>
<td>NO</td>
<td>None anticipated.</td>
</tr>
<tr>
<td>Skin Absorption</td>
<td>NO</td>
<td>Not anticipated.</td>
</tr>
<tr>
<td>Eye contact</td>
<td>NO</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Inhalation</td>
<td>NO</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Ingestion</td>
<td>NO</td>
<td>Not applicable.</td>
</tr>
</tbody>
</table>

Skin: No effect noticed in routine handling of product.

Eyes: The bulk solid has no effect on the eye beyond blunt impact.

Inhalation: Not applicable.

Ingestion: Ingestion is not likely, given the physical size and state of the cell.

Exposure Limits

<table>
<thead>
<tr>
<th>Exposure Limits</th>
<th>Irritancy</th>
<th>Sensitization</th>
<th>Carcinogenicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>None listed</td>
<td>None</td>
<td>Not anticipated</td>
<td>Not anticipated</td>
</tr>
</tbody>
</table>

Teratogenicity: Not anticipated

Mutagenicity: Not anticipated.

Reproductive toxicity: Not anticipated

Synergistic Products: None expected

SECTION 7 - PREVENTIVE MEASURES

Personal protective equipment:

- **Gloves:** Not required for handling individual cells. Fabric gloves for warehouse container handling.
- **Respirator:** No respirator required for normal handling. SCBA required for fires.
- **Eyewear:** Not required beyond employer policy.

- **Clothing:** Standard industrial clothing in normal use. Impervious suit in fires.
- **Footwear:** Wear steel-toed footwear if large containers of cells are being handled.

Engineering controls:

Keep away from heat and open flames. Store in a cool, dry place.
Installation and Setup

Safety Information

COBALT CELL MATERIAL SAFETY DATA SHEET
FSSF00001AG - FOR CUSTOMER DISTRIBUTION

Feb 14, 2003

Leak and spill procedure:
Evacuate area if fire present or likely. Wear SCBA for fire-related emergencies. Using gloves, pick up or sweep up fire-damaged cells, bag individually in plastic bags and place in closed metal containers. 205 Litre lined steel drums are appropriate. Cardboard boxes may be used for small quantities. Avoid raising dust while sweeping. Transport container outdoors. Hold burned cells and fire cleanup solids for disposal as potential hazardous waste. Unburned cells are not hazardous waste. A fire with over 100 kg of cells burnt will likely require reporting to environment officials. Always consult and obey all international, federal and local environmental laws.

Waste disposal:
Always consult and obey all international, federal, provincial/state and local hazardous waste disposal laws. Some jurisdictions require recycling of this spent product.

Handling procedures and equipment:
Store in a cool, dry place away from sparks and flame. Keep below 125°C. Keep above -60°C. Charge between 0°C and 45°C. Use only approved charging equipment. Do not disassemble battery or battery pack. Do not puncture, crush or dispose of in fire.

Storage requirements:
Store at room temperature for best results.

Special Shipping Information:
Not regulated. This product is made from materials with no detectable mercury.
Equivalent lithium content
as per Section 38.3.2 of the UN Manual of Tests and Criteria (ST/SG/AC.10/11/27 Add. 2):
Equivalent grams of lithium is equal to 0.3 times the rated Amp-hour capacity of the individual cell, regardless of cell size.
1.8 Ah = 0.54 g
2.0 Ah = 0.60 g
2.2 Ah = 0.66 g
2.4 Ah = 0.72 g

SECTION 8 - FIRST AID MEASURES

Skin: Not a health hazard.

Eyes: Not an eye hazard

Inhalation: Not an inhalation hazard.

Ingestion: If swallowed, seek emergency medical aid. If patient choking and can partially breathe, encourage patient to cough. Do not strike patient's back. This may lodge cell further in throat. If patient is not breathing, perform standing Heimlich manoeuvre until object is dislodged or patient becomes unconscious. An unconscious patient should be lowered gently to the floor on their back and abdominal thrusts performed continuously until cell is ejected from throat or medical aid arrives.
SECTION 9 - PREPARATION INFORMATION

<table>
<thead>
<tr>
<th>Prepared by: Martin RIDGWAY, B.Sc. Safety Co-ordinator</th>
<th>Phone: (604) 466-6654</th>
<th>Date Created: Mar 31, 1995</th>
<th>Revision Information: First Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Last Revised: Jul 31, 1998</td>
<td>Revision Information: Assign document control number. Company name change.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Last Revised: Jun 15, 2000</td>
<td>Revision Information: Company name change.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Last Revised: Jan 23, 2001</td>
<td>Revision Information: Shipping: Contains no mercury.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Last Revised: May 1, 2001</td>
<td>Revision Information: Incompatibilities – Do not heat over 100°C (to match UL warning statement)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Last Revised: Jan 28, 2003</td>
<td>Revision Information: Shipping Information – Added equivalent lithium content information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Last Revised: Feb 4, 2003</td>
<td>Revision Information: Product – Up to and including 2.4 Ah Ingredients - Added PS, LiCO₂ and DTD Decomposition - Added sulphur compounds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OTHER INFORMATION

The above information is believed to be correct but does not purport to be all-inclusive and shall be used only as a guide. Exact composition information is immediately available on a confidential basis to medical professionals treating exposure to cell components or combustion by-products.

HYDROFLUORIC ACID EXPOSURE DURING FIRE FIGHTING

This information is given for the use of professional fire fighters responding to a warehouse fire.

Page 5 of 6
Installation and Setup

Safety Information

COBALT CELL MATERIAL SAFETY DATA SHEET FSSF00001AG - FOR CUSTOMER DISTRIBUTION

Feb 14, 2003

where fire from other materials may incinerate Molicels. This section is provided solely in case of
exposure, during fire fighting, to the combustion by-products. Hydrofluoric acid is not present in the
product. Contact with Molicels causes none of the following symptoms.

Hydrofluoric acid is extremely corrosive. Contact with hydrogen fluoride fumes is to be avoided.
Permissible exposure limit is 3 ppm. In case of contact with hydrogen fluoride fumes, immediately leave
the area and seek first aid and emergency medical attention. Symptoms may have delayed onset.
Fluoride ions penetrate skin readily causing destruction of deep tissue layers and even bone. Fluoride
interferes with nerve impulse conduction causing severe pain or absence of sensations. Immediately flush
eyes or skin with water for at least 20 minutes to neutralize the acidity and remove some fluoride. Remove
and destroy all contaminated clothing and permeable personal possessions. Before re-use, impermeable
possessions should be soaked in benzalkonium chloride after water washing. Following flushing of the
affected areas, an iced aqueous solution of benzalkonium chloride or 2.5% calcium gluconate gel should
be applied to react with the fluoride ion. Compresses and wraps may be used for areas where immersion
is not practical. Medicated dressing should be changed every 2 minutes. Exposure to hydrofluoric acid
fumes sufficient to cause pain requires immediate hospitalization for monitoring for pulmonary edema.
Power Requirements

Typically, the only physical installation of your Agilent spectrum analyzer is a connection to a power source.

WARNING Before operating or connecting this analyzer to an external power source, please read and understand safety information in “Safety Information” on page 14 and the safety considerations and all safety warnings in “Safety Considerations For This Analyzer” on page 16.

Line voltage does *not* need to be selected.

This analyzer does *not* contain customer serviceable fuses.

NOTE If your test system requires a common ground, use the grounding lug provided on the back of the instrument.

NOTE For detailed analyzer specifications, see the Specifications guide.

NOTE In addition to operating the analyzer on AC power using the external AD/DC converter, you can operate it using internal batteries. For information on the installation and use of those batteries, refer to Chapter 11, “Working with Batteries,” on page 167.

Table 1-1 AC Power Requirements

<table>
<thead>
<tr>
<th>Description</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>90 to 132 Vrms (47 to 440 Hz)</td>
</tr>
<tr>
<td>Voltage</td>
<td>195 to 250 Vrms (47 to 66 Hz)</td>
</tr>
<tr>
<td>Power Consumption, On</td>
<td>< 115 W</td>
</tr>
<tr>
<td>Power Consumption, Standby</td>
<td>< 7 W</td>
</tr>
</tbody>
</table>

AC Power Cord

The analyzer is equipped with a three-wire power cord, in accordance with international safety standards. This cord connects to the external power supply adapter and grounds the external power supply when connected to an appropriate power line outlet. The cord appropriate to the original shipping location is included with the analyzer.
Installation and Setup

Power Requirements

Various AC power cables are available that are unique to specific geographic areas. You can order additional AC power cables for use in different areas. **AC Power Cords**, on page 29 lists the available AC power cables, illustrates the plug configurations, and identifies the geographic area in which each cable is appropriate.
Table 1-2 AC Power Cords

<table>
<thead>
<tr>
<th>Plug Type</th>
<th>Cable Part Number</th>
<th>Plug Description</th>
<th>Length cm (in.)</th>
<th>Cable Color</th>
<th>For Use in Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>250V</td>
<td>8120-1351</td>
<td>Straight BS 1363A</td>
<td>229 (90)</td>
<td>Mint Gray</td>
<td>Option 900 United Kingdom, Hong Kong, Cyprus, Nigeria, Singapore, Zimbabwe</td>
</tr>
<tr>
<td></td>
<td>8120-1703</td>
<td>90°</td>
<td>229 (90)</td>
<td>Mint Gray</td>
<td>Argentina, Australia, New Zealand, Mainland China</td>
</tr>
<tr>
<td></td>
<td>8120-1369</td>
<td>Straight AS 3112</td>
<td>210 (79)</td>
<td>Gray</td>
<td>Option 901 United States, Canada, Brazil, Colombia, Mexico, Philippines, Saudi Arabia, Taiwan</td>
</tr>
<tr>
<td></td>
<td>8120-0696</td>
<td>90°</td>
<td>200 (78)</td>
<td>Gray</td>
<td>Jade Gray</td>
</tr>
<tr>
<td>125V</td>
<td>8120-1378</td>
<td>Straight NEMA 5-15P</td>
<td>203 (80)</td>
<td>Jade Gray</td>
<td>Option 903 United States, Canada, Brazil, Colombia, Mexico, Philippines, Saudi Arabia, Taiwan</td>
</tr>
<tr>
<td></td>
<td>8120-1521</td>
<td>90°</td>
<td>203 (80)</td>
<td>Jade Gray</td>
<td>Japan</td>
</tr>
<tr>
<td></td>
<td>8120-4753</td>
<td>Straight NEMA 5-15P</td>
<td>229 (90)</td>
<td>Gray</td>
<td>Option 918 United States, Canada, Brazil, Colombia, Mexico, Philippines, Saudi Arabia, Taiwan</td>
</tr>
<tr>
<td></td>
<td>8120-4754</td>
<td>90°</td>
<td>229 (90)</td>
<td>Gray</td>
<td>Japan</td>
</tr>
<tr>
<td>250V</td>
<td>8120-1689</td>
<td>Straight CEE 7/7</td>
<td>200 (78)</td>
<td>Mint Gray</td>
<td>Option 902 Continental Europe, Central African Republic, United Arab Republic</td>
</tr>
<tr>
<td></td>
<td>8120-1692</td>
<td>90°</td>
<td>200 (78)</td>
<td>Mint Gray</td>
<td>Option 903 United States, Canada, Brazil, Colombia, Mexico, Philippines, Saudi Arabia, Taiwan</td>
</tr>
<tr>
<td>230V</td>
<td>8120-2104</td>
<td>Straight SEV Type 12</td>
<td>200 (78)</td>
<td>Gray</td>
<td>Switzerland</td>
</tr>
<tr>
<td></td>
<td>8120-2296</td>
<td>90°</td>
<td>200 (78)</td>
<td>Gray</td>
<td>Option 912 Denmark</td>
</tr>
<tr>
<td>220V</td>
<td>8120-2956</td>
<td>Straight SR 107-2-D</td>
<td>200 (78)</td>
<td>Gray</td>
<td>Option 912 Denmark</td>
</tr>
<tr>
<td></td>
<td>8120-2957</td>
<td>90°</td>
<td>200 (78)</td>
<td>Gray</td>
<td>Option 912 Denmark</td>
</tr>
<tr>
<td>250V</td>
<td>8120-4211</td>
<td>Straight IEC 83-B1</td>
<td>200 (78)</td>
<td>Mint Gray</td>
<td>South Africa, India</td>
</tr>
<tr>
<td></td>
<td>8120-4600</td>
<td>90°</td>
<td>200 (78)</td>
<td>Mint Gray</td>
<td>South Africa, India</td>
</tr>
<tr>
<td>250V</td>
<td>8120-5182</td>
<td>Straight SI 32</td>
<td>200 (78)</td>
<td>Jade Gray</td>
<td>Option 919 Israel</td>
</tr>
<tr>
<td></td>
<td>8120-5181</td>
<td>90°</td>
<td>200 (78)</td>
<td>Jade Gray</td>
<td>Option 919 Israel</td>
</tr>
</tbody>
</table>

a. E = earth ground, L = line, and N = neutral.

b. Plug identifier numbers describe the plug only. The part number is for the complete cable assembly.
Clock Battery Information

The analyzer uses a Poly-carbonmonofluoride Lithium Coin battery to power the analyzer clock. The battery is located on the CPU board.

NOTE
If the analyzer’s clock does not work, the problem is probably the battery. See “Returning an Analyzer for Service” on page 193.

WARNING
Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended. Discard used batteries according to the manufacturer’s instructions.

DO NOT THROW BATTERIES AWAY BUT COLLECT AS SMALL CHEMICAL WASTE.
Physically Securing Your Analyzer

To prevent unauthorized removal of your analyzer, you can use a Kensington Slim MicroSaver security cable to attach the analyzer to an immovable object. Your analyzer has a Kensington Security Slot located on the back of the analyzer. The Kensington Security Slot is identified on the analyzer with this logo: 🛠️. For more information, visit http://www.microsaver.com.

Basic Instructions for Using the Kensington Slim MicroSaver

Step 1. Wrap the steel cable around an immovable object.

Step 2. Insert the lock into the Kensington Security Slot.

Step 3. Turn the key.
Turning on the Analyzer for the First Time

WARNING
Before operating or connecting this analyzer to an external power source, please read and understand safety information in “Safety Information” on page 14 and the safety considerations and all safety warnings in “Safety Considerations For This Analyzer” on page 16.

- Plug in the power cord. If the analyzer is to be operated on the internal batteries, ensure that both batteries are installed. They are approximately 50% charged when you receive them and will provide full performance if you choose to operate the analyzer without charging them at this time. (View the charge level for each battery on the battery end display.) If the batteries are showing 1 bar or less, recharging is recommended at this time.

NOTE
For maximum runtime, it is best to have approximately equal charge levels on both batteries. The instrument will shut down if either battery becomes fully discharged during operation.

NOTE
Do not connect anything else to the analyzer yet.

- Press the power switch (located in the lower left-hand corner of the analyzer’s front panel) to turn the analyzer on. See “Front Panel Overview” on page 52.

NOTE
The instrument requires <2 minutes to power-on.

- Allow the spectrum analyzer to warm-up for 30 minutes before making a calibrated measurement. To meet its specifications, the analyzer must meet operating temperature conditions.

CAUTION
Ensure protection of the input mixer by limiting the input level to 50 Vdc, +33 dBm.

- If using non-DHCP LAN, set the IP address of the analyzer to an appropriate number for your network (one that the network recognizes, but that is not yet in use):
 - Press **System, Controls, IP Admin** and note the IP address. This is the IP address that will be used if IP Config is set to Static. To view the IP Address selected by DHCP, press **Mode**.
 - If the current address is not appropriate, press **IP Config, Static, IP Address** and use the keypad to change it. In addition, you may also need to change the **Net Mask** and **Gateway** settings.
— Press Save.
— Connect the LAN cable to the LAN connector (not the Timing LAN connector) located on the rear panel of your analyzer (see “Rear-Panel Features” on page 61).
— Cycle the analyzer power. Refer to “Configuring for Network Connectivity” on page 158

NOTE
It is necessary to cycle the power to the analyzer after plugging in the LAN for the analyzer to recognize the network.

Why Aren’t All the Personality Options Available?
Many measurement personality options are available for your use and are loaded in the instrument. To make an option available, you must also have a license key entered.

Using an External Reference
If you wish to use an external source as the reference frequency, you must connect an external reference source and set the reference frequency as follows:

1. Connect an external source to the **EXT REF IN** connector on the rear panel (see “Rear-Panel Features” on page 61). The signal level should be greater than –15 dBm.

2. Select the frequency of the external reference into the analyzer:
 a. Press **System, Freq/Time/Ref**
 b. Select the up and down arrow navigation keys to highlight the desired reference frequency.
 c. Press **Select** to set the reference source and frequency that you have highlighted.
 d. Press **Cancel** to abort your reference change and retain the previously selected frequency reference. See “Setting System References” on page 152 for more information.
Firmware Revision

To view the firmware revision of your analyzer, press Mode. If you call Agilent Technologies regarding your analyzer, it is helpful to have this revision and the analyzer serial number available.

TIP

You can get automatic electronic notification of new firmware releases and other product updates/information by subscribing to the Agilent Technologies Test & Measurement E-Mail Notification Service for the Agilent CSA spectrum analyzer at:

http://www.agilent.com/find/notifyme
The Agilent CSA spectrum analyzer does not print directly to a printer. You can print a screen image or measurement data by first saving the information to a USB memory device and then use a PC with an attached printer to print the file. You can save a screen image by pressing Print (for detail instructions, refer to “Printing a Screen To a File” on page 153). Also, you can save a screen image or measurement results by pressing Save and Save Now (for detail instructions, refer to “Saving Data” on page 154).
Protecting Against Electrostatic Discharge

Electrostatic discharge (ESD) can damage or destroy electronic components (the possibility of unseen damage caused by ESD is present whenever components are transported, stored, or used).

Test Equipment and ESD

To help reduce ESD damage that can occur while using test equipment:

- Before connecting any coaxial cable to an analyzer connector for the first time each day, momentarily short the center and outer conductors of the cable together.
- Personnel should be grounded with a 1 MOhm resistor-isolated wrist-strap before touching the center pin of any connector and before removing any assembly from the analyzer.
- Be sure that all instruments are properly earth-grounded to prevent build-up of static charge.

WARNING

Do not use these first three techniques above when working on circuitry with a voltage potential greater than 500 volts.

- Perform work on all components or assemblies at a static-safe workstation.
- Keep static-generating materials at least one meter away from all components.
- Store or transport components in static-shielding containers.
- Always handle printed circuit board assemblies by the edges. This reduces the possibility of ESD damage to components and prevent contamination of exposed plating.

For information on ordering static-safe accessories, see “Accessories” on page 47.

Additional Information about ESD

For more information about ESD and how to prevent ESD damage, contact the Electrostatic Discharge Association (http://www.esda.org). The ESD standards developed by this agency are sanctioned by the American National Standards Institute (ANSI).
Using the Soft Carrying Case

The N1996A soft carrying case is designed to hold the analyzer as well as its cables and accessories.

WARNING

Always disconnect the analyzer from the external power supply before storing the analyzer in the soft carrying case.
Installation and Setup

Using the Soft Carrying Case
2 Options and Accessories

This chapter lists options and accessories available for your analyzer.
Ordering Options and Accessories

Options and accessories help you configure the analyzer for your specific applications.

Options (see page 41)

Unless specified otherwise, all options are available when you order a spectrum analyzer; some options are also available as kits that you can order and install after you receive the analyzer. Order kits through your local Agilent Sales and Service Office.

At the time of analyzer purchase, options can be ordered using your product number and the number of the option you are ordering. For example, if you are ordering Option SRK for an Agilent N1996A, you would order N1996A-SRK.

If you are ordering an option after the purchase of your analyzer, you will need to add a K (for kit) to the product number and then specify which option you are ordering (for example, N1996AK-SRK.)

If you know the option you wish to order, refer to “Options” on page 41 which is in ascending order by option number and type. Complete option descriptions can be found in the following section, listed in alphabetical order by option name under “Option Descriptions” on page 44.

For the latest information on Agilent Spectrum Analyzer options and upgrade kits, visit the following URL:

http://www.agilent.com/find/sa_upgrades

Accessories (see page 47)

Order accessories through your local Agilent Sales and Service Office. For information on contacting Agilent Sales and Service, refer to “Calling Agilent Technologies” on page 191.
Options

Each option is described below in alpha/numeric order according to option number.

<table>
<thead>
<tr>
<th>Option Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0950-4745</td>
<td>External AC/DC Power Supply</td>
<td>External power supply 15 VDC 130 W</td>
</tr>
<tr>
<td>0BW</td>
<td>Service Documentation</td>
<td>The Service guide describes assembly-level troubleshooting procedures, provides a parts list, and documents post-repair procedures.</td>
</tr>
<tr>
<td>1CM</td>
<td>Rack Mount Kit</td>
<td>Includes rack mount flanges and hardware. Used to rack mount analyzers without front handles (available as P/N 5063-9215 and N1996-60021).</td>
</tr>
<tr>
<td>1CP</td>
<td>Rack Mount Kit with Handles</td>
<td>Includes the parts necessary to rack mount an analyzer with front handles attached (available as P/N 5063-9222 and N1996-60021). (Includes handles.)</td>
</tr>
<tr>
<td>271</td>
<td>Spectrogram</td>
<td>Provides a display with a history of the spectrum. You can use it to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Locate intermittent signals.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Track signal levels over time.</td>
</tr>
<tr>
<td>503</td>
<td>100 kHz to 3 GHz(^1)</td>
<td>Spectrum Analyzer Frequency Range: 100 kHz to 3 GHz</td>
</tr>
<tr>
<td>506</td>
<td>100 kHz to 6 GHz(^1)</td>
<td>Spectrum Analyzer Frequency Range: 100 kHz to 6 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides details on how to measure various signals, and how to use catalogs and files.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In addition, this manual covers unpacking and setting up the analyzer, analyzer features, and how to make a basic measurement. Includes information on options and accessories, and what to do if you have a problem.</td>
</tr>
<tr>
<td>AB2</td>
<td>Measurement Guide, Simplified Chinese Localization</td>
<td>A Simplified Chinese language version of the standard Measurement Guide. Provides the same information as Option ABA listed above.</td>
</tr>
<tr>
<td>BAT</td>
<td>Battery Pack</td>
<td>Two batteries: 10.8 V 4.56 A-HR LI-ION (pn 1420-0891) (2 batteries are required for the operation of the instrument).</td>
</tr>
</tbody>
</table>
Options and Accessories

Options

<table>
<thead>
<tr>
<th>Option Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| BCG | External Battery Charger | External charger/DC adapter, includes:
| | | External power supply AC/DC adapter
| | | Dual battery charger |
| HTC | Hard Transit Case | The hard transit case will survive commercial transportation. This rugged case has two wheels and an extendible handle for easy transport. The case can also accommodate two battery packs and ac adapters. |
| N8995A | Stimulus/Response Measurement Suite | Provides Stimulus/Response measurements:
| | | • Distance to Fault
| | | • Two Port Insertion Loss
| | | • One Port Insertion Loss
| | | • Return Loss
| | | Requires Option TG3 or TG6 hardware. |
| 0B0 | Manual Set on CD-ROM Only | The documentation CD-ROM contains the standard documentation set as well as Adobe Acrobat Reader with Search. |
| P03 | 3 GHz Preamplifier | An internal preamplifier assembly. For use with Option 503 only.
| | | Frequency Range: 100 kHz to 3 GHz |
| P06 | 6 GHz Preamplifier | An internal preamplifier assembly. For use with Option 506 only.
| | | Frequency Range: 100 kHz to 6 GHz |
| R-50C-011-3 | 3 Year Inclusive Calibration Contract | Provides your analyzer with a 3 year analyzer calibration contract. |
| R-51B-001-3C | 3-Year Warranty Service Support¹ | A total of 3 years of return-to-Agilent warranty service support. This adds a 2-year service contract to the base analyzer 1-year warranty |
| SCC | Soft Carrying Case | An ergonomically designed case to hold the analyzer as well as its cables and accessories. |
| SRK | Stimulus/Response Calibration Kit | The kit includes:
| | | • Coax Accessories Case, plastic and foam (5000-0912)
| | | • Open/Short, 50 ohm, N-type male (85032-60011)
| | | • Termination, 50 ohm, N-type male (00909-60009) |
| TG3 | 3 GHz Tracking Generator | Provides a 100 kHz to 3 GHz built-in tracking generator. This source creates a source-receiver combination that allows insertion-loss, frequency response, and return-loss measurements. The source-receiver combination has a wide distortion-free dynamic range, plus good sensitivity and selectivity. (Must be installed for use with the N8995A Stimulus/Response Measurement Suite.) For use with Option 503 only. |
Options and Accessories

Options

TG6 6 GHz Tracking Generator

Provides a 100 kHz to 6 GHz built-in tracking generator. This source creates a source-receiver combination that allows insertion-loss, frequency response, and return-loss measurements. The source-receiver combination has a wide distortion-free dynamic range, plus good sensitivity and selectivity. (Must be installed for use with the N8995A Stimulus/Response Measurement Suite.) For use with Option 506 only.

1. Available *only* at time of purchase

<table>
<thead>
<tr>
<th>Option Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG6</td>
<td>6 GHz Tracking Generator</td>
<td>Provides a 100 kHz to 6 GHz built-in tracking generator. This source creates a source-receiver combination that allows insertion-loss, frequency response, and return-loss measurements. The source-receiver combination has a wide distortion-free dynamic range, plus good sensitivity and selectivity. (Must be installed for use with the N8995A Stimulus/Response Measurement Suite.) For use with Option 506 only.</td>
</tr>
</tbody>
</table>

Chapter 2

43
Option Descriptions

Each option is described below in alphabetical order.

<table>
<thead>
<tr>
<th>Name</th>
<th>Option Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Year Inclusive Calibration Contract</td>
<td>R-50C-011-3</td>
<td>Provides your analyzer with a 3 year analyzer calibration contract.</td>
</tr>
<tr>
<td>3-Year Warranty Service Support ¹</td>
<td>R-51B-001-3C</td>
<td>A total of 3 years of return-to-Agilent warranty service support. This adds a 2-year service contract to the base analyzer 1-year warranty.</td>
</tr>
<tr>
<td>100 kHz to 3 GHz Spectrum Analyzer¹</td>
<td>503</td>
<td>Spectrum Analyzer Frequency Range: 100 kHz to 3 GHz</td>
</tr>
<tr>
<td>100 kHz to 6 GHz Spectrum Analyzer¹</td>
<td>506</td>
<td>Spectrum Analyzer Frequency Range: 100 kHz to 6 GHz</td>
</tr>
<tr>
<td>Battery Pack</td>
<td>BAT</td>
<td>Two batteries: 10.8 V 4.56 A-HR LI-ION (pn 1420-0891) (2 batteries are required for the operation of the instrument.)</td>
</tr>
<tr>
<td>External AC/DC Power Supply</td>
<td>0950-4745</td>
<td>External power supply 15 VDC 130 W</td>
</tr>
<tr>
<td>External Battery Charger</td>
<td>BCG</td>
<td>External charger/DC adapter, includes: External power supply AC/DC adapter 15 VDC 130 W Dual battery charger</td>
</tr>
<tr>
<td>Hard Transit Case</td>
<td>HTC</td>
<td>The hard transit case will survive commercial transportation. This rugged case has two wheels and an extendible handle for easy transport. The case can also accommodate two battery packs and AC adapters.</td>
</tr>
<tr>
<td>Manual Set on CD-ROM Only</td>
<td>0B0</td>
<td>The documentation CD-ROM contains the standard documentation set as well as Adobe Acrobat Reader with Search.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides details on how to measure various signals, and how to use catalogs and files.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In addition, this manual covers unpacking and setting up the analyzer, analyzer features, and how to make a basic measurement. Includes information on options and accessories, and what to do if you have a problem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides the same information as Option ABA listed above.</td>
</tr>
<tr>
<td>Name</td>
<td>Option Number</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Preamplifier, 3 GHz</td>
<td>P03</td>
<td>An internal preamplifier assembly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency Range: 100 kHz to 3 GHz</td>
</tr>
<tr>
<td>Preamplifier, 6 GHz</td>
<td>P06</td>
<td>An internal preamplifier assembly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency Range: 100 kHz to 6 GHz</td>
</tr>
<tr>
<td>Rack Mount Kit</td>
<td>1CM</td>
<td>Includes rack mount flanges and hardware. Used to rack mount analyzers without front handles (available as P/N 5063-9215 and N1996-60021).</td>
</tr>
<tr>
<td>Rack Mount Kit with Handles</td>
<td>1CP</td>
<td>Includes the parts necessary to rack mount an analyzer with front handles attached (available as P/N 5063-9222 and N1996-60021). (Includes handles.)</td>
</tr>
<tr>
<td>Service Documentation</td>
<td>0BW</td>
<td>The Service guide describes assembly-level troubleshooting procedures, provides a parts list, and documents post-repair procedures.</td>
</tr>
<tr>
<td>Soft Carrying Case</td>
<td>SCC</td>
<td>An ergonomically designed case to hold the analyzer as well as its cables and accessories.</td>
</tr>
<tr>
<td>Spectrogram</td>
<td>271</td>
<td>Provides a display with a history of the spectrum. You can use it to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Locate intermittent signals.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Track signal levels over time.</td>
</tr>
<tr>
<td>Stimulus/Response Calibration Kit</td>
<td>SRK</td>
<td>The kit includes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Coax Accessories Case, plastic and foam (5000-0912)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Open/Short, 50 ohm, N-type male (85032-60011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Termination, 50 ohm, N-type male (00909-60009)</td>
</tr>
<tr>
<td>Stimulus/Response Measurement Suite</td>
<td>N8995A</td>
<td>Provides Stimulus & Response measurements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Distance to Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Two Port Insertion Loss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• One Port Insertion Loss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Return Loss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requires Option TG3 or TG6 hardware.</td>
</tr>
<tr>
<td>Tracking Generator, 3 GHz</td>
<td>TG3</td>
<td>Provides a 100 kHz to 3 GHz built-in tracking generator. This source creates a source-receiver combination that allows insertion-loss, frequency response, and return-loss measurements. The source-receiver combination has a wide distortion-free dynamic range, plus good sensitivity and selectivity. (Must be installed for use with the N8995A Stimulus/Response Measurement Suite.) For use with Option 503 only.</td>
</tr>
</tbody>
</table>
Options and Accessories

Option Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Option Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking Generator, 6 GHz</td>
<td>TG6</td>
<td>Provides a 100 kHz to 6 GHz built-in tracking generator. This source creates a source-receiver combination that allows insertion-loss, frequency response, and return-loss measurements. The source-receiver combination has a wide distortion-free dynamic range, plus good sensitivity and selectivity. (Must be installed for use with the N8995A Stimulus/Response Measurement Suite.) For use with Option 506 only.</td>
</tr>
</tbody>
</table>

1. Available *only* at time of purchase
Accessories

A number of accessories are available from Agilent Technologies to help you configure your analyzer for your specific applications. They can be ordered through your local Agilent Sales and Service Office and are listed below.

Manual Set on CD-ROM

The documentation CD-ROM contains the standard documentation set in electronic (PDF) format as well as Adobe Acrobat Reader with Search.

The standard documentation set includes:

- User’s/Programmer’s Guide: Describes analyzer features in detail, including front-panel key descriptions, basic spectrum analyzer programming information, and SCPI command descriptions.
- Measurement Guide: Provides details on how to measure various signals, and how to use catalogs and files. In addition, this manual covers unpacking and setting up the analyzer, analyzer features, and how to make a basic measurement. Includes information on options and accessories, and what to do if you have a problem.
- Specifications Guide: Documents specifications, safety, and regulatory information.
- Instrument Messages and Functional Tests: Includes instrument messages (and suggestions for troubleshooting them), and manual functional tests.

NOTE

Refer to the Quick Start Guide, packaged with the CD-ROM, for installation information.

NOTE

Service documentation is *not* included in the standard documentation set. See “Options” on page 41 for information on ordering.

50 Ohm Load

The Agilent 909 series loads come in several models and options providing a variety of frequency ranges and VSWRs. Also, they are available in either 50 ohm or 75 Ohm. Some examples include the:

- 909A: DC to 18 GHz
- 909C: DC to 2 GHz
- 909D: DC to 26.5 GHz
50 Ohm/75 Ohm Minimum Loss Pad

The Agilent 11852B is a low VSWR minimum loss pad that allows you to make measurements on 75 Ohm devices using an analyzer with a 50 Ohm input. It is effective over a frequency range of dc to 2 GHz.

75 Ohm Matching Transformer

The Agilent 11694A allows you to make measurements in 75 Ohm systems using an analyzer with a 50 Ohm input. It is effective over a frequency range of 3 to 500 MHz.

AC Probe

The Agilent 85024A high frequency probe performs in-circuit measurements without adversely loading the circuit under test. The probe has an input capacitance of 0.7 pF shunted by 1 MOhm of resistance and operates over a frequency range of 300 kHz to 3 GHz. High probe sensitivity and low distortion levels allow measurements to be made while taking advantage of the full dynamic range of the spectrum analyzer.

AC Probe (Low Frequency)

The Agilent 41800A low frequency probe has a low input capacitance and a frequency range of 5 Hz to 500 MHz.

Broadband Preamplifiers and Power Amplifiers

Preamplifiers and power amplifiers can be used with your spectrum analyzer to enhance measurements of very low-level signals.

- The Agilent 8447D preamplifier provides a minimum of 25 dB gain from 100 kHz to 1.3 GHz.
- The Agilent 87405A preamplifier provides a minimum of 22 dB gain from 10 MHz to 3 GHz. (Power is supplied by the probe power output of the analyzer.)
- The Agilent 83006A preamplifier provides a minimum of 26 dB gain from 10 MHz to 26.5 GHz.
- The Agilent 85905A CATV 75 ohm preamplifier provides a minimum of 18 dB gain from 45 MHz to 1 GHz. (Power is supplied by the probe power output of the analyzer.)
- The 11909A low noise preamplifier provides a minimum of 32 dB gain from 9 kHz to 1 GHz and a typical noise figure of 1.8 dB.
RF and Transient Limiters

The Agilent 11867A and 11693A RF Limiters protect the analyzer input circuits from damage due to high power levels. The 11867A operates over a frequency range of dc to 1800 MHz and begins reflecting signal levels over 1 mW up to 10 W average power and 100 watts peak power. The 11693A microwave limiter (0.1 to 12.4 GHz, usable to 18 GHz) guards against input signals over 1 milli watt up to 1 watt average power and 10 watts peak power.

The Agilent 11947A Transient Limiter protects the analyzer input circuits from damage due to signal transients. It specifically is needed for use with a line impedance stabilization network (LISN). It operates over a frequency range of 9 kHz to 200 MHz, with 10 dB of insertion loss.

Power Splitters

The Agilent 11667A/B power splitters are two-resister type splitters that provide excellent output SWR, at 50 Ω impedance. The tracking between the two output arms, over a broad frequency range, allows wideband measurements to be made with a minimum of uncertainty.

11667A: DC to 18 GHz
11667B: DC to 26.5 GHz

System II Bottom Feet kit,

System II Feet kit (p/n 5000-0913) is used to make the instrument stackable. Bottom feet are added to the analyzer. (See I-Note: 5000-0914). The kit includes:

- System II Bottom Feet
- Tilt Stand
- Key Lock

Static Safe Accessories

9300-1367 Wrist-strap, color black, stainless steel. Four adjustable links and a 7 mm post-type connection.

9300-0980 Wrist-strap cord 1.5 m (5 ft.)
This chapter gives you an overview of the front and rear panels of your analyzer. For details on analyzer keys and remote programming, refer to the User's and Programmer's Reference. For connector specifications (including input/output levels), see the Specifications guide.
Front Panel Overview

This section provides information on the analyzer’s front panel, including:

- “Front-Panel Connectors and Keys”, see below.
- “Display Annotations: Spectrogram (Option 271)” on page 58.

Front-Panel Connectors and Keys

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Name</td>
</tr>
<tr>
<td>1</td>
<td>Menu Keys</td>
</tr>
<tr>
<td>2</td>
<td>Measurement Keys</td>
</tr>
<tr>
<td>3</td>
<td>Analyzer Setup Keys</td>
</tr>
</tbody>
</table>
Front Panel Overview

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Marker Keys</td>
<td>Enable markers to obtain specific information about the displayed measurement.</td>
</tr>
<tr>
<td>5</td>
<td>Utility Keys</td>
<td>Access features used with all analyzer modes and affects the state of the entire spectrum analyzer. See your User’s guide for more details.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>System functions affect the state of the entire analyzer. Various setup and adjustment routines are accessed with the System key.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Mode Preset and User Preset keys reset the analyzer to a known state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Save and Recall keys enable you to save and to recall measurement results, traces, states, limit-line tables, and screens.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Print key saves the currently displayed screen to a file.</td>
</tr>
<tr>
<td>6</td>
<td>PROBE PWR</td>
<td>Supplies power for external high frequency probes and accessories (see page 83).</td>
</tr>
<tr>
<td>7</td>
<td>Earphone Jack</td>
<td>Not currently implemented.</td>
</tr>
<tr>
<td>8</td>
<td>USB Jacks</td>
<td>Jacks for connecting USB devices. For example, an external memory device</td>
</tr>
<tr>
<td>9</td>
<td>Battery Indicators</td>
<td>LEDs indicate the status of batteries 1 and 2.</td>
</tr>
<tr>
<td>10</td>
<td>RF INPUT 50Ω</td>
<td>Input for an external signal. Make sure that the total power of all signals at the analyzer input does not exceed +33 dBm (2 watts).</td>
</tr>
<tr>
<td>11</td>
<td>Data Controls</td>
<td>Change the numeric value of an active function. Entries appear in the active function area of the display. Also see “Entering Data” on page 71.</td>
</tr>
<tr>
<td>12</td>
<td>Cancel (Esc)</td>
<td>Pressing this key when operating remotely will put the analyzer in local mode.</td>
</tr>
<tr>
<td>13</td>
<td>Navigation Keys</td>
<td>Moves cursor between fields on the display. Increases and decrements active function values.</td>
</tr>
<tr>
<td>14</td>
<td>Return Key</td>
<td>Exits the current menu and returns to the previous menu.</td>
</tr>
<tr>
<td>15</td>
<td>Volume Control Keys/</td>
<td>Enables you to Mute or increase and decrease sound at the internal speaker or the earphones. (Not currently implemented.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exits the current menu and returns to the previous menu.</td>
</tr>
<tr>
<td>16</td>
<td>Help Key</td>
<td>Press the Help key to access the embedded help information. Use the menu keys or navigation keys (item 13) to select the desired help topic. Two types of help are available:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Task help that will guide you through making a measurement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Key function explanations that provide a short description of a key and the associated remote command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can exit help by pressing Cancel (Esc).</td>
</tr>
<tr>
<td>17</td>
<td>Window Keys</td>
<td>Next Window: On displays with multiple windows, changes the highlighted window that is currently active.</td>
</tr>
<tr>
<td></td>
<td>(Not currently</td>
<td>Zoom: Zooms in on the highlighted window.</td>
</tr>
<tr>
<td></td>
<td>implemented.)</td>
<td>Multiple Windows: On displays with multiple windows, switches the view to multiple window.</td>
</tr>
</tbody>
</table>
Front and Rear Panel Features

Front Panel Overview

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Power On/Standby</td>
<td>Turns the analyzer on. A green light indicates power on. A yellow light indicates standby mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE The front-panel switch is a standby switch, not a LINE switch (disconnecting device); the analyzer continues to draw power even when the line switch is in standby. Use the detachable power cord to disconnect the analyzer from the mains supply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE The internal frequency reference is not powered when in standby mode.</td>
</tr>
<tr>
<td>19</td>
<td>RF OUTPUT 50Ω</td>
<td>The output for the built-in tracking generator. This connector is present on all N1996A analyzers, but the output is enabled only on analyzers with either Option TG3 or TG6.</td>
</tr>
</tbody>
</table>
Display Annotations: Spectrum Display

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Associated Function Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amplitude scale</td>
<td>AMPTD Y Scale, Scale Type or AMPTD Y Scale, Scale/Div</td>
</tr>
<tr>
<td>2</td>
<td>Reference level</td>
<td>AMPTD Y Scale, Ref Level</td>
</tr>
<tr>
<td>3</td>
<td>Auto Range On indicator</td>
<td>AMPTD Y Scale, Auto Range</td>
</tr>
<tr>
<td>4</td>
<td>Active function block</td>
<td>Refer to the description of the activated function.</td>
</tr>
<tr>
<td>5</td>
<td>Internal preamp status</td>
<td>AMPTD Y Scale, Internal Preamp</td>
</tr>
<tr>
<td>6</td>
<td>Marker</td>
<td>Marker</td>
</tr>
<tr>
<td>7</td>
<td>RF attenuation</td>
<td>AMPTD Y Scale, Elec Atten</td>
</tr>
</tbody>
</table>
Front Panel Overview

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Associated Function Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Over Range: Indicates that the attenuation and preamp (if installed) settings are supplying too much power to the detector. Distortion may result. Set Auto Range (On) to clear. or <8 Smpl/Pt: Indicates that the current instrument settings have reduced the number of samples/display point to less than 8. The most accurate averaged amplitude measurement will be made when you have at least 8 samples in each display point.</td>
<td>AMPTD Y Scale, Elec Atten AMPTD Y Scale, Internal Preamp AMPTD Y Scale, Auto Range Trace/Detector, Detector, Average (Log/RMS/V)</td>
</tr>
<tr>
<td>9</td>
<td>Ext Gain</td>
<td>AMPTD Y Scale, Ext Gain</td>
</tr>
<tr>
<td>10</td>
<td>Averaging</td>
<td>Trace/Detector, Average or Meas Setup, Avg Mode, Avg Number: The numbers shown indicates current average number and the desired number of averages.</td>
</tr>
<tr>
<td>11</td>
<td>Time and date display</td>
<td>System, Time/Date/Location, Date/Time</td>
</tr>
<tr>
<td>12</td>
<td>Active marker</td>
<td>Marker</td>
</tr>
<tr>
<td>13</td>
<td>Trace and detector information</td>
<td>Trace/Detector, Clear Write (W) Average (A) Max Hold (M) Min Hold (m) Trace/Detector, Peak (P) Sample(S) Negative Peak (p) Average (A)</td>
</tr>
<tr>
<td>14</td>
<td>Active marker frequency and amplitude If in zero span, active marker time and amplitude is displayed.</td>
<td>Marker</td>
</tr>
<tr>
<td>15</td>
<td>Key menu title</td>
<td>Dependent on menu selection.</td>
</tr>
<tr>
<td>16</td>
<td>Key menu</td>
<td>Menu key labels</td>
</tr>
<tr>
<td>17</td>
<td>Stop frequency or if in zero span, stop time</td>
<td>FREQ Channel, Stop Freq</td>
</tr>
<tr>
<td>18</td>
<td>Reference frequency source indicator</td>
<td>System, Freq/Time Reference</td>
</tr>
<tr>
<td>19</td>
<td>Battery 1 & 2 status indicator</td>
<td>System, System Stats, Battery</td>
</tr>
<tr>
<td>20</td>
<td>AC power indicator</td>
<td>Indicates that the analyzer is currently powered by the external AC/DC power converter</td>
</tr>
<tr>
<td>21</td>
<td>Sweep time</td>
<td>Control/Sweep, Sweep Time</td>
</tr>
<tr>
<td>22</td>
<td>Span</td>
<td>SPAN X Scale</td>
</tr>
<tr>
<td>23</td>
<td>Center frequency</td>
<td>FREQ Channel, Center Freq</td>
</tr>
<tr>
<td>24</td>
<td>Display status line</td>
<td>Displays informational and error messages (see “Types of Spectrum Analyzer Messages” on page 189).</td>
</tr>
</tbody>
</table>
Front and Rear Panel Features
Front Panel Overview

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Associated Function Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Resolution Bandwidth</td>
<td>BW, Res BW</td>
</tr>
<tr>
<td>26</td>
<td>Start frequency or if in zero span, 0 sec</td>
<td>FREQ Channel, Start Freq</td>
</tr>
</tbody>
</table>
Front and Rear Panel Features
Front Panel Overview

Display Annotations: Spectrogram (Option 271)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Associated Function Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amplitude scale</td>
<td>AMPTD Y Scale, Scale Type or AMPTD Y Scale, Scale/Div</td>
</tr>
<tr>
<td>2</td>
<td>Reference level</td>
<td>AMPTD Y Scale, Ref Level</td>
</tr>
<tr>
<td>3</td>
<td>Auto Range On indicator</td>
<td>AMPTD Y Scale, Auto Range</td>
</tr>
<tr>
<td>4</td>
<td>Active function block</td>
<td>Data entry field for the active function.</td>
</tr>
<tr>
<td>5</td>
<td>Internal preamp status</td>
<td>AMPTD Y Scale, Internal Preamp</td>
</tr>
<tr>
<td>6</td>
<td>RF attenuation</td>
<td>AMPTD Y Scale, Elec Atten</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Associated Function Keys</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>7</td>
<td>Over Range: Indicates that the attenuation and preamp (if installed) settings are supplying too much power to the detector. Distortion may result. Set Auto Range (On) to clear. or
<8 Smpl/Pt: Indicates that the current instrument settings have reduced the number of samples/display point to less than 8. The most accurate averaged amplitude measurement will be made when you have at least 8 samples in each display point.</td>
<td>AMPTD Y Scale, Elec Atten
AMPTD Y Scale, Internal Preamp
AMPTD Y Scale, Auto Range

Trace/Detector, Detector, Average (Log/RMS/V)</td>
</tr>
<tr>
<td>8</td>
<td>Ext Gain
AMPTD Y Scale, Ext Gain</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Color scale legend
Provides a reference for the color scale.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Elapsed time clock
Provides an indicator of the data collection time interval of the displayed spectrogram.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Time and date display
System, Time/Date/Location, Date/Time</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Active marker
Marker</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Trace information
Trace/Detector, Clear Write (W) Average (A) Max Hold (M) Min Hold (m)
Trace/Detector, Peak (P) Sample (S) Negative Peak (p) Average (A)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Active marker frequency and amplitude
Marker</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Key menu title
Dependent on menu selection.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Key menu
Menu key labels</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Stop frequency or if in zero span, stop time
FREQ Channel, Stop Freq</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Reference frequency source indicator
System, Freq/Time Reference</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Battery 1 & 2 status indicator
System, System Stats, Battery</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>AC power indicator
Indicates that the analyzer is currently powered by the external AC/DC power converter</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Spectrum display
View/Display, Spectrogram Provides a Spectral display of the spectrum sampled to create the spectrogram.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Start frequency or if in zero span, 0 sec
FREQ Channel, Start Freq</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Marker
Marker</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Display status line
Displays informational and error messages (see “Types of Spectrum Analyzer Messages” on page 189).</td>
<td></td>
</tr>
</tbody>
</table>
Front and Rear Panel Features

Front Panel Overview

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Associated Function Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Metrics Panel</td>
<td>Displays measurement results data metrics.</td>
</tr>
</tbody>
</table>
Rear-Panel Features

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Compartment</td>
<td>Location of the two batteries that provide DC power to the analyzer.</td>
</tr>
<tr>
<td>DC Power</td>
<td>The input for the dc power source. Refer to “Power Requirements” on page 27.</td>
</tr>
<tr>
<td>USB, Type A</td>
<td>Allows connections of external devices such as an external memory device.</td>
</tr>
<tr>
<td>USB, Type B</td>
<td>Allows connections of external devices such as a PC controller. (not implemented)</td>
</tr>
<tr>
<td>Timing LAN</td>
<td>A TCP/IP Interface for connecting internal options to external devices.</td>
</tr>
<tr>
<td>LAN</td>
<td>A TCP/IP Interface.</td>
</tr>
<tr>
<td></td>
<td>• For information on setting the IP address, refer to “Turning on the Analyzer for the First Time” on page 32.</td>
</tr>
<tr>
<td></td>
<td>• For information on using the analyzer remotely, refer to the User’s/Programmer’s Guide.</td>
</tr>
<tr>
<td>REF OUT (10 MHz)</td>
<td>An output of the analyzer’s internal 10 MHz frequency reference signal used to lock the frequency reference of the analyzer to other test equipment.</td>
</tr>
<tr>
<td>EXT REF IN</td>
<td>Input for an external frequency reference signal. For additional information on using an external reference, refer to “Using an External Reference” on page 33.</td>
</tr>
<tr>
<td>EXT TRIGGER INPUT</td>
<td>A TTL input that accepts the positive or negative edge (selectable) of an external voltage input that triggers the analyzer internal sweep source.</td>
</tr>
</tbody>
</table>
Rear-Panel Features

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Reserved for future use.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Kensington lock Slot</td>
<td>Used in conjunction with Kensington Lock to secures analyzer to work space.</td>
</tr>
<tr>
<td>12</td>
<td>Mounting tabs</td>
<td>Mounting tabs for mounting the external power supply when analyzer is rack mounted.</td>
</tr>
<tr>
<td>13</td>
<td>Grounding lug</td>
<td>Ground connector.</td>
</tr>
</tbody>
</table>

Front and Rear Panel Features

Chapter 3
Key Overview

The keys labeled FREQ Channel, System, and Marker are all examples of front-panel keys. The front-panel keys are dark gray, light gray, green, beige, or white in color. Front-panel keys that are white perform an immediate action rather than bringing up a menu. The only green keys are the Mode Preset, User Preset, and Help keys. The Mode Preset and User Preset keys perform an analyzer reset and the Help key accesses the embedded help system. (A summary of all front panel keys and their related menu keys can be found in the user’s guide for your analyzer). Pressing most of the dark gray, the light gray, or the beige front-panel keys accesses menus of functions that are displayed along the right side of the display. These are called menu keys.

Menu keys list functions other than those accessed directly by the front panel keys. To activate a menu key function, press the key immediately to the right of the annotation on the screen. The menu keys that are displayed depend on which front-panel key is pressed and which menu level is enabled.

If a menu key function value can be changed, it is called an active function. The function label of the active function is highlighted after that key has been selected. For example, press AMPTD Y Scale. This calls up the menu of related amplitude functions. Note the function labeled Ref Level (the default selected key in the Amplitude menu) is highlighted. Ref Level also appears in the active function block (as well as the reference level value), indicating that it is the active amplitude function and can now be changed using any of the data entry controls.

A menu key with On and Off in its label can be used to turn the menu key function on or off. To turn the function on, press the menu key so that On is underlined. To turn the function off, press the menu key so that Off is underlined. In the manual, when On should be underlined, it will be indicated as Function (On).

A function with Auto and Man in the label can either be auto-coupled or have its value manually changed. The value of the function can be changed manually using the numeric keypad, knob, or step keys. To auto-couple a function, press the menu key so that Auto is underlined. In the manual, when Auto should be underlined, it will be indicated as Function (Auto).

In some key menus, one key label will always be highlighted to show which key has been selected. For example, when you press Marker, you will access a menu of keys in which some of the keys are grouped together by a yellow highlighted region of the menu. The Normal key, which is the Marker menu default key, will be highlighted. When you press another key within the yellow region, such as Delta, a yellow border around that key becomes visible to show it has been selected.
Front and Rear Panel Features

Key Overview

In other key menus, one key label will always be highlighted to show which key has been selected but the menu is immediately exited when a selection is made. For example, when you press the **Avg Type** key (on the **Meas Setup** menu), it will bring up its own menu of keys. The **Log-Pwr Avg** key, which is the Avg Type menu default key, will be highlighted. When you press the **Pwr Avg** key, the highlight will move to that key to show it has been selected and the screen will return to the **Meas Setup** menu.

The arrow keys located around the Select key to the left of the analyzer display can be used to navigate within tables or lists, for example the Chan Std table. These keys are used to move between rows. The cursor (inverse video highlight) indicates the active item.
4 Recommended Test Equipment
Recommended Test Equipment

Test Equipment for Making Measurements

Test Equipment

The table below summarizes the test equipment needed to perform all of the measurements shown in this guide. Alternate equipment model numbers are given in case the recommended equipment is not available.

If neither the recommended nor the alternative test equipment are available, substitute equipment that meets or exceeds the critical specifications listed.

NOTE

To find descriptions of specific analyzer functions, refer to the Agilent Technologies N1996A Spectrum Analyzer User’s/Programmer’s Reference Guide.

<table>
<thead>
<tr>
<th>Item</th>
<th>Critical Specifications</th>
<th>Recommended Agilent Model</th>
<th>Alternate Agilent Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type-N (m) to BNC (f) (3)</td>
<td></td>
<td>1250-0780</td>
<td></td>
</tr>
<tr>
<td>Type N(m) to Type N(m)</td>
<td>Frequency: 10 MHz to 6 GHz VSWR: 1.08:1</td>
<td>1250-1472</td>
<td>1250-1745</td>
</tr>
<tr>
<td>Type N (f) to 3.5 mm (f) (for use with 20 GHz or 26.5 GHz source)</td>
<td>Frequency: 10 MHz to 6 GHz VSWR: 1.08:1</td>
<td>1250-1745</td>
<td></td>
</tr>
<tr>
<td>Type N (f) to 2.4 mm (f) (for use with >26.5 GHz source)</td>
<td>Frequency: 10 MHz to 6 GHz VSWR: ≤1.08:1</td>
<td>11903B</td>
<td></td>
</tr>
<tr>
<td>Cables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNC, 122-cm (48-in) (3)</td>
<td></td>
<td>10503A</td>
<td></td>
</tr>
<tr>
<td>Type N (m) to Type N (m), <=36 inches long</td>
<td>Frequency: 10 MHz to 6 GHz VSWR: 1.4:1</td>
<td>11500B</td>
<td></td>
</tr>
<tr>
<td>Cable, BNC (m) to BNC (m), ≥36 inches long</td>
<td>Frequency: 10 MHz nominal</td>
<td>10503</td>
<td></td>
</tr>
<tr>
<td>Signal Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthesized Signal Generator (if 8360-Series sweeper is not used)</td>
<td>Frequency Range: 10 MHz to 6 GHz Power Level: -10 to +5 dBm</td>
<td>8665B, E8257D, E8287D, or E4438C Opt 506</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Critical Specifications</td>
<td>Recommended Agilent Model</td>
<td>Alternate Agilent Model</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>----------------------------</td>
<td>-------------------------</td>
</tr>
</tbody>
</table>
| Synthesized Sweeper (if 8665B, ESG or PSG is not available) | *Frequency Range:* 10 MHz to 6 GHz
Power Level: -10 to +5 dBm | 83620A/B, 83630A/B, 83640A/B, 83650A/B | |
Recommended Test Equipment

Test Equipment for Making Measurements
5 Spectrum Analyzer
This Chapter provides information making the following measurements.

“Making a Basic Measurement” on page 71
“Measuring Multiple Signals” on page 77
“Measuring a Low-Level Signal” on page 88
“Making Distortion Measurements” on page 95
“Using the Analyzer as a Fixed Tune Receiver” on page 102
“Occupied Bandwidth (OBW) Measurement” on page 105
“Making a Basic Occupied BW Measurement” on page 106
Making a Basic Measurement

This section provides information on basic analyzer operation. For more information on making measurements, see the appropriate measurement chapter.

This section is divided into the following sections:

“Entering Data” on page 71
“Using Menu Keys” on page 71
“Presetting the Spectrum Analyzer” on page 73
“Creating a User Preset and Power-Up State” on page 73
“Viewing a Signal” on page 74

CAUTION
Ensure that the total power of all signals at the analyzer input does not exceed +33 dBm (2 watts).

Basic Assumption

The material in this chapter is presented with the assumption that you understand the front and rear panel layout, and display annotations of your analyzer. If you do not, refer to the Measurement Guide “Front and Rear Panel Features” on page 51.

Entering Data

When setting measurement parameters, there are several ways to enter or modify the value of the active function:

<table>
<thead>
<tr>
<th>Knob</th>
<th>Increments or decrements the current value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrow Keys</td>
<td>Increments or decrements the current value.</td>
</tr>
<tr>
<td>Numeric Keypad</td>
<td>Enters a specific value. Then press the desired terminator (either a unit menu key, or the Enter key).</td>
</tr>
<tr>
<td>Unit Menu Keys</td>
<td>Terminate a value that requires a unit-of-measurement.</td>
</tr>
<tr>
<td>Enter Key</td>
<td>Terminates an entry when either no unit of measure is needed, or you want to use the default unit.</td>
</tr>
</tbody>
</table>

Using Menu Keys

Menu Keys (which appear along the right side of the display) provide access to many analyzer functions. Here are examples of menu key types:

| Toggle | Allows you to activate/deactivate states. Toggles the selection (underlined choice) each time you press the key. |

Chapter 5
Spectrum Analyzer

Making a Basic Measurement

<table>
<thead>
<tr>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScaleType</td>
</tr>
<tr>
<td>Log, Lin</td>
</tr>
</tbody>
</table>

Submenu

Displays a new menu of menu keys.

A submenu key allows you to view a new menu of menu keys related to the submenu key category.

Example:

<table>
<thead>
<tr>
<th>Limit, Masks</th>
</tr>
</thead>
</table>

Choice

Allows you to make a selection from a list of values.

A choice key displays the currently selected submenu choice, in this example, dBm. When the choice is made, the submenu automatically returns.

Example:

<table>
<thead>
<tr>
<th>YAxisUnit</th>
</tr>
</thead>
<tbody>
<tr>
<td>dBm</td>
</tr>
</tbody>
</table>

Adjust

Highlights the menu key and sets the active function.

Press this type of key and enter a value.

The default for menu keys with an automatic (Auto) or manual (Man) choice is automatic. After pressing the key, the selection changes to manual.

Examples:

<table>
<thead>
<tr>
<th>StopFreq</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 kHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Res BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto, Man</td>
</tr>
</tbody>
</table>
Presetting the Spectrum Analyzer

Preset provides a known starting point for making measurements. The analyzer has two types of preset:

<table>
<thead>
<tr>
<th>Mode Preset</th>
<th>This type of preset restores the currently selected mode to a known factory-defined state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Preset</td>
<td>Restores the analyzer to a user-defined state. User Preset uses the factory-defined state until you create a custom user preset file.</td>
</tr>
</tbody>
</table>

For details, see the User's/Programmer's manual.

Creating a User Preset and Power-Up State

User Preset recalls the power-up state, applying the defaults you define using the Save State button. When you save a state to be used as the User Preset power-up state, you must name the state “Powerup”. If you want to use the Agilent-defined defaults at power-up, press **Mode Preset** to restore the Agilent-defined defaults and save that state as a new Powerup state file.

If you constantly use settings which are not the factory defaults, use the following steps to create a user-defined preset:

1. Set analyzer parameters as desired.
2. Set filename to “Ask”. Press **Save, Name, Filename** (Ask).
3. Save to the internal hard drive. Press **Return, Device, Internal**.
4. Save Powerup state. Press **Type, State, Save Now**.
5. Using the knob or arrow keys, select the letters from the alphabet window to create the word, “Powerup” and press **OK**. The message, “State was saved successfully: C:Powerup” is displayed. Press **OK** again to return to the **Save** key menu.

The parameters saved in this “Powerup” state file are now enabled as the user preset option and as the default power-up state.

Disabling User Preset

To restore the factory defined Power On settings, press **Mode Preset** and follow the steps listed above to save the resulting state as the new “Powerup” state file. This will restore the factory-defined default settings as the power-on settings and as the user preset settings.
Making a Basic Measurement

Viewing a Signal

1. Select the spectrum analyzer mode. Press **Mode, Spectrum Analyzer**.
2. Preset the analyzer: Press **Mode Preset**.
3. Connect the analyzer's rear panel **REF OUT (10 MHz)** to the front-panel input.

Setting Center Frequency, Span, Attenuation, and Reference Level.

1. Set the center frequency to 30 MHz: Press **FREQ Channel, Center Frequency, 30, MHz**.
2. Set the Span to 50 MHz: Press **SPAN X Scale, 50, MHz**.
3. Adjust the attenuation to 20 dB: Press **AMPTD Y Scale, Elec Atten, 20, dB**.
4. Adjust the reference level (if the peak of the 10 MHz signal component is not visible): Press **AMPTD Y Scale, Ref Level, 10, dBm**. For more information on this, refer to “Changing Reference Level” on page 75.

The 10 MHz reference signal spectrum appears on the display, as shown in Figure 5-1.

Figure 5-1 10 MHz Internal Reference Signal and Associated Spectrum
Reading Frequency & Amplitude

1. Place a marker (labeled 1) on the 10 MHz peak, as shown in Figure 5-2.

Press **Peak Search**. If necessary, use the menu keys to move the marker to the proper peak. In addition, you can go to the Marker menu (press Marker) and use the knob or arrow keys to move the marker.

Note that the frequency and amplitude of the marker appear in the upper-right corner of the screen.

2. If you have moved the marker, return it to the peak of the 10 MHz signal.

Figure 5-2
A Marker on the 10 MHz Peak

Changing Reference Level

1. Press **AMPTD Y Scale**, and note that reference level (**Ref Level**) is now the active function. Press **Marker ⇒, Mkr ⇒ RL**.

Note that changing the reference level changes the amplitude value of the top graticule line.

Figure 5-3 shows the relationship between center frequency and reference level. The box represents the analyzer display. Changing the center frequency changes the horizontal placement of the signal on the display. Changing the reference level changes the vertical placement of the signal on the display. Increasing the span increases the frequency range that appears horizontally across the display.
Figure 5-3 Relationship Between Frequency and Amplitude
Measuring Multiple Signals

This section provides information on measuring multiple signals.

This section is divided into the following sections:

- “Comparing Signals on the Same Screen Using Marker Delta” on page 78
- “Comparing Signals not on the Same Screen Using Marker Delta” on page 80
- “Resolving Signals of Equal Amplitude” on page 82
- “Resolving Small Signals Hidden by Large Signals” on page 85

CAUTION

Ensure that the total power of all signals at the analyzer input does not exceed +33 dBm (2 watts).

Basic Assumption

The material in this chapter is presented with the assumption that you understand the front and rear panel layout, and display annotations of your analyzer. If you do not, refer to the Measurement Guide “Front and Rear Panel Features”.
Comparing Signals on the Same Screen Using Marker Delta

Using the analyzer, you can easily compare frequency and amplitude differences between signals, such as radio or television signal spectra. The analyzer delta marker function lets you compare two signals when both appear on the screen at one time.

In this procedure, harmonics of the 10 MHz reference signal available at the rear of the analyzer is used to measure frequency and amplitude differences between two signals on the same screen. Delta marker is used to demonstrate this comparison.

Figure 5-4 An Example of Comparing Signals on the Same Screen

[Image: An Example of Comparing Signals on the Same Screen]

Step 1. Select the spectrum analyzer mode:

Press **Mode, Spectrum Analyzer**.

Step 2. Preset the analyzer:

Press **Mode Preset**.

Step 3. Connect the rear panel REF OUT (10 MHz) to the front panel RF input.

Step 4. Set the analyzer center frequency, span and reference level to view the fundamental and 2nd through fifth harmonics of the 10 MHz reference signal:

Press **FREQ Channel, Center Frequency**, 30, MHz.
Press **SPAN X Scale, Span**, 50, MHz.
Press **AMPTD Y Scale, Ref Level**, 10, dBm
Press **AMPTD Y Scale, Elec Atten**, 20, dB or **Auto Range** (On).

Step 5. Place a marker at the highest peak on the display (30 MHz):
Press **Peak Search**.

The **Next Peak** menu key is available to move the marker from peak to peak. The marker should be on the 3rd harmonic of the 10 MHz reference signal.

Step 6. Anchor the first marker and activate the Delta marker:

Press **Marker, Delta**.

The label on the second marker reads \(\Delta_1 \), indicating that it is the movable marker.

Step 7. Move the second marker to another signal peak or by using the **Peak Search** key:

Press **Peak Search, Next Peak**.

The amplitude and frequency *difference* between the markers is shown in the upper right corner of the display.
Comparing Signals not on the Same Screen Using Marker Delta

Measure the frequency and amplitude difference between two signals that do not appear on the screen at one time. (This technique is useful for harmonic distortion tests when narrow span and narrow bandwidth are necessary to measure the low level harmonics.)

In this procedure, frequency and amplitude differences are measured between harmonics of the analyzer’s 10 MHz reference; one harmonic on screen and one harmonic off screen. Delta marker is used to demonstrate this comparison.

Figure 5-5 Comparing One Signal on Screen with One Signal Off Screen

Step 1. Select the spectrum analyzer mode:

Press Mode, Spectrum Analyzer.

Step 2. Preset the analyzer:

Press Mode Preset.

Step 3. Connect the rear panel REF OUT (10 MHz) to the front panel RF input.

Step 4. Set the center frequency, span and reference level to view only the 30 MHz signal:

Press FREQ Channel, Center Frequency, 30, MHz.
Press SPAN X Scale, Span, 5, MHz.

Step 5. Place a marker on the 30 MHz peak:

Press Peak Search.

Step 6. Set the center frequency step size equal to 10 MHz:
Press **FREQ Channel, CF Step, 10, MHz**.

Step 7. Activate the marker delta function:

Press **Marker, Delta**.

Step 8. Increase the center frequency by 10 MHz:

Press **FREQ Channel, Center Frequency, ↑, Peak Search**.

The delta marker (Δ_1) appears on the peak of the 40 MHz harmonic. The delta marker annotation displays the amplitude and frequency difference between the 30 and 40 MHz signal peaks. Refer to **Figure 5-6**.

![Figure 5-6 Delta Marker with Reference Signal Off-Screen](image)

Step 9. Turn the markers off:

Press **Marker, Off**.
Resolving Signals of Equal Amplitude

In this procedure a decrease in resolution bandwidth is used to resolve two signals of equal amplitude with a frequency separation of 100 kHz. Notice that the final RBW selection to resolve the signals is the same width as the signal separation.

Step 1. Connect the output of signal generator #1 to port 2 of the directional coupler and connect the output of signal generator #2 to port 3 (the coupled port) of the directional coupler as shown in Figure 5-7.

Figure 5-7 Setup for Obtaining Two Signals

Step 2. Set the signal sources as follows:

Set signal generator #1 to 300 MHz at –19 dBm. Set signal generator #2 to 300.1 MHz at –4 dBm (this higher power level overcomes the nominal 16 dB loss through the coupled arm of the directional coupler). The amplitude of both signals should be approximately –20 dBm at the output of the bridge.

Step 3. Setup the analyzer to view the signals:

Press Mode Preset.
Press FREQ Channel, Center Frequency, 300, MHz.
Press SPAN X Scale, Span, 2, MHz.
Press Meas Setup, Avg Mode, Exponential, Avg Number, 25, Enter.
Press Trace/Detector, Average.
Press BW, Res BW (Manual), 300, kHz.

A single signal peak is visible. See Figure 5-8 for an example.
Step 4. Change the resolution bandwidth (RBW) to 100 kHz so that the RBW setting is less than or equal to the frequency separation of the two signals:

Press **BW, Res BW (Manual), 100, kHz**.

Notice that the peak of the signal has become flattened indicating that two signals may be present.

As the resolution bandwidth is decreased, resolution of the individual signals is improved and the sweep time is increased. For fastest measurement times, use the widest possible resolution bandwidth. Under factory preset conditions, the resolution bandwidth is “coupled” (or linked) to the span.

Since the resolution bandwidth has been changed from the coupled value, a # mark appears next to **Res BW** in the lower-left corner of the screen, indicating that the resolution bandwidth is uncoupled. (For more information on resolution bandwidth, refer to the **Res BW**
NOTE

To resolve two signals of equal amplitude, the resolution bandwidth must be less than the signal separation. For example, if the signal separation is 200 kHz and the analyzer only has resolution bandwidth settings in a 1-3-10 sequence, a 100 kHz RBW is the best choice for the 200 kHz signal separation. But some analyzers, such as the Agilent CSA and PSA spectrum analyzers, can select a 180 kHz RBW.
Resolving Small Signals Hidden by Large Signals

This procedure uses narrow resolution bandwidths to resolve two input signals with a frequency separation of 50 kHz and an amplitude difference of 60 dB.

Step 1. Connect two sources to the analyzer input as shown in Figure 5-7. Connect the output of signal generator #1 to port 2 of the directional coupler and connect the output of signal generator #2 to port 3 (the coupled port) of the directional coupler.

Figure 5-10 Setup for Obtaining Two Signals

![Diagram of setup](image)

Step 2. Set the signal sources as follows:

Set signal generator #1 to 300 MHz at –9 dBm. Set signal generator #2 to 300.450 MHz at –54 dBm. (These power levels plus the nominal 16 dB loss through the coupled arm and the nominal 1 dB loss through the main arm of the directional coupler results in a signal 60 dB below the first signal).

Step 3. Set the analyzer as follows:

- Press **Mode Preset**.
- Press **FREQ Channel, Center Frequency**, 300, MHz.
- Press **SPAN X Scale, Span**, 5, MHz.
- Press **BW**, 100, kHz.

Step 4. Set the 300 MHz signal peak to the reference level:

- Press **Peak Search, Mkr →, Mkr → Ref Lvl**.

Note that the Agilent CSA 100 kHz filter shape factor of 8:1 has a bandwidth of 840 kHz at the 60 dB point. The half-bandwidth (420 kHz) is NOT narrower than the frequency separation of 450 kHz, so the input signals can not be resolved.
Step 5. Activate averaging to smooth the noise:

Press Meas Setup, Average Mode, Exponential.
Press Avg Number, 25, Enter.
Press Trace/Detector, Average

Step 6. Reduce the resolution bandwidth filter to view the smaller hidden signal. Place a delta marker on the smaller signal:

Press BW, 30, kHz.
Press Peak Search, Marker, Delta, 450, kHz.

Note that the Agilent CSA 30 kHz filter shape factor of 8:4 has a bandwidth of 252 kHz at the 60 dB point, however noise sidebands will make the 60 dB bandwidth appear wider. The half-bandwidth (including effects of noise sidebands) is narrower than 250 kHz, so the input signals can be resolved.
NOTE

To determine the resolution capability for intermediate amplitude differences, assume the filter skirts between the 3 dB and 60 dB points are parabolic, like an ideal Gaussian filter. The resolution capability is approximately:

\[12.04 \text{ dB} \times \left(\frac{\Delta f}{\text{RBW}} \right)^2 \]

where \(\Delta f \) is the separation between the signals.
Measuring a Low–Level Signal

This section provides information on measuring low-level signals and distinguishing them from spectrum noise.

This chapter is divided into the following sections:

“Reducing Input Attenuation” on page 89
“Decreasing the Resolution Bandwidth” on page 91
“Trace Averaging” on page 93

CAUTION

Ensure that the total power of all signals at the analyzer input does not exceed +33 dBm (2 watts).

Basic Assumption

The material in this section is presented with the assumption that you understand the front and rear panel layout, and display annotations of your analyzer. If you do not, refer to the Measurement Guide “Front and Rear Panel Features”.

Reducing Input Attenuation

The ability to measure a low-level signal is limited by internally generated noise in the spectrum analyzer. The measurement setup can be changed in several ways to improve the analyzer sensitivity.

The input attenuator affects the level of a signal passing through the instrument. If a signal is very close to the noise floor, reducing input attenuation can bring the signal out of the noise.

CAUTION

Ensure that the total power of all input signals at the analyzer RF input does not exceed +33 dBm (2 watts).

Step 1. Connect the RF Output of the signal generator to the analyzer RF Input as shown in Figure 5-7.

Figure 5-13 Setup for Obtaining One Signal

Step 2. Set the frequency of the signal source to 295 MHz. Set the source amplitude to −80 dBm. Connect the source RF OUTPUT to the analyzer RF INPUT.

Step 3. Select the spectrum analyzer mode:

Press **Mode, Spectrum Analyzer**.

Step 4. Preset the analyzer:

Press **Mode Preset**.

Step 5. Set the center frequency, span and reference level:

Press **FREQ Channel, Center Frequency, 295, MHz**.
Press **SPAN X Scale, Span, 1, MHz**.
Press **AMPTD Y Scale, Ref Level, 40, −dBm**.

Step 6. Place the marker at the desired peak (in this example, 295 MHz)

Press **Peak Search**.

Step 7. Activate averaging to smooth the noise:
Press **Meas Setup, Avg Number, 10, Enter.**
Press **Avg Mode, Exponential.**
Press **Trace/Detector, Average.**

Step 8. To see the signal more clearly, set the attenuation to 0 dB:

Press **AMPTD Y Scale, Elect Atten, 0, dB.**

Figure 5-14 shows 0 dB input attenuation.

Figure 5-14 Measuring a Low-Level Signal Using 0 dB Attenuation

Step 9. Set the attenuation to 20 dB: (as shown in **Figure 5-15**)

Press **AMPTD Y Scale, Elec Atten, 20, dB.**

Note that increasing the attenuation moves the noise floor closer to the signal level.

Figure 5-15 Measuring a Low-Level Signal
Decreasing the Resolution Bandwidth

Resolution bandwidth settings affect the level of internal noise without affecting the level of continuous wave (CW) signals. Decreasing the RBW by a decade reduces the noise floor by 10 dB.

Step 1. Connect the RF Output of the signal generator to the analyzer RF Input as shown in Figure 5-7.

Figure 5-16 Setup for Obtaining One Signal

![Setup for Obtaining One Signal](image)

Step 2. Set the frequency of the signal source to 295 MHz. Set the source amplitude to -80 dBm. Connect the source RF OUTPUT to the analyzer RF INPUT.

Step 3. Select the spectrum analyzer mode:

Press **Mode, Spectrum Analyzer**.

Step 4. Preset the analyzer:

Press **Mode Preset**.

Step 5. Set the center frequency, span and reference level:

Press **FREQ Channel, Center Frequency**, 295, MHz.
Press **SPAN X Scale, Span**, 1, MHz.
Press **AMPTD Y Scale, Ref Level**, 40, $-dBm$.

Step 6. Decrease the resolution bandwidth:

Press **BW, Res BW, ↓**.

The low-level signal appears more clearly because the noise level is reduced (see Figure 5-17).
Figure 5-17 Decreasing Resolution Bandwidth

RBW Selections

You can use the step keys to change the RBW in a 1–3–10 sequence.

All Agilent CSA RBWs are digital. Refer to the Agilent Technologies Specifications Guide to determine the selectivity ratio for the particular RBW of interest. Choosing the next lower RBW for better sensitivity increases the sweep time. Using the knob or keypad, you can select RBWs from 10 Hz to 200 KHz in approximately 1% increments, plus 250 kHz, 300 kHz, 1 MHz, 3 MHz, and 5 MHz. This enables you to make the trade off between sweep time and sensitivity with finer resolution.
Trace Averaging

Averaging is a digital process in which each trace point is averaged with the previous average for the same trace point. Trace averaging can facilitate identifying and characterizing a CW or narrowband signal, such as a carrier or tone in the presence of noise or other broadband signals.

Selecting averaging, when the analyzer is auto coupled, changes the detection mode from peak to average, smoothing the displayed noise level.

Step 1. Connect the RF Output of the signal generator to the analyzer RF Input as shown in Figure 5-7.

Step 2. Set the frequency of the signal source to 295 MHz. Set the source amplitude to −80 dBm. Connect the source RF OUTPUT to the analyzer RF INPUT.

Step 3. Select the spectrum analyzer mode:

Press **Mode, Spectrum Analyzer**.

Step 4. Preset the analyzer:

Press **Mode Preset**.

Step 5. Set the center frequency, span and reference level:

Press **FREQ Channel, Center Frequency, 295, MHz**.
Press **SPAN X Scale, Span, 5, MHz**.
Press **AMPTD Y Scale, Ref Level, 40, −dBm**.

Step 6. Turn trace averaging on:

Press **Meas Setup, Avg Number, 100, Enter**.
Press **Trace/Detector, Average**.

As the averaging routine smooths the trace, low level signals become
more visible. Avg: Exponential (100/100) appears above the graticule.

Step 7. With the average number as the active function, set the number of averages to 25:

Press **Meas Setup, Avg Number, 25, Enter.**

Annotation above the graticule shows the type of averaging, the number of traces averaged, and the number of averages selected.

Changing most active functions restarts the averaging, as does toggling **Trace Type** back and forth from **Clear Write** to **Average**. Once the set number of sweeps completes, the analyzer continues to provide a running average based on this set number, if the Avg Mode is set to Exponential.

NOTE

If you want the measurement to stop after the set number of sweeps, use single sweep and the Repeat Average Mode:

Press **Meas Setup, Avg Mode, Repeat, Control/Sweep, Restart, Single.**
Making Distortion Measurements

This section provides information on measuring and identifying signal distortion.

This section is divided into the following sections:

“Identifying Distortion Products” on page 96

“Third-Order Intermodulation Distortion” on page 99

CAUTION

Ensure that the total power of all signals at the analyzer input does not exceed +33 dBm (2 watts).

Basic Assumption

The material in this section is presented with the assumption that you understand the front and rear panel layout, and display annotations of your analyzer. If you do not, refer to the Measurement Guide “Front and Rear Panel Features”.
Identifying Distortion Products

Distortion from the Analyzer

High level input signals may cause analyzer distortion products that could mask the real distortion measured on the input signal. Using trace 2 and the RF attenuator, you can determine which signals, if any, are internally generated distortion products.

Identifying Analyzer Generated Distortion Example:

Using a signal from a signal generator, determine whether the harmonic distortion products are generated by the analyzer.

Step 1. Connect a signal generator to the analyzer INPUT.

Step 2. Set the signal generator frequency to 200 MHz and the amplitude to 0 dBm.

Step 3. On the analyzer, perform a mode preset by pressing **Mode Preset**.

Step 4. Set the center frequency of the analyzer to 400 MHz by pressing **FREQ Channel, Center Frequency**, 400, MHz.

Step 5. Set the span to 500 MHz by pressing **SPAN X Scale, Span**, 500, MHz.

Step 6. Set the attenuation to 10 dB by pressing **AMPTD Y Scale, Elec Atten**, 10 dB.

The signal produces harmonic distortion products in the analyzer input mixer as shown in Figure 5-19.

Figure 5-19 Harmonic Distortion

Step 7. Change the span to 50 MHz: press **SPAN X Scale, Span**, 50, MHz.

Step 8. Ensure that the signal is at the center frequency. If necessary press **Peak Search, Marker→, Mkr→CF**.

Step 9. Change the attenuation to 0 dB: press **AMPTD Y Scale, Elec Atten**, 0, dB.
Your display should be similar to Figure 5-20.

Figure 5-20 Harmonic Distortion with 0 dB Attenuation

Step 10. To determine whether the harmonic distortion products are generated by the analyzer, first save the screen data in trace 2 as follows:

Press **Trace/Detector**, Select **Trace** (2), then **Clear Write**. Allow the trace to update (two sweeps) and press **Trace/Detector**, **Update Off** (View), **Marker**, **Delta**.

The analyzer display shows the stored data in trace 2 and the measured data in trace 1.

Step 11. Next, increase the RF attenuation by 10 dB: press **AMPTD Y Scale**, **Elec Atten**, 10, **dB**. See Figure 5-21.

Notice the $\Delta Mkr1$ amplitude reading. This is the difference in the distortion product amplitude readings between 0 dB and 10 dB input attenuation settings. If the $\Delta Mkr1$ amplitude absolute value is approximately ≥1 dB for an input attenuator change, then distortion is being generated, at least in part, by the analyzer. In this case more input attenuation is necessary.
Step 12. Press Peak Search, Marker, Delta

Change the attenuation to 15 dB by pressing AMPTD Y Scale, Elec Atten, 15, dB.

If the $\Delta Mkr1$ amplitude absolute value is approximately ≥ 1 dB as seen in Figure 5-22, then more input attenuation is required; some of the measured distortion is internally generated. If there is no change in the signal level, the distortion is not generated internally. For example, the signal that is causing the distortion, in this case, shown in Figure 5-22, is not high enough in amplitude to cause internal distortion in the analyzer so any distortion that is displayed is present on the input signal.
Third-Order Intermodulation Distortion

Two-tone, third-order intermodulation distortion is a common test in communication systems. When two signals are present in a non-linear system, they can interact and create third-order intermodulation distortion products that are located close to the original signals. These distortion products are generated by system components such as amplifiers and mixers.

This procedure tests a device for third-order intermodulation using markers. Two sources are used, one set to 300 MHz and the other to 301 MHz.

Step 1. Connect two signal generators, two low pass filters, and a directional coupler to the analyzer input as shown in Figure 5-23. Connect the output of signal generator #1 to port 2 of the directional coupler through one of the low pass filters and connect the output of signal generator #2 to port 3 (the coupled port) of the directional coupler through the remaining low pass filter.

This combination of signal generators, low pass filters, and directional coupler (used as a combiner) results in a two-tone source with very low intermodulation distortion. Although the distortion from this setup may be better than the specified performance of the analyzer, it is useful for determining the TOI performance of the source/analyzer combination. After the performance of the source/analyzer combination has been verified, the device-under-test (DUT) (for example, an amplifier) would be inserted between the directional coupler output and the analyzer input.

NOTE

The coupler should have a high degree of isolation between the two input ports so the sources do not intermodulate.

Figure 5-23 Third-Order Intermodulation Equipment Setup
Spectrum Analyzer
Making Distortion Measurements

Step 2. Set the signal sources as follows:

Set signal generator #1 to 295 MHz at –5 dBm. Set signal generator #2 to 296 MHz at 11 dBm (this higher power level overcomes the nominal 16 dB loss through the coupled arm of the directional coupler). This will result in a frequency separation of 1 MHz. The amplitude of both signals should be approximately –5 dBm at the output of the bridge.

Step 3. Set the analyzer center frequency and span:

Press Mode Preset.
Press FREQ Channel, Center Frequency, 295.5, MHz.
Press SPAN X Scale, Span, 5, MHz.
Press AMPTD Y Scale, Elec Atten, 10, dB.

Step 4. Reduce the RBW until the distortion products are visible:

Step 5. Move the signal to the reference level:

Press Peak Search, Marker →, Mkr →RL.

Step 6. Calculate the attenuator setting required for a –30 dBm mixer level based upon the current reference level setting: Atten = Ref Level – (–30 dBm)

Press AMPTD Y Scale, Elec Atten, enter the attenuation value for the calculation above and press dB.

Step 7. Reduce the RBW until the distortion products are visible:

Step 8. Turn on averaging to increase the visibility of the distortion products:

Press Avg Mode, Exponential, Avg Number, 10, Enter.

Step 9. Activate the second marker and place it on the peak of the distortion product (beside the test signal) using the Next Peak key.

Press Peak Search, Marker, Delta, Peak Search, Next Peak (active marker should be on the other input signal), Next Peak (active marker should be on a distortion product).

Step 10. Measure the other distortion product:

Press Next Peak. (see Figure 5-24)
Figure 5-24 Measuring the Distortion Product

![Spectrum Analyzer Figure 5-24 Measuring the Distortion Product](image)

- **Figure 5-24:** Measuring the Distortion Product
Using the Analyzer as a Fixed Tune Receiver

This section provides information on using the analyzer as an AM receiver to measure modulation parameters.

This section includes the following measurement:

“Measuring the Modulation Rate of an AM Signal” on page 102

CAUTION

Ensure that the total power of all signals at the analyzer input does not exceed +33 dBm (2 watts).

Basic Assumption

The material in this section is presented with the assumption that you understand the front and rear panel layout, and display annotations of your analyzer. If you do not, refer to the Measurement Guide “Front and Rear Panel Features”.

Measuring the Modulation Rate of an AM Signal

This section demonstrates how to determine parameters of an AM signal, such as modulation rate and modulation index (depth) by using frequency and time domain measurements (refer to the concepts chapter in the Measurement Guide for “AM and FM Demodulation Concepts” on page 133 for more information).

To obtain an AM signal, you can either connect a source transmitting an AM signal, or connect an antenna to the analyzer input and tune to a commercial AM broadcast station. For this demonstration an RF source is used to emulate an AM signal.

Step 1. Connect the RF Output of the signal generator to the analyzer RF Input as shown in Figure 5-7.

Figure 5-25 Setup for AM Demodulation Measurement

Step 2. Set the Agilent ESG RF signal source frequency to 300 MHz and the amplitude to −10 dBm. Set the AM depth to 80%, the AM rate to 1 kHz
and turn AM on.

Step 3. Select the spectrum analyzer mode:

Press **Mode, Spectrum Analyzer**.

Step 4. Preset the analyzer.

Press **Mode Preset**.

Step 5. Set the center frequency, span, RBW and the sweep time.

Press **FREQ Channel, Center Frequency, 300, MHz**.
Press **SPAN X Scale, Span, 500, kHz**.
Press **BW, Res BW, 30, kHz**.

Step 6. Set the y-axis units to volts:

Press **AMPTD Y Scale, More, Y-Axis Units, Volts**.

Step 7. Position the signal peak near the reference level:

Press **AMPTD Y Scale, Ref Level**, (rotate front-panel knob).

Step 8. Change the y-scale type to linear:

Press **AMPTD Y Scale, Scale Type (Lin)**.

Step 9. Set the analyzer in zero span to make time-domain measurements:

Press **SPAN X Scale, Zero Span**.
Press **Control/Sweep, Sweep Time, 5, ms**.

Step 10. Use the video trigger to stabilize the trace:

Press **Meas Setup, Trigger, Video**. Adjust the trigger level for a stable trace.

Since the modulation is a steady tone, you can use video trigger to trigger the analyzer sweep on the waveform and stabilize the trace, much like an oscilloscope. See **Figure 5-26**.

NOTE
If the trigger level is set too high or too low when video trigger mode is activated, the sweep stops. You need to adjust the trigger level up or down with the front-panel knob until the sweep begins again.

Step 11. Measure the AM rate using delta markers:

Press **Peak Search, Marker, Delta, Peak Search, Next Pk**.

Use markers and delta markers to measure the AM rate. Place the marker on a peak and then use a delta marker to measure the time...
Spectrum Analyzer
Using the Analyzer as a Fixed Tune Receiver

difference between adjacent peaks (this is the AM rate of the signal)

NOTE
Make sure the delta markers above are placed on adjacent peaks. See Figure 5-26. The frequency or the AM rate is 1 divided by the time between adjacent peaks:

\[\text{AM Rate} = \frac{1}{1.0 \text{ ms}} = 1 \text{ kHz} \]

Figure 5-26 Measuring Time Parameters

You can also use the marker inverse time readout to calculate AM rate in Hz. Once the markers are properly positioned on adjacent peaks, press Marker, Marker Readout, Inverse Time.
Occupied Bandwidth (OBW) Measurement

Occupied Bandwidth integrates the power of the displayed spectrum and puts markers at the frequencies between which a selected percentage of the power is contained. The measurement defaults to 99% of the occupied bandwidth power. The power-bandwidth routine first computes the combined power of all signal responses contained in the trace. For 99% occupied power bandwidth, markers are placed at the frequencies on either side of 99% of the power. This would leave 1% of the power evenly distributed outside the markers. The frequency difference between the two markers is the displayed occupied bandwidth. The difference between the marker frequencies is the 99% power bandwidth and is the value displayed.

The Occupied BW result corresponds to a span between the markers and is a multiple of the span between two points. So, for a 10 MHz span, the OBW will come in multiples of 25 kHz (10 MHz divided by 400 display points). Values will be 25 kHz, 50 kHz, 75 kHz, etc. For narrow signals (TDMA, PDC, etc.) you will need to zoom in on the signal to get a reasonably accurate Occupied BW result. For a 100 kHz span, the OBW resolution will be 250 Hz (100 kHz divided by 400 display points).

The occupied bandwidth measurement can be made in single or continuous sweep mode. The center frequency and reference level may be set by you.

NOTE

Zero-span is disabled in OBW measurement.
Making a Basic Occupied BW Measurement

NOTE
For accurate OBW measurements, it is recommended that you use the sample or average trace detectors. The default detector type is sample. In addition, you should use Exponential Average or Repeat Average with 100 or more averages.

The following example shows how to make an OBW measurement on a GSM signal broadcasting at 950 MHz.

Step 1. Connect the RF Output of the signal generator to the analyzer RF Input as shown in Figure 5-27.

Figure 5-27 Setup for OBW Measurement

Step 2. Set a GSM signal on the signal generator with a frequency of 950 MHz and the amplitude set to -10 dBm.

Step 3. Select the spectrum analyzer mode:

Press **Mode, Spectrum Analyzer.**

Step 4. Preset the analyzer:

Press **Mode Preset.**

Step 5. Set the center frequency and span:

Press **FREQ Channel, Center Frequency, 950, MHz.**
Press **Span X Scale, Span, 1, MHz**

Step 6. Select Spectrum Analyzer Occupied BW measurement.

Press **Meas, Occupied BW.**

A marker pair will appear on the trace and the occupied bandwidth value and the integrated power in the OBW are displayed in the data window below the trace graticule. See Figure 5-28.
Step 7. You can improve the repeatability of the measurements by setting the Average number to 100 or greater:

Press **Meas Setup, Avg Number, 100, Enter, Trace/Detector, Average**.

Step 8. You can change the percentage of power used for calculating the Occupied BW. The default percentage is 99%:

Press **Meas Setup, Power, 80, %**.

NOTE
If you are measuring a narrow signal such as TDMA or PDC, zoom in on the signal for a more accurate OBW results.

Press **Span X Scale, Span**, enter the frequency using the number keypad, and then press **Hz, kHz, MHz, or GHz**.

NOTE
For an over the air measurement, connect an antenna and an external filter to the RF input.

The external filter is necessary to eliminate out-of-band signals that would otherwise reduce the dynamic range of measurements in the band of interest. The effect of the out-of-band signals is to raise the noise floor, possibly hiding some or all of the signal of interest. However, the external filter is optional in this set up:

If you want to limit your search to a specific band of interest, you should use the filter.
If you want to search beyond a specific band, then you can leave the filter off.
Spectrum Analyzer

Occupied Bandwidth (OBW) Measurement
6 Channel Analyzer Measurements
This chapter provides information on measuring signal power.

This chapter includes the following measurement:

“Making Adjacent Channel Power (ACP) Measurements” on page 111

CAUTION

Ensure that the total power of all signals at the analyzer input does not exceed +33 dBm (2 watts).

Basic Assumption

The material in this chapter is presented with the assumption that you understand the front and rear panel layout, and display annotations of your analyzer. If you do not, refer to the Measurement Guide “Front and Rear Panel Features”.
Making Adjacent Channel Power (ACP) Measurements

The adjacent channel power (ACP) measurement is also referred to as the adjacent channel power ratio (ACPR) and adjacent channel leakage ratio (ACLR). We use the term ACP to refer to this measurement.

ACP measures the total power (rms voltage) in the specified channel and up to three pairs of offset frequencies. The measurement result reports the ratios of the offset powers to the main channel power.

The measurement results can help you determine whether the power is set correctly and whether the transmitter filter is working properly. Once you have set the limits, you can easily see whether a test falls within those limits using the mask feature and the color-coded metrics. You can measure the adjacent channel power on one to three adjacent channels on each side of your center channel in the CDMA, TDMA, UMTS (W-CDMA), GSM EDGE and GPRS, AMPS, NMT-450, Tetra, and iDEN channel bands.

CAUTION
When measuring multiple adjacent channels, the combined channel power must not exceed +33 dBm at the RF Input.

CAUTION
The maximum power for the RF Input 50 Ω is 33 dBm (2 W). When directly coupled to a transmitter, the analyzer can be damaged by excessive power applied to any of these ports.

To prevent damage in most situations when you directly couple the analyzer to a transmitter, connect a high power attenuator between the analyzer RF Input 50 Ω and the transmitter.

NOTE
For complex modulation such as CDMA, W-CDMA, GSM, the frequency error measurement is not accurate.

The following example shows how to make an ACP measurement on a W-CDMA base station signal broadcasting at 1.955 GHz.

Step 1. Connect the RF Output of the signal generator to the analyzer RF Input 50 Ω as shown in Figure 6-1.
Figure 6-1 Setup for ACP Measurement

Step 2. Using an ESG, setup a W-CDMA signal transmitting at 1.955 GHz and −10 dBm.

Step 3. Select the channel analyzer mode and the adjacent channel power measurement:

Press **Mode, Channel Analyzer, Adjacent Channel Power**.

Step 4. Preset the analyzer.

Press **Mode Preset**.

Step 5. Set the center frequency to 1.955 GHz:

Press **FREQ Channel, Center Freq, 1.955, GHz**.

Step 6. Set the analyzer radio mode to W-CDMA as a base station device:

Press **Meas Setup, Format/BW, Format Type (List), Format List**, select **W-CDMA (UMTS)** using the up and down arrow buttons, press **Select**.

NOTE

To increase dynamic range, **Noise Correction** can be used to factor out the added power of the noise floor effects. Noise correction is very useful when measuring signals near the noise floor of the analyzer.

Setting **Noise Correction** to **On**, will automatically set **Sensitivity** to **Low**.

*If** **Noise Correction** *is set to On*, setting Sensitivity to High will automatically set **Noise Correction** to **Off**.
COMMUNICATIONS SYSTEMS
Chapter 6 113

Channel Analyzer Measurements
Making Adjacent Channel Power (ACP) Measurements

Figure 6-2 ACP Measurement Results

The frequency offsets, channel integration bandwidths, and span settings can all be modified when you select Meas Setup, Format Type (Cust).

Step 7. Turn the limit test on:

Press Meas Setup, Limits, Power Limits, Power Limits (On).

In Figure 6-4 notice that all offsets have passed except ACP 2 High. Power levels that exceed our specified -65 dBm for offsets ACP 2 High, fail. Failures are identified by the red letter “F” on the displayed levels of the bar graph and the red color of the dBc value displayed in the results window at the bottom of the screen. The offset bar graph is also shaded red to identify a failure.

Figure 6-3 ACP Results with Offset Limits

Step 8. You may set different pass/fail limits for each offset:
Making Adjacent Channel Power (ACP) Measurements

Press **Meas Setup, Limits, Power Limits, Center Chan High Limit, −10, dBm,**
Center Chan Low Limit, −25, dBm, Adj Chan 1 High Limit, −35, dB, and
Adj Chan 2 High Limit, −65, dB.

In **Figure 6-4** notice that ACP 2 Low and ACP 2 High have both failed,
however all other channels have passed.

Figure 6-4 Setting Offset Limits
7 Stimulus Response Measurements (Option N8995A)
This chapter provides information on measuring signal loss in cables and devises and making cable fault measurement.

This chapter is divided into the following sections:

“Two Port Insertion Loss” on page 117
“One Port Insertion Loss” on page 120
“Return Loss” on page 123
“Distance to Fault” on page 125

CAUTION

Ensure that the total power of all signals at the analyzer input does not exceed +33 dBm (2 watts).

Basic Assumption

The material in this chapter is presented with the assumption that you understand the front and rear panel layout, and display annotations of your analyzer. If you do not, refer to the Measurement Guide “Front and Rear Panel Features”.

Stimulus Response Measurements (Option N8995A)
Stimulus Response Measurements (Option N8995A)

Two Port Insertion Loss

This procedure measures the loss or gain of a filter, amplifier, cable, or other devices over a specified frequency range.

Insertion loss measurements are important in accurately quantifying the amount of loss or gain a signal will incur as it passes through a device. In S-parameter terms, insertion loss is referred to as an S_{21} measurement. “S” stands for scattering.

NOTE

Before you perform a two port insertion loss measurement, you must first normalize the measured values for insertion loss by compensating for the loss associated with the devices (adapters, cables) that connect the analyzer to the device or assembly being tested. Otherwise, the loss introduced by these connecting devices is added to the loss of the device under test.

Step 1. To measure the rejection of a low pass filter, connect the RF Output of the analyzer to the RF Input as shown in Figure 7-2.

NOTE

DO NOT make the connection at this time. You will be directed when to make the connections later in the procedure.

This example uses a 50 MHz low pass filter as the DUT.

Step 2. Set the analyzer to the Two Port Insertion Loss measurement:

Press Mode, Stimulus/Response, Two Port Insertion Loss

Step 3. Preset the analyzer:

Press Mode Preset.

Step 4. Set the start and stop frequencies:

Press FREQ Channel, Start Freq, 10, MHz.
Press FREQ Channel, Stop Freq, 250, MHz.

Step 5. Turn averaging off:

Press Meas Setup, Avg Mode, Off.

Step 6. Set the tracking generator output power to –15 dBm:

Press Source, Source Level (Manual), –15, dBm.

CAUTION

Excessive signal input may damage the DUT. Do not exceed the maximum power that the device under test can tolerate.
Step 7. Connect the cable (but not the DUT) from the tracking generator output to the analyzer input as shown in Figure 7-1.

Figure 7-1 Two Port Insertion Loss Normalization Test Setup

Step 8. Normalize the frequency response:

Press FREQ Channel, Normalize and follow the instructions on the Normalize Wizard.

Step 9. To measure the rejection of a low pass filter:

Connect the DUT between the RF Input and RF Output of the analyzer as shown in Figure 7-2.

Note that the units of the reference level are dB, indicating that this is a relative measurement.

This example uses a 50 MHz low pass filter as the DUT.

Figure 7-2 Two Port Insertion Loss Measurement Test Setup

Step 10. Place the reference marker at the specified cutoff frequency:

Press Marker, Normal, 50, MHz.

Step 11. Place the second marker at 100 MHz:

Press Delta, 50, MHz.
In this example, the attenuation over this frequency range is 60.7 dB/octave (one octave above the cutoff frequency).

Step 12. Use the front-panel knob to place the marker at the highest peak in the stop band to determine the minimum stop band attenuation. In this example, the peak occurs at 90.47 MHz. The attenuation is 57.6 dB.

Figure 7-3 Minimum Stop Band Attenuation
One Port Insertion Loss

The one port insertion loss measurement allows you to quantify signal loss in a cable or other device without connecting both ends to the analyzer. This measurement can be especially useful in measuring the loss of a feedline connected to the antenna on a tower.

This measurement is less accurate than two port insertion loss, however. Therefore, when it’s practical to connect both ends of a device to the analyzer—for example, for short cables or attenuators—it is better to use two port insertion loss.

NOTE

Test signals can cause interference. When testing cables attached to antennas, test signals are radiated. Verify that the signal used for the test cannot cause interference to another antenna.

NOTE

The One Port Insertion Loss calibration is the same calibration as performed for two other measurements: Return Loss and Distance to Fault (as long as you use the manual frequency method). If you make the calibration for any of these three measurements, the calibration will apply to the other two measurements and “Calibrated” will be displayed on the screen for all three.

The calibration remains valid until you power off the analyzer or change the start or stop frequency.

Step 1. Connect the calibrating devices to the analyzer RF Input when prompted in the procedure, as shown in Figure 7-4, or in the calibration wizard.

NOTE

DO NOT make the connection at this time. You will be directed when to make the connections later in the procedure.

This example uses a 15 foot cable as the DUT.
Step 2. Set the analyzer to the One Port Insertion Loss measurement:
Press **Mode, Stimulus/Response, One Port Insertion Loss**

Step 3. Preset the analyzer:
Press **Mode Preset, Meas, One Port Insertion Loss**.

Step 4. Set the start and stop frequencies:
Press **FREQ Channel, Start Freq, 100, MHz**.
Press **FREQ Channel, Stop Freq, 2, GHz**.

Step 5. Turn averaging off:
Press **Meas Setup, Avg Mode, Off**.

Step 6. Calibrate the measurement:
Press **FREQ Channel, Calibrate** and follow the instructions on the Calibration Wizard. The analyzer will calibrate over the desired frequency range.

Step 7. Connect the DUT to the analyzer, as described in **step 1**. Note that the units of the reference level are dB, indicating that this is relative measurement.

Step 8. Change the amplitude scale to 2 dB per division:
Press **AMPTD Y Scale, Scale/Div, 2, dB**.

Step 9. Place a marker on the results at the frequency of interest. In this example, the marker is placed at 986.667 MHz. As you can see the loss is 2.1 dB.
Figure 7-5 One Port Insertion Loss Measurement Results, Normalized.
Return Loss

Return loss is a measure of reflection characteristics. One way you can use the return loss measurement is to detect problems in an antenna feedline system or the antenna itself. A portion of the incident power will be reflected back to the source from each transmission line fault as well as the antenna. The ratio of the reflected voltages to the incident voltage is called the reflection coefficient. The reflection coefficient is a complex number, meaning it has both magnitude and phase information. In S-parameter terms, Return Loss is referred to as an S_{11} measurement.

NOTE

Test signals can cause interference. When testing cables attached to antennas, test signals are radiated. Verify that the signal used for the test cannot cause interference to another antenna.

NOTE

The Return Loss calibration is the same calibration as performed for One Port Insertion Loss and Distance to Fault (as long as you use the manual frequency method). If you make the calibration for any of these three measurements, the calibration will apply to the other two measurements and “Calibrated” will be displayed on the screen for all three.

The calibration remains valid until you power off the analyzer or change the start or stop frequency.

Step 1. Set the analyzer to the Stimulus/Response Mode and the Return Loss measurement:

Press **Mode, Stimulus/Response, Return Loss**

Step 2. Preset the analyzer:

Press **Mode Preset, Meas, Return Loss**.

Step 3. Set the start and stop frequencies:

Press **FREQ Channel, Start Freq, 10, MHz**.
Press **FREQ Channel, Stop Freq, 250, MHz**.

Step 4. Turn averaging off:

Press **Meas Setup, Averaging, Off**.

Step 5. Calibrate the measurement:

Press **FREQ Channel, Calibrate** and follow the instructions on the Calibration Wizard. The analyzer will calibrate over the desired
Stimulus Response Measurements (Option N8995A)

Return Loss

frequency range.

Step 6. Connect the test cable (if used) and calibration devices to the analyzer RF Output, as shown in **Figure 7-6**, or in the calibration wizard. (If the DUT is a two-port device, be sure to terminate the unused port in the characteristic impedance of the device.)

Note that the units of the reference level are dB, indicating that this is a relative measurement.

This example uses a 50 MHz low pass filter as the DUT.

Figure 7-6
Return Loss Measurement

![Return Loss Measurement](image)

Step 7. Use the markers to measure the return loss and SWR at any point.

Press **Marker, Normal**. Use the knob to place the marker at a frequency of interest.

Figure 7-7
Return Loss Measurement Results, Calibrated.
Distance to Fault

A signal is transmitted from the RF Output connector of the analyzer to the cable-under-test. The signals reflected from faults in the cable are received by the analyzer.

In performing this measurement, the analyzer uses frequency domain reflectometry. The changing interference of the transmitted and reflected signals contains information about the distance to one or more faults. This information can be used to find the physical distance to the faults. The distance displayed on the analyzer is the physical distance to the probable faults, corrected for the cable loss and velocity factor of the cable.

The analyzer provides two ways of measuring distance to fault:

- **Manual Frequency Range.** You select the start and stop frequencies, which define the measured distance. Generally, the typical start and stop frequencies you use will result in a measured distance that will be larger than the distance over which you want to look for faults. To help isolate faults over the length of interest, you can set a displayed distance less than the measured distance. The displayed distance is set using the Start Distance and Stop Distance menu keys on the [Freq/Dist/Calibrate] menu. Keep in mind that there are 256 measurement points across the measured distance. Therefore, the measurement points across the chosen displayed length will be a ratio of displayed distance to measured distance times 256. The higher the ratio, the less measurement resolution. In most cases, the resolution will be adequate to determine the faults, but if more resolution is needed you can increase the span between the start and stop frequencies (which will decrease the measured distance) or use the other approach, automatic frequency range. If the measurement distance is not long enough for the cable you are testing, reduce the span between the start and stop frequencies (which will increase the measurement distance) or use automatic frequency range.

- **Automatic Frequency Range.** You select the measurement distance, and the analyzer automatically selects the start and stop frequencies. This measurement distance is set using the Start Distance and Stop Distance menu keys on the [Freq/Dist/Calibrate] menu. In this mode, the displayed and measured differences are the same. There are 256 measurement points across the distance you set. This approach provides the maximum measurement resolution across the selected distance. The disadvantage is that the start and stop frequencies are automatically set and may limit the analyzer’s ability to sweep through filters or lighting protectors. This mode is best used for checking a cable that has no frequency limiting devices.
NOTE

Test signals can cause interference. When testing cables attached to antennas, test signals are radiated. Verify that the signal used for the test cannot cause interference to another antenna.

NOTE

The Distance to Fault calibration for manual frequency range is the same calibration as performed for the Return Loss. If you make the calibration for either of these measurements, the calibration will apply to the other measurement—and “Calibrated” will be displayed on the screen for both.

The calibration remains valid until you power off the analyzer or change the start or stop frequency.

The distance to fault calibration for the auto frequency range is unique, however. It is not applicable to return loss or one port insertion loss, or even to the manual frequency range method for distance to fault.

For distance to fault measurements, separate calibrations need to be performed for each frequency range mode.

Step 1. Set the analyzer to the Stimulus/Response mode and select the Distance to Fault measurement:

Press Mode, Stimulus/Response, Distance to fault.

Step 2. Preset the analyzer:

Press Mode Preset, Meas, Distance to Fault.

Step 3. Select the cable type:

Press Meas Setup, Cable Type.

If the cable being measured has an “RG” designation, such as RG-214, select: Cable Type (RG). Otherwise, select: Cable Type (BTS). Press, Select Cable. You will then be given a list of cable types to select. Use the knob or step keys to highlight the correct cable type and press Select.

Step 4. Set the frequency range to auto.

Press FREQ Channel, Freq Range (Auto).

The start and stop frequencies are then automatically set by the start and stop distances.

Step 5. Set the start and stop distances for the cable you are measuring. In this example, the cable is approximately 23 feet.

Press FREQ Channel, Start Distance, 0, ft [feet].
Press FREQ Channel, Stop Distance, 30, ft [feet].

Step 6. Set the distance units:
Press **FREQ Channel, Units** (Meters or Feet). Each time you press this menu key, the selected option changes.

Step 7. Calibrate the measurement:

Press **FREQ Channel, Calibrate** and follow the instructions on the Calibration Wizard. The analyzer will calibrate over the desired frequency range.

Figure 7-8 Distance to Fault Measurement, Calibrated

![Image](image_url)

Step 8. Connect the test cable and calibration devices to the analyzer RF Output, as shown in Figure 7-9, or in the calibration wizard.

This example uses an RG8A type cable.

Figure 7-9 Distant to Fault Measurement

![Image](image_url)

Step 9. The triangles (up to 4) will indicate the worst faults. Below the graticule, the Return Loss, Distance, and VSWR of each fault is indicated. (This cable has a fault indicated at 23 feet.)
Distance to Fault Measurement Results.

Figure 7-10
8 Concepts
Concepts
Resolving Closely Spaced Signals

Resolving Closely Spaced Signals

Resolving Signals of Equal Amplitude

Two equal-amplitude input signals that are close in frequency can appear as a single signal trace on the analyzer display. Responding to a single-frequency signal, a swept-tuned analyzer traces out the shape of the selected internal IF (intermediate frequency) filter (typically referred to as the resolution bandwidth or RBW filter). As you change the filter bandwidth, you change the width of the displayed response. If a wide filter is used and two equal-amplitude input signals are close enough in frequency, then the two signals will appear as one signal. If a narrow enough filter is used, the two input signals can be discriminated and appear as separate peaks. Thus, signal resolution is determined by the IF filters inside the analyzer.

The bandwidth of the IF filter tells us how close together equal amplitude signals can be and still be distinguished from each other. The resolution bandwidth function selects an IF filter setting for a measurement. Typically, resolution bandwidth is defined as the 3 dB bandwidth of the filter. However, resolution bandwidth may also be defined as the 6 dB or impulse bandwidth of the filter.

Generally, to resolve two signals of equal amplitude, the resolution bandwidth must be less than or equal to the frequency separation of the two signals. If the bandwidth is equal to the separation and the video bandwidth is less than the resolution bandwidth, a dip of approximately 3 dB is seen between the peaks of the two equal signals, and it is clear that more than one signal is present.

When the Agilent CSA spectrum analyzer span is > 0 Hz, the sweep time is set automatically to keep the analyzer measurement calibrated. When the resolution bandwidth is < 1 kHz, there will be large increases in the sweep time as you decrease the RBW in a 1, 3, 10 sequence. Fortunately, the Agilent CSA allows you to also set the RBW in 10% increments, thereby allowing you greater flexibility in trading off sweep time and resolution.

For the shortest measurement times, use the widest resolution bandwidth that still permits discrimination of all desired signals.

For example, in a 10 MHz span, the sweep time with a 300 Hz RBW is 1.02 s, and the sweep time with a 100 Hz RBW is 8.01 s. If the 300 Hz RBW does not provide sufficient resolution, and the sweep time with a 100 Hz RBW is too long, you could try the 200 Hz RBW. The sweep time with a 200 Hz RBW is 1.4 s, over 5 times faster than the sweep time with a 100 Hz RBW.
Resolving Closely Spaced Signals

When dealing with the resolution of signals that are close together and not equal in amplitude, you must consider the shape of the IF filter of the analyzer, as well as its 3 dB bandwidth. (See “Resolving Signals of Equal Amplitude” on page 130 for more information.) The shape of a filter is defined by the selectivity, which is the ratio of the 60 dB bandwidth to the 3 dB bandwidth. If a small signal is too close to a larger signal, the smaller signal can be hidden by the skirt of the larger signal.

To view the smaller signal, select a resolution bandwidth such that k is less than a (see Figure 8-1). The separation between the two signals (a) must be greater than half the filter width of the larger signal (k), measured at the amplitude level of the smaller signal.

The digital filters in the Agilent CSA have filter widths about one-half to one-third as wide as typical analog RBW filters. This enables you to resolve close signals with a wider RBW (for a faster sweep time).

Figure 8-1 RBW Requirements for Resolving Small Signals

$k < a$
Trigger Concepts

Trigger functions are only available when the Agilent CSA is in zero span. In non-zero spans, the Agilent CSA is always in Free Run.

Selecting a Trigger

1. Video Triggering

Video triggering controls the sweep time based on the detected envelope signal to steady the signal on the display. Video triggering triggers the measurement at the point at which the rising signal crosses the trigger level horizontal green line on the display:

Press Meas Setup, Trigger, Video, −30 dBm.

2. External Triggering

In the event that you have an external trigger available that can be used to synchronize with the signal of interest, connect the trigger signal to the rear of the Agilent CSA using the EXTERNAL TRIGGER INPUT connector. You can change the slope of the external trigger signal on which you want the analyzer to trigger using the Trigger Slope feature.

Press Meas Setup, Trigger, External.

3. RF Burst Triggering

RF burst triggering occurs in the IF circuitry chain, as opposed to after the video detection circuitry with video triggering. In the event video triggering is used, the detection filters are limited to the maximum width of the resolution bandwidth filters. The RF burst signal level can be set using the Trigger Level feature.

Press Meas Setup, Trigger, RF Burst.

Trigger Delay

Trigger delay can be used to move the sweep trigger point arbitrarily to allow closer examination of waveform patterns (Press Trigger, Trigger Delay, and enter a delay time).
AM and FM Demodulation Concepts

Demodulating an AM Signal Using the Analyzer as a Fixed Tuned Receiver (Time-Domain)

The zero span mode can be used to recover amplitude modulation on a carrier signal.

The following functions establish a clear display of the waveform:

- Triggering stabilizes the waveform trace by triggering on the modulation envelope. If the modulation of the signal is stable, video trigger synchronizes the sweep with the demodulated waveform.
- Linear display mode should be used in amplitude modulation (AM) measurements to avoid distortion caused by the logarithmic amplifier when demodulating signals.
- Sweep time to view the rate of the AM signal.
- RBW is selected according to the signal bandwidth.

Demodulating an FM Signal Using the Analyzer as a Fixed Tuned Receiver (Time-Domain)

To recover the frequency modulated signal, a spectrum analyzer can be used as a manually tuned receiver (zero span). However, in contrast to AM, the signal is not tuned into the passband center, but to one slope of the filter curve as Figure 8-2.

Figure 8-2 Determining FM Parameters using FM to AM Conversion

Here the frequency variations of the FM signal are converted into amplitude variations (FM to AM conversion). The reason we want to measure the AM component is that the envelope detector responds only to AM variations. There are no changes in amplitude if the frequency changes of the FM signal are limited to the flat part of the RBW (IF filter). The resultant AM signal is then detected with the envelope detector and displayed in the time domain.
Stimulus response measurements require the N8995A Stimulus Response Measurement Suite and either option TG3 or TG6.

Stimulus Response Overview

Stimulus response measurements require a source to stimulate a device under test (DUT), a receiver to analyze the frequency response characteristics of the DUT, and, for return loss measurements, a directional coupler or bridge. The Agilent CSA tracking generator options include a built-in RF bridge. Characterization of a DUT can be made in terms of its transmission or reflection parameters. Examples of transmission measurements include flatness and rejection. Return loss is an example of a reflection measurement.

A spectrum analyzer combined with a tracking generator forms a stimulus response measurement system. With the tracking generator as the swept source and the analyzer as the receiver, operation is the same as a single channel scalar network analyzer. The tracking generator output frequency must be made to precisely track the analyzer input frequency for good narrow band operation. A narrow band system has a wide dynamic measurement range. This wide dynamic range will be illustrated in the following example.

There are three basic steps in performing a stimulus response measurement, whether it is a transmission or a reflection measurement. The first step is to set up the analyzer, the second is to normalize, and the last step is to perform the measurement.

Normalization Concepts

To make a transmission measurement accurately, the frequency response of the test system must be known. Normalization is used to eliminate this error from the measurement. To measure the frequency response of the test system, connect the cable (but not the DUT) from the tracking generator output to the analyzer input.

Press **Mode, Stimulus/Response, Two Port Insertion Loss**. Set the desired start and stop frequencies. Press **Normalize, Continue**.

The frequency response of the test system is automatically stored and a normalization is performed. This means that the active displayed trace is now the ratio of the input data to the data stored in memory.

When normalization is on, trace math is performed on the active trace, with the result placed into the selected trace.

Reconnect the DUT to the analyzer. Note that the units of the reference
level are dB, indicating that this is a relative measurement.

To make a reflection measurement accurately, it is necessary to perform an open/short/load calibration. An open, short, and load are included in the Stimulus Response Calibration Kit, Option SRK.

Press **Mode, Stimulus/Response, Return Loss**. Set the desired start and stop frequencies. Press **Calibrate** and follow the instructions.

After the calibration is complete, connect the DUT to the RF OUTPUT connector to make your return loss measurement. The marker readout returns the amplitude values in both return loss and VSWR.
Concepts

Stimulus Response Measurement Concepts
9 Programming Examples
Finding Examples and More Information

The latest version of programming examples are available from the following URL:

http://www.agilent.com/find/saprogramming

Interchangeable Virtual Instruments COM (IVI-COM) drivers: Develop system automation software easily and quickly. IVI-COM drivers take full advantage of application development environments such as Visual Studio using Visual Basic, C# or Visual C++ as well as Agilent's Test and Measurement Toolkit. You can now develop application programs that are portable across computer platforms and I/O interfaces. With IVI-COM drivers you do not need to have in depth test instrument knowledge to develop sophisticated measurement software. IVI-COM drivers provide a compatible interface to all COM environments. The IVI-COM software drivers can be found at the URL

http://www.agilent.com/find/ivi-com
Programming Examples Information and Requirements

- The programming examples were written for use on an IBM compatible PC.
- The programming examples use C, Visual Basic and VEE programming languages.
- The programming examples use the LAN interface.
- Most of the examples are written in C using the Agilent VISA library.

The VISA transition library must be installed and the GPIB card configured. The Agilent I/O libraries contain the latest VISA library and is available at: www.agilent.com/find/iolib
Programming in C Using the VISA

The C programming examples that are provided are written using the C programming language and the Agilent (VISA library). This section includes some basic information about programming in the C language. Note that some of this information may not be relevant to your particular application. (For example, if you are not using VXI instruments, the VXI references will not be relevant).

Refer to your C programming language documentation for more details. The following topics are included:

“Typical Example Program Contents” on page 141
“Linking to VISA Libraries” on page 142
“Compiling and Linking a VISA Program” on page 142
“Example Program” on page 144
“Including the VISA Declarations File” on page 144
“Opening a Session” on page 145
“Device Sessions” on page 145
“Addressing a Session” on page 147
“Closing a Session” on page 148
Typical Example Program Contents

The following is a summary of the VISA function calls used in the example programs.

visa.h This file is included at the beginning of the file to provide the function prototypes and constants defined by VISA.

ViSession The ViSession is a VISA data type. Each object that will establish a communication channel must be defined as ViSession.

viOpenDefaultRM You must first open a session with the default resource manager with the viOpenDefaultRM function. This function will initialize the default resource manager and return a pointer to that resource manager session.

viOpen This function establishes a communication channel with the device specified. A session identifier that can be used with other VISA functions is returned. This call must be made for each device you will be using.

viPrintf viScanf These are the VISA formatted I/O functions that are patterned after those used in the C programming language. For example, the viPrintf call sends the IEEE 488.2 *RST command to the instrument to put it in a known state. The viPrintf call is used again to query for the device identification (*IDN?). The viScanf call is then used to read the results.

viClose This function must be used to close each session. When you close a device session, all data structures that had been allocated for the session will be de-allocated. When you close the default manager session, all sessions opened using the default manager session will be closed.
Linking to VISA Libraries

Your application must link to one of the VISA import libraries:

32-bit Version:

- C:\VXIPNP\WIN95\LIB\MSC\VISA32.LIB for Microsoft compilers
- C:\VXIPNP\WIN95\LIB\BC\VISA32.LIB for Borland compilers

16-bit Version:

- C:\VXIPNP\WIN\LIB\MSC\VISA.LIB for Microsoft compilers
- C:\VXIPNP\WIN\LIB\BC\VISA.LIB for Borland compilers

See the following section, “Compiling and Linking a VISA Program” for information on how to use the VISA run-time libraries.

Compiling and Linking a VISA Program

32-bit Applications

The following is a summary of important compiler-specific considerations for several C/C++ compiler products when developing WIN32 applications.

For Microsoft Visual C++ version 2.0 compilers:

- Select Project | Update All Dependencies from the menu.
- Select Project | Settings from the menu. Click on the C/C++ button. Select Code Generation from the Use Run-Time Libraries list box. VISA requires these definitions for WIN32. Click on OK to close the dialog boxes.
- Select Project | Settings from the menu. Click on the Link button and add visa32.lib to the Object / Library Modules list box. Optionally, you may add the library directly to your project file. Click on OK to close the dialog boxes.
- You may wish to add the include file and library file search paths. They are set by doing the following:
 1. Select Tools | Options from the menu.
 2. Click on the Directories button to set the include file path.
 3. Select Include Files from the Show Directories For list box.
 4. Click on the Add button and type in the following:
 C:\VXIPNP\WIN95\INCLUDE
 5. Select Library Files from the Show Directories For list box.
6. Click on the Add button and type in the following:
 C:\VXIPNP\WIN95\LIB\MSC

For Borland C++ version 4.0 compilers:

- You may wish to add the include file and library file search paths. They are set under the Options | Project menu selection. Double click on Directories from the Topics list box and add the following:

 C:\VXIPNP\WIN95\INCLUDE
 C:\VXIPNP\WIN95\LIB\BC

16-bit Applications

The following is a summary of important compiler-specific considerations for the Windows compiler.

For Microsoft Visual C++ version 1.5:

- To set the memory model, do the following:

 1. Select Options | Project.
 2. Click on the Compiler button, then select Memory Model from the Category list.
 3. Click on the Model list arrow to display the model options, and select Large.
 4. Click on OK to close the Compiler dialog box.

- You may wish to add the include file and library file search paths. They are set under the Options | Directories menu selection:

 C:\VXIPNP\WIN\INCLUDE
 C:\VXIPNP\WIN\LIB\MSC

Otherwise, the library and include files should be explicitly specified in the project file.
Example Program

This example program queries a LAN device for an identification string and prints the results. Note that you must change the address.

```c
/*idn.c - program filename */
#include "visa.h"
#include <stdio.h>

void main ()
{
    /*Open session to LAN device at IP address 192.168.0.2 */
    ViOpenDefaultRM (&defaultRM);
    ViOpen (defaultRM, "TCPIP0::192.168.0.2::inst0::INSTR", VI_NULL,
            VI_NULL, &vi);
    /*Initialize device */
    viPrintf (vi, "*RST\n");
    /*Send an *IDN? string to the device */
    printf (vi, "*IDN?\n");
    /*Read results */
    viScanf (vi, "%t", &buf);
    /*Print results */
    printf ("Instrument identification string: %s\n", buf);
    /* Close sessions */
    viClose (vi);
    viClose (defaultRM);
}
```

Including the VISA Declarations File

For C and C++ programs, you must include the `visa.h` header file at the beginning of every file that contains VISA function calls:

```c
#include "visa.h"
```

This header file contains the VISA function prototypes and the definitions for all VISA constants and error codes. The `visa.h` header file includes the `visatype.h` header file.

The `visatype.h` header file defines most of the VISA types. The VISA types are used throughout VISA to specify data types used in the functions. For example, the `ViOpenDefaultRM` function requires a pointer to a parameter of type `ViSession`. If you find `ViSession` in the `visatype.h` header file, you will find that `ViSession` is eventually typed as an unsigned long.
Opening a Session

A session is a channel of communication. Sessions must first be opened on the default resource manager, and then for each device you will be using. The following is a summary of sessions that can be opened:

- **A resource manager session** is used to initialize the VISA system. It is a parent session that knows about all the opened sessions. A resource manager session must be opened before any other session can be opened.

- **A device session** is used to communicate with a device on an interface. A device session must be opened for each device you will be using. When you use a device session you can communicate without worrying about the type of interface to which it is connected. This insulation makes applications more robust and portable across interfaces. Typically a device is an instrument, but could be a computer, a plotter, or a printer.

NOTE

All devices that you will be using need to be connected and in working condition prior to the first VISA function call (`viOpenDefaultRM`). The system is configured only on the first `viOpenDefaultRM` per process. Therefore, if `viOpenDefaultRM` is called without devices connected and then called again when devices are connected, the devices will not be recognized. You must close **ALL** resource manager sessions and re-open with all devices connected and in working condition.

Device Sessions

There are two parts to opening a communications session with a specific device. First you must open a session to the default resource manager with the `viOpenDefaultRM` function. The first call to this function initializes the default resource manager and returns a session to that resource manager session. You only need to open the default manager session once. However, subsequent calls to `viOpenDefaultRM` returns a session to a unique session to the same default resource manager resource.

Next, you open a session with a specific device with the `viOpen` function. This function uses the session returned from `viOpenDefaultRM` and returns its own session to identify the device session. The following shows the function syntax:

```c
viOpenDefaultRM (sesn);
viOpen (sesn, rsrcName, accessMode, timeout, vi);
```
The session returned from `viOpenDefaultRM` must be used in the `sesn` parameter of the `viOpen` function. The `viOpen` function then uses that session and the device address specified in the `rsrcName` parameter to open a device session. The `vi` parameter in `viOpen` returns a session identifier that can be used with other VISA functions.

Your program may have several sessions open at the same time by creating multiple session identifiers by calling the `viOpen` function multiple times.

The following summarizes the parameters in the previous function calls:

- `sesn`: This is a session returned from the `viOpenDefaultRM` function that identifies the resource manager session.
- `rsrcName`: This is a unique symbolic name of the device (device address).
- `accessMode`: This parameter is not used for VISA. Use VI_NULL.
- `timeout`: This parameter is not used for VISA. Use VI_NULL.
- `vi`: This is a pointer to the session identifier for this particular device session. This pointer will be used to identify this device session when using other VISA functions.

The following is an example of opening sessions with a GPIB multimeter and a spectrum analyzer on LAN:

```c
ViSession defaultRM, dmm, sa;
.
viOpenDefaultRM(&defaultRM);
viOpen (defaultRM, "GPIB0::22::INSTR", VI_NULL,
        VI_NULL, &dmm);
viOpen (defaultRM, "TCPIP0::192.168.0.2::inst0::INSTR",
        VI_NULL,
        VI_NULL, &sa);
.
viClose (sa);
viClose (dmm);
viClose(defaultRM);
```

The above function first opens a session with the default resource manager. The session returned from the resource manager and a device address is then used to open a session with the GPIB device at address 22. That session will now be identified as `dmm` when using other VISA functions. The session returned from the resource manager is then used to open a session with the LAN device at IP Address 192.168.0.2. That session will now be identified as `sa` when using other VISA functions.

See the following section for information on addressing particular
devices.

Addressing a Session

As seen in the previous section, the `rsrcName` parameter in the `viOpen` function is used to identify a specific device. This parameter is made up of the VISA interface name and the device address. The interface name is determined when you run the VISA Configuration Utility. This name is usually the interface type followed by a number. The following table illustrates the format of the `rsrcName` for the different interface types:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>VXI</td>
<td>VXI <code>{board}::{VXI logical address}::{INSTR}</code></td>
</tr>
<tr>
<td>GPIB-VXI</td>
<td>GPIB-VXI <code>{board}::{VXI logical address}::{INSTR}</code></td>
</tr>
<tr>
<td>GPIB</td>
<td>GPIB <code>{board}::{primary address}::{secondary address}::{INSTR}</code></td>
</tr>
<tr>
<td>TCPIP</td>
<td>TCPIP <code>{board}::{host address}::{LAN device name}::{INSTR}</code></td>
</tr>
</tbody>
</table>

The following describes the parameters used above:

- **board**: This optional parameter is used if you have more than one interface of the same type. The default value for `board` is 0.
- **VXI logical address**: This is the logical address of the VXI instrument.
- **primary address**: This is the primary address of the GPIB device.
- **secondary address**: This optional parameter is the secondary address of the GPIB device. If no secondary address is specified, none is assumed.
- **host address**: The IP address (in dotted decimal notation) or the name of the host computer/gateway.
- **LAN device name**: The assigned name for a LAN device. The default is `inst()`.
- **INSTR**: This is an optional parameter that indicates that you are communicating with a resource that is of type `INSTR`, meaning instrument.

NOTE If you want to be compatible with future releases of VISA and VISA, you must include the `INSTR` parameter in the syntax.

The following are examples of valid symbolic names:
XI0::24::INSTR Device at VXI logical address 24 that is of VISA type INSTR.

VXI2::128 Device at VXI logical address 128, in the third VXI system (VXI2).

GPIB-VXI0::24 A VXI device at logical address 24. This VXI device is connected via a GPIB-VXI command module.

GPIBO::7::0 A GPIB device at primary address 7 and secondary address 0 on the GPIB interface.

TCPIP::devicename@company.com::INSTR
A TCPIP device using VXI-11 located at the specified address. This uses the default LAN Device Name of inst0.

The following is an example of opening a device session with the GPIB device at primary address 23.

```c
ViSession defaultRM, vi;

viOpenDefaultRM (&defaultRM);
viOpen (defaultRM, "GPIB0::23::INSTR", VI_NULL, VI_NULL, &vi);

viClose (vi);
viClose (defaultRM);
```

Closing a Session

The `viClose` function must be used to close each session. You can close the specific device session, which will free all data structures that had been allocated for the session. If you close the default resource manager session, all sessions opened using that resource manager will be closed.

Since system resources are also used when searching for resources (`viFindRsrc`) or waiting for events (`viWaitOnEvent`), the `viClose` function needs to be called to free up find lists and event contexts.
10 Basic System Operations
Basic System Operations

This chapter contains information on the following Basic System Operations:

“System Reference Introduction” on page 151
“Setting System References” on page 152
“Selecting a Frequency/Timing Reference” on page 152
“Printing a Screen To a File” on page 153
“Printing Screens” on page 153
“File Naming Options” on page 155
“Saving Data” on page 154
“Saving Data” on page 154
“Managing Media Types” on page 157
“Configuring for Network Connectivity” on page 158
“Saving, Recalling, and Deleting Instrument States” on page 160
“Saving the State” on page 160
“Saving the Power-Up State” on page 160
“Recalling the State” on page 160
“Returning the Power-Up State to Factory Defaults” on page 161
“Deleting States” on page 162
“Viewing System Statistics” on page 163
“Viewing System Release Versions” on page 163
“Viewing System Memory” on page 163
“Viewing Battery Statistics” on page 163
“Using the Option Manager” on page 164
“Viewing Installed Options” on page 164
“Viewing Installable Options” on page 164
“Installing an Option” on page 164
“Viewing Installation Information” on page 164
“Testing System Functions” on page 165
System Reference Introduction

The N1996A Agilent CSA spectrum analyzers provide a system utility that allows you to perform non-measurement activities and to configure the analyzer for:

- General operations
- System status updates
- Data manipulation
- Basic system functions testing
Setting System References

The Agilent CSA provide a utility to preconfigure the global settings for the box.

Selecting a Frequency/Timing Reference

Perform this procedure to select a common frequency or timing reference to be used for all measurement tools (when applicable).

1. Press **System, Freq/Time Reference**
2. Using the knob or the up/down arrow navigation keys to highlight the frequency/timing reference you want.
3. Press **Select**.

NOTE

A frequency/time reference indicator in the lower-right of the screen shows both the selected reference and its status.

Reference indicators include: Int Ref, Even Sec, Ext 1.0 MHz, Ext 2.048 MHz, Ext 4.95 MHz, Ext 10 MHz, Ext 13 MHz, Ext 15 MHz, or Ext 19.66 MHz.

Status indicators include:

- Green dot to indicate that the reference is locked
- Yellow triangle to indicate that the reference is acquiring lock
- Red X to indicate that the reference is not locked
Printing a Screen To a File

The N1996A lets you save screen images to PNG files. You can save the image files to a USB mass storage device.

Printing Screens

1. Display data on a measurement screen.
2. Connect a USB mass storage device.
3. Select how you want to name the data file you’re saving (see “File Naming Options” on page 155).

 This step must only be performed prior to the first time you save a file, or if you want to change the method you use.

4. Press 🍂 (Print)
5. Enter a name for the file (or it is done automatically, depending on the file naming method you selected and press OK).

6. When the screen capture is complete, press Ok.
Saving Data

You may save and manage data on an external storage device or the internal analyzer drive. You can save the current screen image, the current analyzer state, current trace data, and measurement results. To save data:

1. Display data on a measurement screen.
2. Press Save, Type and select the type of data you want to save.
3. If you have selected a data type of Trace, press Source, and select the trace for the data you want to save. Your choices are: Trace 1, Trace 2, Trace 3, Trace 4, or All.
4. Select how you want to name the data file you’re saving (see “File Naming Options” on page 155).

 This step must only be performed prior to the first time you save a file, or if you want to change the method you use.

5. If you have previously saved a file of the same type or name, select how the new data will be saved. New data can be saved by action: overwriting an existing file, appending the new data to the existing file, prompting you to determine how each save will be handled, automatically increment the file name number, or timestamping the file to chronologically differentiate between files. (see “File Naming Options” on page 155).

 This step must only be performed prior to the first time you save a file, or if you want to change the method you use.

6. Enter a name for the file (or it is done automatically, depending on the file naming method you selected).
7. If you have set data type as State or Trace, select the location where you want to store the file by pressing Save, Device and press Internal or USB.

 This step must only be performed prior to the first time you save a file, or if you want to change the file storage location.

8. If you have selected USB as the storage location:

 a. Connect a USB mass storage device.

9. Press Save Now.

10. When the data save is complete, press Ok.
File Naming Options

You have three options for naming image files. You can:

- Name each file automatically using this format: saveData_YYYYMMDD_HHMMSS.png. In this example, the “.png” extension is only for Data Type set to Screen. Other Data Type have other extensions.

- Name each file individually, and enter the name you want. This is called User file naming.

- Have the analyzer ask you how you want to name each file for each file you save.

Setting Up Automatic File Naming

You can choose to have the analyzer automatically assign a file name that includes the file type and a three-digit number that the analyzer chooses to be the lowest number in the current sequence that does not conflict with an existing file name.

1. Press Save, Name.
2. On Filename select Auto.

Each time you press this softkey, the selected option changes.

Setting Up User File Naming

You can choose to have the analyzer use the file name you assign.

1. Press Save, Name.
2. On Filename select User.

Each time you press this softkey, the selected option changes.

 a. Press User Filename
 b. If the filename does not exist, spell out the name using the knob or up and down arrow buttons to select a letter and the buttons on the left to change cursor position
 c. For each character entered, press Enter or Select.
 d. Press Ok.

4. If you have previously saved a file of the same type or name, press If File Exists.
5. Press action: Overwrite, Append, Prompt, Auto Incr, or Timestamp
Basic System Operations

File Naming Options

- **Overwrite**—overwrites existing file data with new file data.
- **Prompt**—prompts you to input a new file name.
- **Auto Incr**—automatically increments the filename and retains the existing filename.
- **Timestamp**—attaches a timestamp to the filename to distinguish it from the existing file.

Setting Up Asking For Filename

You can choose to have the analyzer ask you to name the file you wish to save or print. For every file you save, you enter the filename you want.

1. Press **Save, Name**.
2. On **Filename** select **Ask**.

 Each time you press this softkey, the selected option changes.
Managing Media Types

The N1996A is compatible with USB flash drive media for storing and retrieving data. The media type buttons are not active until a media device is inserted and recognized by the N1996A. Upon proper recognition, the analyzer allows you to perform basic media tasks with each media type.
Basic System Operations
Configuring for Network Connectivity

Configuring for Network Connectivity

The N1996A can operate as a device on any compatible network. Therefore, in order to be accessible on the network, certain information must be entered so the analyzer can communicate with other devices. Configuring the analyzer for network activity is performed by using the IP administrator located in the system utilities.

IP Administration Using DHCP

Perform this procedure to allow your analyzer to be integrated into an existing network that uses DHCP to dynamically assign IP addresses. This procedure requires that you have the Host Name (available from your network administrator).

1. Press System, Controls, IP Admin, Host Name.
2. Enter the name of the analyzer. This is assigned by the network administrator.
3. Press Ok
4. Press IP Config, DHCP. An IP address and other network information will automatically be assigned if the Host Name is recognized by the network.
5. Press Save, Yes. Saves the current configuration. DHCP will dynamically assign an IP address.
6. Cycle the power of the analyzer to access the network and have valid network information assigned.

IP Administration Without DHCP (Static IP Address)

Perform this procedure to allow your analyzer to be integrated into an existing network that uses a technique other than DHCP as its IP address assignments. This procedure requires the following specific data from the network administrator:

- Host name
- IP address
- Net mask
- Gateway

1. Press System, Controls, IP Admin, Host Name.
2. Enter the name of the analyzer. This is assigned by the network administrator.
3. Press Ok
4. Press IP Config, Static. Now you must specify relevant network
information for the analyzer to be recognized. Contact your network administrator if you do not have this information.

5. Press **IP Address**.

6. Enter the IP address using the knob or the up and down arrows, and menu keys on the left.

7. Press **Ok**

8. Press **Net Mask**

9. Enter the Net Mask using the knob or the up and down arrows, and menu keys on the left.

10. Press **Ok**

11. Press **Gateway**

12. Enter the Gateway using the knob or the up and down arrows, and menu keys on the left.

13. Press **Save, Yes**. Saves the current configuration.

14. Cycle the power of the analyzer to access the network and have valid network information assigned.
Saving, Recalling, and Deleting Instrument States

You can save the current configuration and settings for recall at a later time. You can also save a customized power-up state, which the analyzer will use each subsequent time it is powered on. This enables you to configure common usage and power-on states to make measurements quickly.

Saving the State

1. Configure all measurement settings you want to save. Make sure you’re viewing the screen you want to recall later.
2. Press Save, Name, Filename (Ask).
3. Press Return, Type, State, Device, Internal or USB.
4. Press Save, Type, State, Save Now
5. Enter your preferred state name, for example, “Remote base station”.
6. Press OK. The message, “State was saved successfully: C:<filename>” is displayed. Press OK again to return to the Save key menu.

Saving the Power-Up State

1. Configure all measurement settings you want to save. Make sure you’re viewing the screen you want to recall later.
2. Press Save, Name, Filename (Ask).
3. Press Return, Type, State, Device, Internal or USB.
4. Press Save, Type, State, Save Now
5. Enter “Powerup” as the state name (the analyzer is case-sensitive, so be sure to capitalize the “P”). This is the name the analyzer uses to identify the power-up state. It is also the state loaded by User Preset.
6. Press Ok

Recalling the State

1. Press Recall, Type, State
2. Select the location from which you want to recall the file by pressing Device and press Internal or USB.
This step must only be performed prior to the first time you recall a file, or if you want to change the file recall location.

3. If you have selected USB as the recall location, connect the USB mass storage device.

4. If necessary, select how you want the state files sorted by pressing Sort and then press By Date, By Name, By Extension, Size, or Order.

5. Press Recall Now.

6. Select from the file list the state file you want to recall using the knob or up and down arrow buttons.

 All states, in addition to two supplied in the analyzer (listed below), are displayed:
 - Powerup - The default power-up state shipped with the analyzer, or the power-up state last saved with the analyzer.
 - Factory Defaults - The default power-up state shipped with the analyzer. You can always revert to it by selecting it in this procedure.

7. Press Select

Returning the Power-Up State to Factory Defaults

1. Press Recall, Type, State

2. Select the location from which you want to recall the file by pressing Device and press Internal.

 This step must only be performed prior to the first time you recall a file, or if you want to change the file recall location.

3. If necessary, select how you want the state files sorted by pressing Sort and then press By Date, By Name, By Extension, Size, or Order.

4. Press Recall Now. (Note that Save, Name, Filename (Auto) (User) (Ask) must be set to Ask.)

5. Select from the file list the “Factory Defaults” state file using the knob or up and down arrow buttons.

6. Press Select.

7. When the recall is complete, press Save, Type, State, Save Now.

8. Enter as the state name, “Powerup” (the analyzer is case-sensitive, so be sure to capitalize the “P”). This is the name the analyzer uses to identify the power-up state.

9. Press OK, and then OK again to get back to the Save Menu.
Deleting States

If you have saved a state you will no longer use, you can delete it.

1. Press Recall, Type, State, Device (Internal), Catalog.

2. Select from the file list the state file you want to delete using the knob or up and down arrow buttons or All to delete all saved states.

 All states, in addition to two supplied in the analyzer (listed below), are displayed. DO NOT delete either of the following files:

 • Powerup - The default power-up state shipped with the analyzer, or the power-up state last saved with the analyzer.
 • Factory Defaults - The default power-up state shipped with the analyzer. You can always revert to it by selecting it in this procedure.

3. Press Select. You will then be asked, “Are you sure you wish to delete the <filename> state?” Press Yes.

 NOTE Selecting All does not delete the Powerup or Factory Defaults states.
Viewing System Statistics

The N1996A provides the ability view system statistics:

- “Viewing System Release Versions” on page 163
- “Viewing System Memory” on page 163
- “Viewing Battery Statistics” on page 163

Viewing System Release Versions

Perform this procedure to view the current version of software and firmware for enabled features.

1. Press System, System Stats, Rev Info, and view version information for system firmware.
2. Press Page Up or Page Down to scroll to next screen.

Viewing System Memory

Perform this procedure to view current allocation and usage statistics of the memory available.

1. Press System, System Stats, Memory, and view status of total, used, and available memory.

Viewing Battery Statistics

Perform this procedure to view current status and battery usage.

1. Press System, System Stats, Battery, and view the status of battery conditions. For details, see “System Statistics—Battery Screen” on page 170.
Using the Option Manager

The N1996A provides a utility that allows you to:

- “Viewing Installed Options” on page 164
- “Viewing Installable Options” on page 164
- “Installing an Option” on page 164
- “Viewing Installation Information” on page 164

Viewing Installed Options

1. Press **System, Option Manager, Installed Options**. This provides a list of all installed options as well as their associated license keys.

2. Press **Page Up** or **Page Down** as necessary to scroll to next screen.

Viewing Installable Options

Perform this procedure to view a list of all options that you can install for the analyzer. Two lists are displayed: options you can install yourself and options that must be installed by Agilent.

1. Press **System, Option Manager, Installable Options**. This provides a list of options that can be installed.

2. Press **Page Up** or **Page Down** as necessary to scroll to next screen.

Installing an Option

1. Press **System, Option Manager, Install an Option**.

2. Follow the on-screen instructions.

Viewing Installation Information

Perform this procedure to view current manufacturing information about your analyzer that must be provided to Agilent to install a user-installable option.

1. Press **System, Option Manager, Install Info**.

2. When you call your Agilent sales representative to order an option, you will need to provide the information you see on this screen:
 - Model number
 - Serial number
 - Host ID
Testing System Functions

The N1996A provides two simple tests you can perform to test the basic system functionality: a display test and a keyboard test.

Testing Your Display

Perform this procedure to verify the correct operation of your display.

1. Press **System, Service, Verification, Display Test**.
2. Follow the on-screen instructions.

Testing Your Keyboard

Perform this procedure to verify the correct operation of your keyboard device.

1. Press **System, Service, Verification, Keyboard Test**.
2. Press the available buttons and view the results on the screen.
11 Working with Batteries
This chapter contains the following topics on your Agilent CSA batteries:

“Installing Batteries” on page 169
“Viewing Battery Status” on page 170
“Charging Batteries” on page 172
“Recalibrating Batteries” on page 174
“Battery Care” on page 175
“Battery Specifications” on page 178
Installing Batteries

1. Open the battery door by turning the latch counterclockwise several times until loose. Then pull the battery door open.

2. Insert two batteries. Both batteries must be installed for the instrument to operate properly.

3. Close the battery door and turn the latch clockwise until tight to secure the battery door.

NOTE

When operating the analyzer on battery power, batteries of different capacities will share current in proportion to individual battery capacity. Therefore, when purchasing and installing batteries, ensure that both batteries have equivalent capacities. Even batteries that appear physically identical, can have different capacities. It is recommended that batteries be purchased and installed in pairs.
Working with Batteries
Viewing Battery Status

You can view information about battery status in four ways:

- Two battery LEDs on the analyzer front panel (below the USB connectors, refer to “Front-Panel Connectors and Keys” on page 52)
- Icons in the lower right of the front panel screen
- System Statistics—Battery screen, available from the System menu
- LCD gauge built into each battery

Battery LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Charge remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Greater than or equal to 25% charge capacity remaining</td>
</tr>
<tr>
<td>Blinking green</td>
<td>Battery charging</td>
</tr>
<tr>
<td>Green and red (may appear yellow or orange)</td>
<td>Greater than or equal to 10% and less than 25% charge capacity remaining</td>
</tr>
<tr>
<td>Red</td>
<td>Less than 10% charge capacity remaining</td>
</tr>
</tbody>
</table>

NOTE
The battery status LEDs will function only when the analyzer is on, in standby mode, or connected to external power.

Front Panel Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug icon</td>
<td>Connected to external power through AC adapter converter</td>
</tr>
<tr>
<td>2 solid batteries</td>
<td>2 batteries installed</td>
</tr>
<tr>
<td>1 solid battery</td>
<td>1 battery installed</td>
</tr>
<tr>
<td>% displayed beneath battery</td>
<td>Amount of charge capacity remaining for battery</td>
</tr>
</tbody>
</table>

System Statistics—Battery Screen
To view the battery status, press **System, System Stats, Battery**. The
Battery screen displays several kinds of information:

- **Temperature**—the internal temperature of each battery as measured by a sensor embedded in each battery.

- **Voltage**—for each battery cell stack as measured by each battery’s sensor.

- **Run Time to Empty**—while using external power, External DC Power is displayed; while using battery power, the predicted remaining battery run time is displayed in minutes at the present rate of discharge. The instrument mode you select affects the discharge rate, which determines the run time to empty. Stimulus/Response uses the most power. The remaining modes use the least power.

- **Fuel Gauge Error**—the present accuracy of each battery’s fuel gauge or remaining charge capacity. If the error exceeds 10%, you should recalibrate the battery using the optional stand alone battery charger.

- **Percent Charged**—the predicted charge capacity of each battery in percent.

- **Battery Status**—For Battery 1 and Battery 2, Present or Missing tells you whether a battery is installed.

Built-In Battery Gauge

Each Lithium Ion battery has a five-segment LCD gauge that displays its charge status. Each segment represents 20% of the charge capacity. The gauge is active unless the battery is in shutdown mode. You can view the gauge with the door open.
Charging Batteries

You can charge batteries internally or using the external battery charger (Option BCG). The external charger provides much faster charging time.

CAUTION

Charge batteries internally or with the appropriate charger, an SMBus charger of level II or higher.

Never use a non-SMBus charger because the battery issues commands over the SMBus to the charger to control the charge rate and voltage.

Never use a modified or damaged charger.

NOTE

To ensure proper instrument function when operating the analyzer on battery power, both of the batteries must have equal charge levels.

NOTE

For maximum runtime, it is best to have approximately equal charge levels on both batteries. The instrument will shut down if either battery becomes fully discharged during operation.

Internal Charging

You can use the N1996A to recharge the batteries while the analyzer is operating or shut down. For a fully depleted battery, charging time is approximately 4 hours if the analyzer is in standby, 8 hours if the analyzer is operating.

If two batteries are installed, the analyzer charges both batteries simultaneously. During internal charging, the charge indicator blinks to indicate the batteries are being charged.

To charge a battery internally, simply attach the external power supply and turn on external power.

External Charging

The external battery charger (available as part of Option BCG) lets you charge two batteries simultaneously. If the batteries are fully depleted, it takes up to 4 hours to recharge them.

You have the option of charging batteries before they become fully depleted. Doing this does not shorten battery life. But repeatedly charging a battery before it’s fully discharged will impair the accuracy of its internal charge-remaining indicator.
<table>
<thead>
<tr>
<th>External Battery Charger LED</th>
<th>Charging Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green on</td>
<td>Charging complete</td>
</tr>
<tr>
<td>Green flashing</td>
<td>Charging</td>
</tr>
<tr>
<td>Blue flashing</td>
<td>Calibrating—the accuracy of the battery's internal LCD charge gauge is being renewed. Refer to “Recalibrating Batteries” on page 174.</td>
</tr>
<tr>
<td>Blue</td>
<td>Calibration is complete</td>
</tr>
<tr>
<td>Red flashing</td>
<td>Battery fuel gauge recalibration recommended</td>
</tr>
<tr>
<td>Red on</td>
<td>Error</td>
</tr>
</tbody>
</table>
Recalibrating Batteries

Each battery contains a microchip that monitors battery usage and tracks how much capacity is available. This function can become less accurate because of temperature fluctuations, aging, self-discharge, repeated partial charging, and other factors. This inaccuracy is displayed on the System Statistics—Battery screen as Fuel Gauge Error.

To ensure the accuracy of the battery's internal capacity tracking system, occasionally you need to recalibrate the battery. Recalibrating is done by fully charging the battery, fully discharging it, recharging it again, and then verifying that the error has been corrected.

You can recalibrate a battery internally or with the optional external charger. The charger makes the process simpler.

Determining if a Battery Needs Recalibration

To view the battery status, press System, System Stats, Battery.

NOTE

After recalibrating, if the battery is not fully charged or still shows more than a 10% Fuel Gauge Error reading, repeat the recalibrating procedure. If the second recalibrating does not restore a full charge and an error reading of 10% or less, the battery needs replacement. This error will affect all of the displayed battery charge indicators.

Recalibrating with the External Battery Charger

1. Insert a battery into the external battery charger.

2. If fuel gauge recalibration is recommended by the charger (LED flashing red), press the button on the front of the external battery charger to initiate a recalibration cycle.

 The charger will charge the battery fully, discharge it completely, then recharge it fully again. The entire process can take up to 10 hours.

3. Install the battery into the analyzer.

4. On the System Statistics—Battery screen, verify that the battery is fully charged and recalibrated.
Battery Care

WARNING

Lithium Ion and lithium polymer cells and battery packs may get hot, explode, or ignite and cause serious injury if exposed to abuse conditions. Be sure to follow these safety warnings:

- Do not install the battery backward, so the polarity is reversed.
- Do not connect the positive terminal and negative terminal of the battery to each other with any metal object (such as wire).
- Do not carry or store the battery with necklaces, hairpins, or other metal objects.
- Do not pierce the battery with nails, strike the battery with a hammer, step on the battery, or otherwise subject it to strong impacts or shocks.
- Do not solder directly onto the battery.
- Do not expose the battery to water or salt water, or allow the battery to get wet.
- Do not disassemble or modify the battery. The battery contains safety and protection devices, which, if damaged, may cause the battery to generate heat, explode, or ignite.
- Do not place the battery in or near fire, on stoves, or in other high temperature locations. Do not place the battery in direct sunlight, or use or store the battery inside cars in hot weather. Doing so may cause the battery to generate heat, explode, or ignite. Using the battery in this manner may also result in a loss of performance and a shortened life expectancy.
- Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended. Discard used batteries according to manufacturer’s instructions.
WARNING

Do not discharge the battery using any device except the specified device. When the battery is used in devices other than the specified device, it may damage the battery or reduce its life expectancy. If the device causes an abnormal current to flow, it may cause the battery to become hot, explode, or ignite and cause serious injury.

Maximizing Battery Life

The Lithium Ion battery used in the N1996A has a life span of approximately 300 charge cycles at room temperature, with normal charge and discharge rates. You can maximize the number of charge cycles with reasonable battery care:

- **Clean the battery contacts** occasionally, using a pencil eraser or alcohol and a cotton swab. Make sure no residue from the eraser or cotton swab is left on the contact points.
- **Cycle each battery** through a full charge and full discharge on a regular basis, preferably monthly. Even if you use external power most of the time, you will lengthen battery life by occasionally cycling through a full discharge/recharge cycle.
- **Do not leave a battery** unused and fully charged for an extended period. Batteries that sit idle eventually lose their ability to hold a charge.
- **Store batteries** in a cool, dry location, away from metal objects and corrosive gases. To extend battery life during long-term battery storage, store the batteries with a 50% charge level. Storage limits are –20 °C to 60 °C 80% RH.
- **Extended exposure to high humidity or temperatures above 45 degrees Celsius (113 degrees Fahrenheit) can impair battery performance and shorten battery life.**
- **Allow a battery to warm** to room temperature before charging it. Temperature shock can damage the battery chemistry and in some cases cause a short circuit.
- **Always charge batteries** at temperatures between 0 and 45 degrees Celsius (32 to 113 degrees Fahrenheit).
- **Operate the analyzer on battery power** between the temperatures of 0 and 50 degrees Celsius (32 to 122 degrees Fahrenheit). Using the batteries at lower or higher temperatures can damage the batteries and reduce operating life. Cold temperatures affect battery chemistry, reducing charge capacity, especially below 0 degrees Celsius (32 degrees Fahrenheit).
- **Batteries are shipped with a minimum of 20% charge capacity to provide** at least a 6-month shelf life at room temperature, before the
battery electronics go into shutdown mode. When a battery has discharged down to 7.1 volts, it goes into shutdown mode. When this occurs, the battery electronics self-disconnect, removing their electronic load from the cells. This provides approximately 1 year of room temperature storage before the cells self-discharge to the point beyond which they should not be recharged. Once a battery has reached shutdown mode the battery will undergo a self-test immediately upon being put into charge. The charger will then attempt to pre-charge the battery at a very low initial charge rate. If the voltage does not recover, the battery pack has been allowed to discharge beyond the point of safe recovery. The charge cycle will be terminated, and the battery pack needs to be replaced.

If the battery does recover from a shutdown mode, the fuel gauge accuracy will be reduced. Complete a battery recalibration as soon as possible to calibrate the fuel gauge.

Initial Charge Cycle

New batteries must be rapid-charged (typically to 80%), then trickle-charged (slowly charged to 100%) for 24 hours, before their first use and for the first two or three uses.

Because the batteries you receive for use with the N1996A are new, they have a minimal charge when you receive them. All batteries require a “break-in” period, so don’t be alarmed if a battery doesn’t hold a full charge right away. A new battery commonly will show a false full charge (voltage) as indicated on the analyzer or charger, and may not power up the analyzer upon first use. Before using a new battery, leave it charging for 24 hours.

NOTE

Batteries are not standard on the N1996A, but they can be ordered with a new analyzer or later as an upgrade kit.

Lithium Ion Battery Disposal

When you notice a large decrease in charge capacity after proper recharging, it is probably time to replace the battery.

Li-Ion batteries need to be disposed of properly. Contact your local waste management facility for information regarding environmentally sound collection, recycling, and disposal of the batteries. Regulations vary for different countries. Dispose of in accordance with local regulations.
Battery Specifications

The N1996A Agilent CSA Series Spectrum Analyzer uses the Inspired Energy NF2040HD24 Smart Battery, which produces 10.8 volts DC at approximately 6 A. The NF2040HD24 is a Lithium Ion battery pack, which uses the System Management Bus (SMBus) interface to communicate with the analyzer and charger. To charge the batteries, use only the Agilent approved SMBus charger of Level II or higher or the N1996A.

- The battery is designed for approximately 300 full charge/discharge cycles at room temperature and under normal rates of discharge.
- The NF2040HD24 uses electronically programmable read-only memory (EPROM) to store key data regarding the battery cells and charge capacity.

Protection Electronics

The NF2040HD24 SMBus battery uses several protection devices to prevent damage to the battery and analyzer. The battery is internally protected against excessive current draws and reduced loads (shorts), excessive voltage and temperatures.

During charging and discharging, the battery will monitor and report its voltage, current, and temperature. If any of these monitored conditions exceeded their safety limits, the battery will terminate any further charge or discharge until the error condition is corrected.

Analyzer Operation: Battery Current Drain in the Off Mode

When the analyzer is operating from battery power, it continues to draw current in the off mode. When in off mode, the analyzer draws <10 mA per hour, or approximately 38 days to discharge. Agilent recommends that if the analyzer is not going to be used for an extended period of time, remove the batteries from your analyzer. This will ensure you have sufficient battery capacity if you intend to operate the analyzer from battery power.

Battery and Charger Part Numbers

Option BAT

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF2040HD24 Battery (quantity 2)</td>
<td>1420-0891</td>
</tr>
</tbody>
</table>
Option BCG

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual Battery Charger 0950-4776</td>
<td></td>
</tr>
</tbody>
</table>

NOTE
Replace only with NF2040HD24 or equivalent, Agilent-approved battery.

Additional batteries are also available directly from Inspired Energy, Inc. To purchase additional or replacement batteries, visit www.inspired-energy.com, or call toll free USA 1-888-5-INSPIRE (546-7747).

NOTE
When operating the analyzer on battery power, batteries of different capacities will share current in proportion to individual battery capacity. Therefore, when purchasing and installing batteries, ensure that both batteries have equivalent capacities. Even batteries that appear physically identical, can have different capacities. It is recommended that batteries be purchased and installed in pairs.
12 Connector Care
Connector Care

This chapter contains the following topics on care of your Agilent CSA connectors:

- “Using, Inspecting, and Cleaning RF Connectors” on page 183
- “Repeatability” on page 183
- “RF Cable and Connector Care” on page 183
- “Proper Connector Torque” on page 184
- “Connector Wear and Damage” on page 184
- “Cleaning Procedure” on page 185
Using, Inspecting, and Cleaning RF Connectors

Taking proper care of cables and connectors will protect the ability of your analyzer to make accurate measurements. Inaccurate measurements often result from improperly made connections or dirty or damaged connectors. Worn, out-of-tolerance, or dirty connectors degrade the accuracy and repeatability of measurements.

Repeatability

If you make two identical measurements with your analyzer, the differences should be so small that they do not affect the value of the measurement. Repeatability (the amount of similarity from one measurement to another of the same type) can be affected by:

- Dirty or damaged connectors
- Connections that have been made without using proper torque techniques (this applies primarily when connectors in the analyzer have been disconnected, then reconnected)

CAUTION

This analyzer contains devices that are static-sensitive. Always take proper electrostatic precautions before touching the center conductor of any connector, or the center conductor of any cable that is connected to the analyzer.

RF Cable and Connector Care

Connectors are the most critical link in a precision measurement. These devices are manufactured to extremely precise tolerances and must be used and maintained with care to protect the measurement accuracy and repeatability of your analyzer.

To Extend the Life of Your Cables or Connectors:

- Avoid repeated bending of cables—a single sharp bend can ruin a cable instantly.
- Avoid repeated connection and disconnection of cable connectors.
- Inspect the connectors before connection; look for dirt, nicks, and other signs of damage or wear. A bad connector can ruin the good connector instantly.
- Clean dirty connectors. Dirt and foreign matter can cause poor electrical connections and may damage the connector.
- Minimize the number of times you bend cables.
Connector Care

Using, Inspecting, and Cleaning RF Connectors

- Never bend a cable at a sharp angle.
- Do not bend cables near the connectors.
- If any of the cables will be flexed repeatedly, buy a back-up cable. This will allow immediate replacement and will minimize your analyzer’s down time.

Before Connecting the Cables to Any Device:

- Check all connectors for wear or dirt.
- When making the connection, torque the connector to the proper value.

Proper Connector Torque

- Provides more accurate measurements
- Keeps moisture out the connectors
- Eliminates radio frequency interference (RFI) from affecting your measurements

The torque required depends on the type of connector. Refer to Table 12-1. Do not overtighten the connector.

CAUTION Never exceed the recommended torque when attaching cables.

<table>
<thead>
<tr>
<th>Connector</th>
<th>Torque cm-kg</th>
<th>Torque N-cm</th>
<th>Torque in-lbs</th>
<th>Wrench part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-N</td>
<td>52</td>
<td>508</td>
<td>45</td>
<td>8710-1935</td>
</tr>
<tr>
<td>3.5 mm</td>
<td>9.2</td>
<td>90</td>
<td>8</td>
<td>8710-1765</td>
</tr>
<tr>
<td>SMA</td>
<td>5.7</td>
<td>56</td>
<td>5</td>
<td>8710-1582</td>
</tr>
</tbody>
</table>

Connector Wear and Damage

Look for metal particles from the connector threads and other signs of wear (such as discoloration or roughness). Visible wear can affect measurement accuracy and repeatability. Discard or repair any device with a damaged connector. A bad connector can ruin a good connector on the first mating. A magnifying glass or jeweler’s loupe is useful during inspection.
Cleaning Procedure

1. Blow particulate matter from connectors using an environmentally-safe aerosol such as Ultrajet. This product is recommended by the United States Environmental Protection Agency and contains chlorodifluoromethane.

2. Use an alcohol wipe to wipe connector surfaces. Wet a small swab with alcohol (from the alcohol wipe) and clean the connector with the swab.

3. Allow the alcohol to evaporate off the connector before making connections.

CAUTION

Do not allow excessive alcohol to run into the connector. Excessive alcohol entering the connector collects in pockets in the connector’s internal parts. The liquid will cause random changes in the connector’s electrical performance. If excessive alcohol gets into a connector, lay it aside to allow the alcohol to evaporate. This may take up to three days. If you attach that connector to another device it can take much longer for trapped alcohol to evaporate.
Connector Care

Using, Inspecting, and Cleaning RF Connectors
13 In Case of Difficulty

This chapter includes information on how to check for a problem with your Agilent Technologies spectrum analyzer, and how to return it for service.
If you experience a problem or would like additional information about your analyzer, Agilent Technologies' worldwide organization is ready to provide the support you need. Before calling Agilent Technologies, however (or returning an analyzer for service), perform the quick checks listed in “Check the Basics” on page 190. This check may eliminate the problem.

If a problem persists, you may choose to:

- Repair the analyzer yourself. See “Service Options” on page 191.
- Return the analyzer to Agilent Technologies for repair. See “Returning an Analyzer for Service” on page 193, for more information.

WARNING

No operator serviceable parts inside. Refer servicing to qualified personnel. To prevent electrical shock, do not remove covers.

NOTE

If the analyzer is still under warranty or is covered by a maintenance contract, it will be repaired under the terms of the warranty or plan (the warranty is located in the Specifications Guide).

If the analyzer is no longer under warranty or is not covered by an Agilent Technologies maintenance plan, Agilent Technologies will notify you of the cost of the repair after examining the analyzer.
Types of Spectrum Analyzer Messages

The analyzer can generate various messages that appear on the display during operation.

For a complete list of spectrum analyzer messages, see the Instrument Messages and Functional Tests manual. The following table describes the three types of spectrum analyzer messages.

<table>
<thead>
<tr>
<th>Type of Message</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informational messages</td>
<td>Bottom of the display in the status line.</td>
<td>Messages will remain until the message is cleared by pressing Esc or it is overwritten by another message.</td>
</tr>
<tr>
<td>Status messages</td>
<td>Bottom of the display in the status line and/or in the SCPI Status Register system.</td>
<td>Messages in the display status line will remain until the message is cleared by pressing Esc or it is overwritten by another message.</td>
</tr>
<tr>
<td>User Error messages</td>
<td>Bottom of the display in the status line and in the SCPI Error Queue.</td>
<td>Messages in the display status line will remain until you clear the error or another message is displayed in the status line. Pressing the Esc key will clear error messages from the display, but the messages will remain in the error queue.</td>
</tr>
</tbody>
</table>
Before Calling Agilent Technologies

Check the Basics

- Is there power at the receptacle?
- Is the analyzer turned on? Check to see if the green LED above the power switch is on. Also, listen for internal fan noise to determine if the analyzer cooling fan is running.
- If other equipment, cables, and connectors are being used with your spectrum analyzer, make sure they are connected properly and operating correctly.
- Review the measurement procedures being performed when the problem first appeared. Are all of the settings correct?
- If the analyzer is not functioning as expected, return the analyzer to a known state by pressing Mode Preset.
- Is the measurement being performed, and the results that are expected, within the specifications and capabilities of the analyzer? Refer to the Specifications guide for your analyzer.

NOTE

The analyzer must be powered on with the LAN already connected in order to recognize the LAN port.

- Is the analyzer displaying an error message? If so, refer to the Instrument Messages and Functional Tests guide.
- If the necessary equipment is available, perform the functional tests in the Instrument Messages and Functional Tests guide for your analyzer.

TIP

You can get automatic electronic notification of new firmware releases and other product updates/information by subscribing to the Agilent Technologies Test & Measurement E-Mail Notification Service for the Agilent CSA Series analyzers at: http://www.agilent.com/find/emailupdates
Read the Warranty

The warranty for your analyzer is in the front of your Specifications Guide. Please read it and become familiar with its terms.

If your analyzer is covered by a separate maintenance agreement, please be familiar with its terms.

Service Options

Agilent Technologies offers several optional maintenance plans to service your analyzer after the warranty has expired. Call your Agilent Technologies office for full details.

If you want to service the analyzer yourself after the warranty expires, you can purchase the service documentation that provides all necessary test and maintenance information.

You can order the service documentation, Option 0BW (assembly level troubleshooting) through your Agilent Technologies office.

You can order calibration software N7813A. This provides performance verification and calibration software. In addition, you will need to purchase a license for each Agilent CSA with which you will use the software.

Calling Agilent Technologies

Agilent Technologies has offices around the world to provide you with complete support for your analyzer.

For help with product selection and configuration, technical and application assistance, consulting and integration services, rental and leasing options, refurbished equipment, product purchases, education and training, and obtaining servicing information (including order replacement parts repair, or calibration), contact the nearest Agilent Technologies office by going to http://www.agilent.com/find/assist or refer to the numbers listed in Table 13-2 on page 192.

In any correspondence or telephone conversations, refer to your analyzer by its product number, full serial number, and firmware revision. To obtain the serial number, firmware revision, Host identification information, and IP address press Mode and view the information displayed on the screen. (A serial number label is also attached to the rear panel of the analyzer.)
Table 13-2

Contacting Agilent Technologies

<table>
<thead>
<tr>
<th>Region</th>
<th>Americas</th>
<th>Latin America</th>
<th>New Zealand</th>
<th>Asia Pacific</th>
<th>Europe</th>
<th>Australia</th>
<th>Africa, Middle East</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(tel) 1 800 829 4444</td>
<td>(tel) (305) 269 7500</td>
<td>(tel) 64 4 939 0636</td>
<td>(tel) (852) 3197 7777</td>
<td>(tel) 31 (0) 20 547 2111</td>
<td>(tel) 1 800 629 485</td>
<td>(tel) 32 (0) 2 404 9340</td>
</tr>
<tr>
<td></td>
<td>(fax) 1 800 829 4433</td>
<td>(fax) (305) 269 7599</td>
<td>(fax) 64 4 972 5364</td>
<td>(fax) (852) 2506 9284</td>
<td>(fax) 31 (0) 20 547 2190</td>
<td>(fax) 1 800 142 134</td>
<td>(fax) 32 (0) 2 404 9395</td>
</tr>
</tbody>
</table>

Online assistance: http://www.agilent.com/find/assist
Returning an Analyzer for Service

NOTE
Please notify Agilent Technologies before returning your system for service. Any special arrangements for the system can be discussed at this time. This will help Agilent Technologies repair and return your system as quickly as possible.

NOTE
For specific analyzer packing instructions, refer to “Preparing the Analyzer for Shipping” on page 195.

Adjustment, Maintenance, or Repair of the Analyzer

Any adjustment, maintenance, or repair of the N1996A Series Analyzer must be performed by qualified personnel. Contact your customer engineer through your local Agilent Technologies Service Center. You may contact Agilent through the Internet or by telephone. For contact information refer to “Calling Agilent Technologies” on page 191.

Service Tag

When you are returning an analyzer to Agilent Technologies for service, fill out and attach one of the blue service tags provided at the end of this chapter. Please be as specific as possible about the nature of the problem. If you have recorded any error messages that appeared on the display, have completed a functional test, or have any other specific data on the performance of your analyzer, please include a copy of this information.

Write a complete description of the failure and attach it to the system. Include any specific performance details related to the problem. The following information should be returned with the system:

- Type of service required
- Date system was returned for repair
- Description of the problem:
 - Whether problem is constant or intermittent
 - Whether system is temperature-sensitive
 - Whether system is vibration sensitive
 - System settings required to reproduce the problem
 - Error Code
 - Performance data
- Company Name and return address
- Name and phone number of technical contact person
- Model number of returned system
- Full serial number of returned system
In Case of Difficulty

Returning an Analyzer for Service

- List of any accessories returned with the system

Packaging

CAUTION

Cover electrical connectors to protect sensitive components from electrostatic damage.

Spectrum analyzer damage can result from using packaging materials other than the original materials.

Never use styrene pellets in any shape as packaging materials. They do not adequately cushion the equipment or prevent it from shifting in the carton. They cause equipment damage by generating static electricity and by lodging in the analyzer louvers, blocking airflow.

Original Packaging

When an analyzer is returned to Agilent Technologies for servicing, it must be adequately packaged (see “Preparing the Analyzer for Shipping” on page 195) and have a complete description of the failure symptoms attached.

Before shipping, pack the unit in the original factory packaging materials if they are available. If the original materials were not retained, see “Other Packaging” (below).

Other Packaging

You can repackage the analyzer with commercially available materials. If using alternative packing material, observe the following material requirements and follow the shipping procedure given in “Preparing the Analyzer for Shipping” on page 195.

- Use a strong shipping container. The carton must be both large enough and strong enough to accommodate the analyzer. A double-walled, corrugated cardboard carton with 159 kg (350 lb) bursting strength is adequate. Allow at least 3 to 4 inches on all sides of the analyzer for packing material.

- Surround the equipment with three to four inches of packing material and prevent the equipment from moving in the carton. If packing foam is not available, the best alternative is S.D.-240 Air Cap™ from Sealed Air Corporation (Hayward, California, 94545). Air Cap looks like a plastic sheet filled with 1-1/4 inch air bubbles. Use the pink-colored Air Cap to reduce static electricity. Wrapping the equipment several times in this material should both protect the equipment and prevent it from moving in the carton.
Preparing the Analyzer for Shipping

1. Attach a completed service tag to the analyzer. Refer to “Service Tag” on page 193.

2. Pack the system in the original shipping containers. Original materials are available through Agilent Technologies office.

3. Wrap the system in anti-static plastic to reduce the possibility of damage caused by electrostatic discharge.

4. Seal the carton with strong nylon adhesive tape.

5. Mark the shipping container “FRAGILE, HANDLE WITH CARE” to ensure careful handling

6. Retain copies of all shipping papers.
In Case of Difficulty

Returning an Analyzer for Service
Copyright Information

Where to Find Additional Copyright Information

Additional Copyright information is available on the Documentation CD-ROM and in the front matter of this manual.

© Copyright 1999 The Apache Software Foundation™. All rights reserved. The Apache Software License, Version 1.1

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: “This product includes software developed by the Apache Software Foundation (http://www.apache.org).” Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names “Xerces” and “Apache Software Foundation” must not be used to endorse or promote products derived from this software without prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called “Apache”, nor may “Apache” appear in their name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the Apache Software Foundation and was originally based on software copyright © 1999, International Business Machines, Inc., http://www.ibm.com. For more information on the Apache Software Foundation, please see http://www.apache.org.

© Copyright 1994-2004 Sun Microsystems™, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistribution of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

- Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of Sun Microsystems, Inc. or the names of contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided “AS IS,” without a warranty of any kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN MICROSYSTEMS, INC. (“SUN”) AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You acknowledge that this software is not designed, licensed or intended for use in the design, construction, operation or maintenance of any nuclear facility.

© Copyright 1989, 1991 Free Software Foundation, Inc.

Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The “Program”, below, refers to any such program or work, and a “work based on the Program” means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the
user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and “any later version”, you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© Copyright 1991, 1999 Free Software Foundation, Inc.

Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.]

GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called “this License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these terms. A “work based on the Library” means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library.

 You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

 a) The modified work must itself be a software library.

 b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change.

 c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License.

 d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.)

 These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on
the Library, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of a
storage or distribution medium does not bring the other work under the
scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do this,
you must alter all the notices that refer to this License, so that they
refer to the ordinary GNU General Public License, version 2, instead of
to this License. (If a newer version than version 2 of the ordinary GNU
General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy,
so the ordinary GNU General Public License applies to all subsequent
copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the
Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of
it, under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you accompany it with the
complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source
code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the
source along with the object code.

5. A program that contains no derivative of any portion of the Library,
but is designed to work with the Library by being compiled or linked
with it, is called a “work that uses the Library”. Such a work, in
isolation, is not a derivative work of the Library, and therefore falls
outside the scope of this License.

However, linking a “work that uses the Library” with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a “work that uses the
library”. The executable is therefore covered by this License. Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessories, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that uses the Library” with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer’s own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable “work that uses the Library”, as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user’s computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one,
Copyright Information

as long as the modified version is interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and “any later version”, you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
© Copyright 1998-2004, CEE-J™, Skelmir, LLC. All rights reserved.
Index

Numerics
10 MHz REF OUTPUT 61
50 ohm load 47
50 ohm/75 ohm minimum loss pad 48
75 ohm matching transformer 48

A
AC probe 48
accessories 47
50 ohm load 47
50 ohm/75 ohm minimum loss pad 48
75 ohm matching transformer 48
AC probe 48
broadband preamplifiers 48
power splitters 49
RF limiters 49
transient limiters 49
active function 63
address, IP 32
adjacent channel power 111
adjacent channel power measurement 111
adjustment, maintenance, or repair of test set 193
Agilent
sales offices 191
Agilent Technologies, calling 191
AM demodulation
time-domain demodulation, manually calculating 133
AM signal demodulation 102
amplifiers 48
analyzer distortion products 96
annotations, display 55, 58
arrow keys, using 71
attenuation input, reducing 89
setting manually 90
averaging description 93
types 93

B
batteries
built-in battery gauge 171
caring for 175
carger part numbers 178
carging 172
disposal 177
front panel icons 170
installing 169
LEDs 170
maximizing battery life 176
part numbers 178
precautions 175
reconditioning/recalibrating 174
specifications 178
statistics 163
status 170
System Statistics - Battery Screen 170
battery clock 30
memory 30
bench top conversion kit 49
broadband preamplifiers 48
connectors

care 183
cleaning 185
cleaning RF 183
inspecting for wear 184
inspecting RF 183
ordering cleaning supplies 185
torque specifications 184
connectors, front panel 52
copyrights 2, 197

D
data
saving 154
data, entering from front panel 71
DC probes use of 48
delta marker 78
demodulating
AM 102
AM overview 102
DHCP 158
display
testing 165
display annotations 55, 58
distance to fault measurement 125
distortion measurements
identifying TOI distortion 99
distortion products 96
documentation
additional set 41, 44
CD-ROM 12
CD-ROM only 42, 44, 47
localized manuals 41, 44
service 41, 45
standard set 12
electrostatic discharge (ESD) protecting against 36
Enter key, using 71
equipment 66
functional tests 66
ESD safety accessories 49
examples
ACP 111
AM demodulation
manual demodulation 102
averaging, trace 93
distortion
TOI 99
input attenuation, reducing 89
power measurements
OBW 105
resolution bandwidth, reducing 91
Index

signals	low-level, overview 89
	off-screen, comparing 80
	on-screen, comparing 78
	resolving, equal amplitude 82
	resolving, small signals hidden by large signals 85
	signals, viewing 74
	trace averaging 93
	EXTERNAL REF INPUT 61
	external reference 33
IP administration without DHCP	158
K	key overview 63
	keyboard testing 165
	keypad, using 71
	keys 52
	knob, using 71
L	LAN, setting IP address 32
	licenses 2
	lifting and handling the test set 18
	limiters RF and transient 49
	load, 50 ohm 47
	low-level signals
	harmonics, measuring 80
	input attenuation, reducing 89
	resolution bandwidth, reducing 91
	trace averaging 93
M	managing media types 157
	manuals, ordering 41, 44
	manuals, standard set 12
	marker frequency and amplitude, reading 75
	moving to peak 75
	to reference level 75
	with knob or arrow key 75
	marker annotation location 75
	markers delta 78
	measurements ACP or adjacent channel power 111
	distortion TOI 99
	TV fast time-domain sweeps 132
	measuring distance to fault 125
	measuring insertion loss one port 120
	two port 117
	measuring return loss 123
	memory battery 30
	menu keys 63
	menu keys, auto and man mode 72
	menu keys, basic types 71
	missing options 33
N	navigating tables 64
	network connectivity 158
	normalization reference position 134
	Normalize On Off key 134
	numeric keypad, using 71
O	occupied bandwidth measurement 105
	occupied BW measurement 106
	option manager 164
	options 47
	installing 164
	option name listing 44
	option number listing 41
	viewing installable 164
	viewing installed 164
	options not in instrument memory 33
	ordering options 40
	overview, keys and key menus 63
	overviews low-level signal 89
	resolving signals 130
P	packaging 194
	PCMCIA cards 157
	personality options not in instrument 33
	power amplifiers 48
	power measurements OBW 105
	occupied bandwidth 105
	power splitters 49
	preamplifiers 48
	preset factory 73
	types 73
	user, creating 73
	Print key 53
	printer setup 35
	printing screens 153
	probes AC and DC 48
	product markings 15
	programming example using C language 144
	using C language 140
Index

R
RBW selections 92
rear panel features 61
reconditioning/recalibrating batteries 174
reference level, setting 75
release versions 163
resolution bandwidth
 adjusting 91
 resolving signals 130
resolving signals
 small signals hidden by large signals 131
resolving two signals
 equal amplitude 82, 130
resolving, equal amplitude 130
return loss measurement 123
returning the test set for service 187, 193
RF cable and connector care 183
RF connectors 183
RF limiters 49
RF OUT 50 ohm 54
RPG, using 71

S
safety considerations 14
safety symbols 15
saving data 154
saving displayed screen 53
screen annotation 55, 58
service
 returning the test set 187, 193
 shipping the test set 195
service options 191
shipping
 packaging 194
 packaging original 194
 packaging other 194
 shipping the test set 195
signals
 low-level, overview 89
 off-screen, comparing 80
 on-screen, comparing 78
 resolving, overview 130
 separating, overview 130
 signals, viewing 74
spectrum analyzer
 occupied BW measurement 106
 uses 105
splitters 49
state
 deleting 162
 power-up 160
 recalling 160
 returning power-up to factory defaults 161
 saving 160
static safety accessories 49
statistics
 system 163
 viewing 163
stimulus response, concepts 134
sweep time and sensitivity trade off 92
system
 memory 163
 release versions 163
 statistics 163
 system II feet 49
 System key 53
 system operations
 configuring for network connectivity 158
 IP administration using DHCP 158
 IP administration without DHCP 158
 managing media types 157
 printing screens 153
 saving data 154
 selecting a timing reference 152
 setting system references 152
 using the option manager 164
 viewing battery statistics 163
 viewing system memory 163
 viewing system release versions 163
 viewing system statistics 163

T
tab key 64
table
 navigation 64
test equipment 66
test set functionality 11
tests. See functional tests
 third order intermodulation distortion example 99
torque 184
tracking generator
 normalization 135
 source power control 121
 stimulus response 134
transient limiter 49
turning on the analyzer for the first time 32

U
unit menu keys, using 71
URL, sales and service 191
USB type A interface connector 61
USB type B interface connector 61
user preset 53
creating 73
description 73
disabling 73
using connectors 183
using the occupied BW measurement 105

V
viewing battery statistics 163
VISA library 142, 144
VTL, compiling and linking C language 142
warm-up time 32
warranty 191
W-CDMA ACP measurement 111
Working with Batteries 167