Serial Cell Generator and Analyzer System
HP E4859A

Product Overview

Characterize TDMA
and other burst-mode
transmitters and
receivers during research
and development

The HP E4859A serial cell generator and analyzer system is used in
research and development to characterize the transmission performance
of time division multiple access TDMA and other burst-mode transmitters and receivers. In order to optimize the performance and cost of transmission systems you can measure the
error-performance of burst-mode
cells with proprietary formats under different line bit rate, cell
timing or cell length conditions.

In local access networks a cell-based time division multiplex
technology is used to improve the upstream transmission bandwidth for interactive broadband services. These local access networks are passive optical networks (PON) and fiber to the curb (FTTC). Burst-mode transmission is also used in digital CATV, optical buses, LAN’s, and military communication systems.

Product characteristics
and ordering information

- error-performance analysis of burst-mode data
- up to 16 serial cell generators
- cells with mixed PRBS/user-defined pattern
- variable cell length and cell timing
- bit rate 170 kbit/s to 250 Mbit/s (optional 660 Mbit/s)
- auto-adjust of cell transfer delays

HP E4859A serial cell generator and analyzer entry system

The entry system is made up of a single burst-mode serial cell
generator, companion cell error analyzer, central clock source and sequencer. For configurations requiring multiple generators or analyzers, additional modules can be plugged into the unused slots of the entry system.

Figure 1: the HP E4859A Serial Cell Generator and Analyzer System
Meeting test needs in research and development of TDMA and other burst-mode transmitters and receivers

Today the use of digital transmission techniques during the research and design of communication networks is very common. Cell based transmission, point-to-multipoint network topologies, and synchronous time division multiplexing are technologies which are being used in local access networks for future interactive broadband services. As a result the need for burst-mode transmitters and receivers is increasing. Typically they are used in:

- local access networks using TDMA technology, such as passive optical networks (PON), hybrid fibre coax (HFC) and fiber to the curb (FTTC)
- optical buses (airplanes, ships)
- MIL bus 3838
- digital satellite modem
- digital CATV transmission
- optical LANs
- military communication systems

The key to optimize the performance and cost of transmission links, while meeting tight project schedules, is to use flexible and reliable test equipment, which allows the efficient test of burst-mode transmitters and receivers.

The serial cell generator and analyzer is designed to characterize burst-mode transmitters and receivers. It provides:

- the emulation of all types of burst-mode data
- error performance analysis
- options for future upgrade
- convenient operation

Burst-mode transmission in a point-to-multipoint network

You can use the serial cell generator and analyzer to emulate and analyze cells in a passive star, tree, bus or ring network topology, which employs a cell-based time division multiplexing.

Figure 2 shows an example for a point-to-multipoint network.

Bi-directional transmission

In addition, the serial cell generator and analyzer can be set up so that you are able to reproduce bi-directional transmission for upstream and downstream signals in a point-to-multipoint network.

Figure 2: test set-up in a point-to-multipoint network (passive star with 2 branches) using TDMA for upstream transmission

Burst-mode transmission in a point-to-point link

The serial cell generator and analyzer can also be used to emulate and analyze burst-mode cells in a point-to-point link as shown in Figure 3.

Figure 3: burst-mode transmission in a point-to-point link
Emulate burst-mode data in a network

Multiple serial cell generators
Up to 16 serial cell generators can be set up to reproduce burst-mode data in a network. Each generator has independent delay and data resources. It can generate one cell, which is repeated periodically, once per frame, see Figure 4.

Variable timing
The line bit rate and frame length can be varied over a wide range. This lets you find the margins of the physical layer design even for non-standardized transmission bit rates. HP offers bit rates ranging from 170 kbit/s to 250 Mbit/s, with option 660 the range is expanded to 660 Mbit/s. It is possible to vary the guardtime between cells which come from different generators. By doing so you can find the optimum guardtime and assure a save bit error rate without wasting transmission efficiency. The guardtime can be varied in fine steps, to check if the clock recovery circuit at the receiver side works properly even for odd guardtimes.

Flexible cell editing
The serial cell generator provides not just pseudo-random bit sequences (PRBS), but also complex cells, which consist of mixed PRBS and user-defined pattern segments. See Figure 5. Therefore, proprietary cell formats with a preamble, delimiter, payload and other segments can be easily reproduced.

Additional control signals
No other digital generators are required to stimulate the devices, because the serial cell generator can also be used to provide control signals such as reset pulses, envelope signals, continuous and bursted clocks. Such signals are sometimes needed to turn the transmitter or receiver on/off, or to simply trigger other test equipment. The generator’s main output or the optional auxiliary output (option 001) can be used to provide the control signals.

Analyze the error performance

Error performance analysis of individual cells
The serial cell analyzer measures the error performance of cells coming from one of the generators. You can select individual cell segments for the measurement, while others are ignored. For example, it is possible to measure only the payload while overhead bits can be ignored. This proves helpful when optimizing the dependency between the overhead bits and bit error rate of the payload.

Synchronized generator and analyzer
In a point to multipoint network the cell transfer delays can be different for each path. The serial cell generator and analyzer system is convenient to operate, as it automatically compensates for the different cell transfer delays between transmitters and receiver. The auto-adjust procedure automatically measures the cell transfer delays between generator outputs and analyzer inputs.
Key features

Bit rate: 170 kbit/s to 250 Mbit/s, optional 660 Mbit/s. NRZ format
Cell content: up to 28 segments of PRBS and/or user-defined pattern
User-defined pattern: 64 Kbit to 1024 Kbit memory per channel, dependent on bit rate
PRBS: 2\(^{-1}\) to 2\(^{31}-1\)
Control signals: envelope, bursted clock, continuous clock, reset pulse
Output amplitude: 0.3 V to 2.5 V, TTL, ECL, CMOS, PECL
Guardtime between cells: 0 to 24 ms, resolution 10 ps
Frame length: max. 24 ms
Auto-adjust: measures and compensates for cell transfer delays
Measurements: bit error count, bit error ratio, individual cell segments can be selected
Decision threshold voltage: -2.10 V to +5.10 V
Module size: VXI, C-size, 1 slot

System description

Central clock and sequencer
All generators and analyzers which are installed are controlled by the central clock and sequencer. Consequently, both the generators and analyzers use the same bit rate. The clock is generated either by an internal PLL, or can be taken from an external source. The central sequencer controls all generators and analyzers in order to repeat all signals periodically within one frame.

Generators
Each generator channel has its own pattern memory and PRBS generator, in order to set up one cell. The position of the cell within a frame can be varied for each generator independently. The generator can also be used to provide a control signal instead of a cell.

Analyzer
Each analyzer compares the received cells with the cells sent out by one of the generators. It provides the bit error rate and bit error count as a measurement result.

Synchronization
The cell transfer delay between generator output and analyzer input is measured during auto-adjust, but it can be also entered manually.

The sampling rate of the analyzer is the same as the line bit rate. The sampling point remains constant and is set to the middle of the eye opening to be found during auto-adjust. The sampling point’s position can be varied manually within a range of ±1 bit period.
Supports TDMA applications

The user interface supports point-to-multipoint networks with up to 16 branches and allows to emulate also time compression multiplex (TCM) or bi-directional transmission.

To assure convenient operation for TDMA applications, guardtimes between cells can be entered directly. Cell transfer delays are compensated for, and the analyzer’s compare memory is loaded automatically with the data of the cells to be analyzed.

Easy to operate with a graphical user interface

All parameters at a glance

All important parameters are shown at glance when opening the windows of the graphical user interface. The user software includes the graphical user interface and is already pre-installed in the entry system.

Connection window

A point-to-multipoint network with its line terminations is shown. To each line termination generator, analyzer, control signal resource are assigned here. Name, levels and cells can be set after clicking on the appropriate generator or analyzer. By clicking on the buttons or the left side, auto-adjust, clock/trigger, timing, data editor, and run control windows are opened.

Cell timing sequence window

In this window one frame with all the bursted cells generated and received are shown. Bit rate and frame length are entered here. The guardtime can be entered by clicking on the arrows between the cells, the timing and signal type of the associated control signals can be edited by clicking directly on the cells.

Figure 8: connection window of the graphical user interface

Figure 9: timing window of the graphical user interface
Upgradeable to tomorrow’s needs with a modular system

Serial cell generator and analyzer entry system HP E4859A

The entry system comes pre-installed in a mainframe with controller and software. It is composed of one serial cell generator, a companion serial cell analyzer and a central clock source. The monitor, keyboard and mouse are not included in the shipment. For configurations which require multiple generators or analyzers additional modules should be specified when ordering. However, they can also be added at a later date.

The HP E4859A entry system can be used for configurations of up to 19 generators/ 1 analyzer, or 10 generators/ 10 analyzers, or any combination in between.

Ordering information for the serial cell generator and analyzer

Entry system HP E4859A

Modules:
- Dual serial cell generator module HP E4854A
- Serial cell generator/ analyzer module HP E4853A

Options:
- Auxiliary output #001
- Bit rate 660 Mbit/s #660
- Commercial calibration #UK6
- Japanese Getting Started manual #ABJ
- Customer upgrade #010 (of modules)
- 1 year on-site warranty #W01 conversion
- Software update support +UAH

Monitor, keyboard, mouse have to be ordered separately.

Other recommended test equipment

- Lightwave communications analyzer HP 83475A
- Digital communication analyzer HP 83480A
- Optical attenuator HP 8156A

For more information

- Technical data 5963-9924E
- Configuration guide 5964-0004E

Note:
This document relates to user software rev. 1.1. As the user software is improved over time, additional features will be added. Therefore, the look of the window may alter slightly.
Complementary literature:

Technical data
Pub No. 5963-9924E
Config. Guide
5964-0004E

For more information on Hewlett-Packard Test & Measurement products, applications or services please call your local Hewlett-Packard sales offices. A current listing is available via Web through AccessHP at http://www.hp.com.

If you do not have access to the internet please contact one of the HP centers listed below and they will direct you to your nearest HP representative.

United States:
Hewlett-Packard Company
Test and Measurement Org.
5301 Stevens Creek Blvd.
Bldg. 51L-SC
Santa Clara, CA 95052-8059
1 800 452 4844

Canada:
Hewlett-Packard Canada Ltd.
5150 Spectrum Way
Mississauga, Ontario
L4W 5G1
(905) 206 4725

Europe:
Hewlett-Packard
European Marketing Centre
P.O. Box 999
1180 AZ Amstelveen
The Netherlands

Japan:
Hewlett-Packard Japan Ltd.
Measurement Assistance Center
9-1, Takakura-cho, Hachioji-shi,
Tokyo 192, Japan
(81) 426 48 3860

Latin America:
Hewlett-Packard
Latin American Region
Headquarters
5200 Blue Lagoon Drive
9th Floor
Miami, Florida 33126
U.S.A.
(305) 267 4245/4220

Australia/New Zealand:
Hewlett-Packard Australia Ltd.
31-41 Joseph Street
Blackburn, Victoria 3130
Australia
131 347 ext. 2902

Asia Pacific:
Hewlett-Packard Asia Pacific Ltd
17-21/F Shell Tower,
Times Square,
1 Matheson Street, Causeway Bay,
Hong Kong
(852) 2599 7070

Data subject to change

Copyright © 1995
Hewlett-Packard Company
Printed in USA 02/96 (CT)
5963-9985E