
How to Give Inputs to FPGAs Remotely

How FPGAs are programmed physically:
FPGAs use incredible amount of programmable logic gates along with clever engineering design to give

quick and stable digital processes. The input/output pins (which can be LEDs, 7-segment displays, PMOD

headers, switches, buttons, clock signals, etc) can be used to exchange signals with the FGPA internally

or externally.

The routing FPGA pin is translated to a name to match the code input/output/other which we will call a

port. These ports are expressed in code and are especially useful for anyone who wants to give inputs and

receive outputs from your electronics.

The example below is code, demonstrating how a simple On/Off switch works with a single LED

 module switchExample(SW, LED);

 input [2:0] SW;

 output [2:0] LED;

 assign LED[2:0] = SW[2:0];

endmodule

From the code above, 3 input switches and 3 output LED ports are used from the .XDC file. Each input is

assigned to an output, when one input is ON (Changed from 0 to 1) the respective output is ON (Changed

from 0 to 1). This means that turning on the switch turns on the LED.

Figure 1: See how the 3 input switches are routed to the 3 output LEDs when the FPGA is programmed

The reason for naming the switches and LEDs to “SW” and “LED” was because it was the default name

in the provided constraint files (they may have their name changed though). Below are snippets of code

for the constraint .XDC file.

Figure 2: XDC Descriptive Routing Pins (Blue) and Ports (Red)

As seen to program the FPGA, circled in red the right ports had to be called, so the Verilog code would

require the proper names.

However, the FPGA itself does not understand by the port name, instead every time the port name is

called it is translated to the “PACKAGE_PIN” numbering instead circled in blue. Looking at the previous

FPGA board example, when looking in-between the switches and the LEDs on the actual board, there are

some naming conventions written there, the top row represents the LEDs, and the bottom row represents

the switches. Every time an input or output is referenced on the board it gets translated from the physical

pin to the port name and vice-versa.

How FPGAs will now be programmed remotely:
As the physical buttons can no longer be accessed to test your program, a remote implementation has

been added below for the user to use remotely. While the Verilog code will remain the same, the

constraints have been modified.

Figure 2: FPGA GUI Application (Left), PMOD Pin Switches and Buttons (Right)

Instead of sending an input signal from the physical switch, the signal is sent from the GUI to a

microcontroller then to the FPGA. Below is an image of a microcontroller connected to the FPGA

through two sets of several pins. Each set is for a single PMOD interface, where small I/O modules can be

connected to the FPGA for extra features, e.g. LCD displays, external sensors, or a Bluetooth interface.

However, in this case it would simply be used to take in a single signal and represent a single switch or

button input. As two PMOD interfaces are used 12 switches and 4 buttons can be used to work with the

FPGA board.

Figure 3: PMOD Pin Map Uses

With this implementation the Verilog code would have to be changed to represent the proper incoming
port names. However, a modified constraint file has been provided switching the PACKAGE_PIN
naming with the switches and the PMOD headers. This provides the students a seamless programming
experience where they do not have to worry about the extra conventions that would be needed
programming physically or remotely. Looking at the sample code below shows the swap from the
switch’s pins, to the PMOD header pins.

Previously:

##Switches

#set_property -dict { PACKAGE_PIN J15 IOSTANDARD LVCMOS33 } [get_ports { SW[0] }]; #IO_L24N_T3_RS0_15 Sch = SW[0]

#set_property -dict { PACKAGE_PIN L16 IOSTANDARD LVCMOS33 } [get_ports { SW[1] }]; #IO_L3N_T0_DQS_EMCCLK_14 Sch = SW[1]

#set_property -dict { PACKAGE_PIN M13 IOSTANDARD LVCMOS33 } [get_ports { SW[2] }]; #IO_L6N_T0_D08_VREF_14 Sch = SW[2]

#set_property -dict { PACKAGE_PIN R15 IOSTANDARD LVCMOS33 } [get_ports { SW[3] }]; #IO_L13N_T2_MRCC_14 Sch = SW[3]

...

##Pmod Header JC

...

#set_property -dict { PACKAGE_PIN H2 IOSTANDARD LVCMOS33 } [get_ports { JD[7] }]; #IO_L15P_T2_DQS_35 Sch = JD[7]

#set_property -dict { PACKAGE_PIN G4 IOSTANDARD LVCMOS33 } [get_ports { JD[8] }]; #IO_L20P_T3_35 Sch = JD[8]

#set_property -dict { PACKAGE_PIN G2 IOSTANDARD LVCMOS33 } [get_ports { JD[9] }]; #IO_L15N_T2_DQS_35 Sch = JD[9]

#set_property -dict { PACKAGE_PIN F3 IOSTANDARD LVCMOS33 } [get_ports { JD[10] }]; #IO_L13N_T2_MRCC_35 Sch = JD[10]

...

Currently:

##Pmod Header Switches JC

set_property -dict { PACKAGE_PIN P18 IOSTANDARD LVCMOS33 } [get_ports { SW[0] }]; #IO_L23N_T3_35 Sch = SW0

set_property -dict { PACKAGE_PIN M17 IOSTANDARD LVCMOS33 } [get_ports { SW[1] }]; #IO_L19N_T3_VREF_35 Sch = SW1

set_property -dict { PACKAGE_PIN P17 IOSTANDARD LVCMOS33 } [get_ports { SW[2] }]; #IO_L22N_T3_35 Sch = SW2

set_property -dict { PACKAGE_PIN M18 IOSTANDARD LVCMOS33 } [get_ports { SW[3] }]; #IO_L19P_T3_35 Sch = SW3

...

The Arduino is controlling the PMOD headers JC and JD

Just remember when you are programming remotely, you are not controlling the physical buttons or

switches, but rather using the PMOD interfaces that have taken the name of switches and buttons.

FPGA_GUI Mapping to Pins
The JC and JD PMOD headers are already routed in a specific way. If you would like to make a circuit to

include the switches and pins from the FPGA GUI, you should use the following descriptive text for your

XDC file:

##Pmod Header Switches JC

set_property -dict { PACKAGE_PIN P18 IOSTANDARD LVCMOS33 } [get_ports { SW[0] }]; #IO_L23N_T3_35 Sch = SW0

set_property -dict { PACKAGE_PIN M17 IOSTANDARD LVCMOS33 } [get_ports { SW[1] }]; #IO_L19N_T3_VREF_35 Sch = SW1

set_property -dict { PACKAGE_PIN P17 IOSTANDARD LVCMOS33 } [get_ports { SW[2] }]; #IO_L22N_T3_35 Sch = SW2

set_property -dict { PACKAGE_PIN M18 IOSTANDARD LVCMOS33 } [get_ports { SW[3] }]; #IO_L19P_T3_35 Sch = SW3

set_property -dict { PACKAGE_PIN T13 IOSTANDARD LVCMOS33 } [get_ports { SW[4] }]; #IO_L6P_T0_35 Sch = SW4

set_property -dict { PACKAGE_PIN T8 IOSTANDARD LVCMOS33 } [get_ports { SW[5] }]; #IO_L22P_T3_35 Sch = SW5

set_property -dict { PACKAGE_PIN U8 IOSTANDARD LVCMOS33 } [get_ports { SW[6] }]; #IO_L21P_T3_DQS_35 Sch = SW6

set_property -dict { PACKAGE_PIN R16 IOSTANDARD LVCMOS33 } [get_ports { SW[7] }]; #IO_L5P_T0_AD13P_35 Sch = SW7

##Pmod Header Switches and Buttons JD

set_property -dict { PACKAGE_PIN R13 IOSTANDARD LVCMOS33 } [get_ports { SW[8] }]; #IO_L21N_T3_DQS_35 Sch = SW8

set_property -dict { PACKAGE_PIN U18 IOSTANDARD LVCMOS33 } [get_ports { SW[9] }]; #IO_L17P_T2_35 Sch = SW9

set_property -dict { PACKAGE_PIN T18 IOSTANDARD LVCMOS33 } [get_ports { SW[10] }]; #IO_L17N_T2_35 Sch = SW10

set_property -dict { PACKAGE_PIN R17 IOSTANDARD LVCMOS33 } [get_ports { SW[11] }]; #IO_L20N_T3_35 Sch = SW11

set_property -dict { PACKAGE_PIN J15 IOSTANDARD LVCMOS33 } [get_ports { BTNU }]; #IO_L15P_T2_DQS_35 Sch = BTNU

set_property -dict { PACKAGE_PIN L16 IOSTANDARD LVCMOS33 } [get_ports { BTNL }]; #IO_L20P_T3_35 Sch = BTNL

set_property -dict { PACKAGE_PIN M13 IOSTANDARD LVCMOS33 } [get_ports { BTNR }]; #IO_L15N_T2_DQS_35 Sch = BTNR

set_property -dict { PACKAGE_PIN R15 IOSTANDARD LVCMOS33 } [get_ports { BTND }]; #IO_L13N_T2_MRCC_35 Sch = BTND

The port name is not as important as the pin address in this case, so feel free to change the names of

SW[-] and BTN-

Adding the Constraint File
If you want to find the .xdc file for your project, find the Constraint file through your class’ CULearn, or

through Nagui’s Website in your Course folder, you should be able to find the Constraint folder, and the

.xdc file.

To add the Constraint File to your project, choose Project Manager ‣ Add Sources ‣ Add or create

constraints ‣ Add Files ‣ Select the .xdc file ‣ Finish. You should be able to find and edit your constraint

file in the Project Manager’s Sources. You can change which pins/ports are being used.

https://www.doe.carleton.ca/~nagui/

References
[1] Digilent Documentation. “What is a Constraints file”. Digilent.

https://reference.digilentinc.com/learn/software/tutorials/vivado-xdc-file (accessed Oct 2020)

[2] Nexys A7 Digilent Documentation. “Nexys A7 Reference Manual”. Digilent.

https://reference.digilentinc.com/reference/programmable- logic/nexys-a7/reference-

manual#pmod_ports (accessed Oct 2020)

