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LABRATORY REPORT 

Lab reports do not require an introduction/theory section but they should clearly demonstrate your 

understanding and attention to detail. Explanations should be written in full sentences and plots should 

be clear with units and captions. Reports should also end with a brief discussion to mention anything 

notable about the experiment. Most of the plots required for the report can be made in Maxwell and 

inserted into your report as screenshots.  

PRE-LABORATORY EXERCISE 

 Although this section is labeled as a pre-laboratory exercise it does not need to be completed prior to 

the experiment. You should complete the exercises and include your answers with your final report.  

Note: when you are solving for values such as electric field strength or voltage you MUST include 

units.Pre-1: Numerical solution to Poison’s and Laplace’s equation 

Please refer to the course lecture slides and extended notes related to Poison’s and Laplace’s equations 

for additional details on the technique.  A summary is provided here.  The starting equation is: 

∇2𝑉 = −
𝜌

𝜀⁄       (P-1) 

which is known as Poison’s equation.  It is a point function which implies that the “second derivative” 

(Gradient squared here) of the potential function at a particular point in space must equal the negative 

ratio of the charge density at the point divided by the dielectric constant at that same point.  Should the 

charge density be zero then the equation simplifies to Laplace’s form: 

∇2𝑉 = 0      (P-2) 

A considerable amount of effort goes into solving this equation.  For instance, once you solve for the 

potential you can determine the magnitude and direction of the electric field through: 

𝐸
→

= − 𝛻
→

𝑉      (P-3) 

Once you know the electric potential and electric field you can pretty well calculate anything else 

related to electrostatic.  The pre-lab will examine solving Laplace’s equation using two different 

techniques.  The first is a direct approach solving the second order differential equation.  The second 

involves a numerical solution using a finite difference approach.  Both techniques are discussed in detail 

in class. 

Pre-1: Solving the differential equation 

Laplace’s equation is a second order differential equation.  In Cartesian coordinates it is: 

𝜕2𝑉

𝜕𝑥2 +
𝜕2𝑉

𝜕𝑦2 +
𝜕2𝑉

𝜕𝑧2 = 0      (P-4) 



The same function 𝑉is subjected to derivatives with respect to (𝑥, 𝑦, 𝑧) and when the second derivatives 

are formed and then summed, the resultant must be zero.  Only then can the original function 𝑉be a 

valid solution to the equation.  Under normal circumstances finding the function 𝑉that satisfies (P-4) can 

be difficult and when this occurs, other approaches are used to solve the equation (such as numerical 

indicated below).  For this pre-lab we will consider a simple solution to (P-4). 

Consider the parallel plate capacitor shown in figure Pre-1.  The lower plate is at 0 volts, and resides in 

the (x, y) plane.  The upper plate is at 100 volts, also resides in the (x, y) plane and intersects the z axis a 

distance d from the origin.  We will treat d (capacitor plate separation) as small, such that we may 

approximate the capacitor plates as infinite in extent in the (x, y) planes.  As a result the potential 

function is independent of the x and y coordinates.  This statement has to do with the translational 

symmetry that is present with regards to the x and y coordinates.  As you move about in the (x, y) plane 

KEEPING z CONSTANT the environment always looks the same.  Thus in equation (P-4) the derivatives 

with respect to x and y are zero as (for this geometry) the potential is independent of x and y.  The 

potential does vary in moving along the z direction.   The potential is 0 volts at z = 0 and is 100 volts at z 

= d.  

Question Pre-1.1:  Solve the differential equation (P-4) for the parallel plate capacitor of figure Pre-1.  It 

is a second order differential equation so the general solution will have two constants.  Determine these 

constants by making use of the know voltage values at z = 0 and z = d.  Take d = 1 mm. Plot several 

equipotential lines and from these draw in the electric field lines.  What is the numerical value 

(magnitude and direction) of the electric field? 1 mark 

 

Figure Pre-1: Parallel plate capacitor geometry 

Question Pre-1.2:  Two concentric metal shells are shown in figure Pre-2:  The inner shell has a radius of 

1 cm and is at 100 volts, the outer shell has a radius of 2 cm and is at 200 volts.  The region between the 

metal surfaces is charge free and air.  Express Laplace’s equation in spherical coordinates.  Indicate 

which derivatives of the potential function will be zero and why they are zero.  Solve the remaining 

differential equation and plot several equipotential lines for the region between the metal shells.  Draw 

the electric field lines. 1 mark 

Question Pre-1.3:  What approach would you use to solve the second order differential equation if the 

geometry of the capacitor plates do not conform to the unit vector directions of a coordinate system?   

1 mark 



 

Figure Pre-2: Concentric metal shells geometry 

Pre-2: Finite difference solution to Laplace’s equation in 1-D 

At this time it is a good idea to review the course lecture slides related to the numerical solution to 

Poison’s and Laplace’s equation.  A review of the numerical technique is presented here for a geometry 

which results in a 1-D variation in the potential function.  The parallel plate capacitor geometry shown in 

figure Pre-1 is such a geometry.  The potential varies only the z direction and is constant in the (x, y) 

plane. Now consider the parallel plate capacitor geometry redrawn in figure Pre-3.  The z axis between 

the capacitor plates has been segmented and each point the z axis is assigned an index (i). The spacing 

between grid points is uniform and equal to h.  The capacitor plate separation is d. 

  

Figure Pre-3: Parallel plate capacitor geometry for numerical technique 



Consider now any two adjacent grid points say points 4 and 5.  The difference in voltage between these 

two points is 𝛥𝑉5−4 = 𝑉5 − 𝑉4.  The separation along the z axis between these points is 𝛥𝑧 = ℎ.  By 

definition the first derivative of the potential with respect to the z axis is: 

𝜕𝑉

𝜕𝑧
=

𝑙𝑖𝑚

ℎ → 0
𝑉(𝑧+ℎ)−𝑉(𝑧)

ℎ

     (P-5) 

If at the moment we ignore the lim as h→0 we see that 𝑉(𝑧 + ℎ) − 𝑉(𝑧) is the difference in voltage 

between adjacent grid points separated by 𝛥𝑧 = ℎ.  Thus an approximation to the first derivative can be 

obtained by 
𝛥𝑉

𝛥𝑧
≈

𝜕𝑉

𝜕𝑧
.  So now we have a way to calculate the first derivative by examining voltage values 

of adjacent point.  But actually, Laplace’s equation is made up of second derivatives.  A second 

derivative is nothing more than the derivative of the derivative.  So let’s first obtain the derivative 

between each grid point pair as shown in figure Pre-4.  Note that the derivative points are offset from 

the potential points by h/2.  We can now obtain the derivative of the derivative using the green grid 

points.  
𝜕(

𝜕𝑉

𝜕𝑧
)

𝜕𝑧
=

𝜕2𝑉

𝜕𝑧2 =
𝜕𝑉(𝑧+ℎ)

𝜕𝑧
−

𝜕𝑉(𝑧)

𝜕𝑧

𝜕𝑧
.  The derivative of the derivative is also offset by h/2 in grid point 

location.  This brings the second derivative grid point location back on top of the original grid point 

location. We are almost there, but we will start all over again.  Let’s get the derivative between points 4 

and 5 and also between points 5 and 6: 

𝜕𝑉5−4

𝜕𝑧
=

𝑉5−𝑉4

ℎ
   and  

𝜕𝑉6−5

𝜕𝑧
=

𝑉6−𝑉5

ℎ
    (P-6) 

Let’s get the derivative of the derivative between points 4, 5 and 6: 

𝜕2𝑉

𝜕𝑧2 =
𝜕𝑉6−5

𝜕𝑧
−

𝜕𝑉5−4
𝜕𝑧

𝜕𝑧
=

𝑉6−𝑉5
ℎ

−
𝑉5−𝑉4

ℎ

ℎ
=

𝑉6+𝑉4−2𝑉5

ℎ2    (P-7) 

For the parallel plate capacitor problem there are no variations in the potential with respect to x and y 

and the region between the plates is charge free.  Thus  
𝜕2𝑉

𝜕𝑧2 = 0which when using (P-7) gives: 

𝑉6+𝑉4−2𝑉5

ℎ2 = 0 after rearranging  
𝑉6+𝑉4

2
= 𝑉5   (P-8) 

This expression indicates that the voltage at grid point 5 is the average value of the voltage one grid 

point up and grid point down.  This expression can be turned into a numerical technique through the 

following algorithm: 

• Divide the space into an equal number of grid points.  Make certain that grid points are assigned 

to surfaces that are at fixed voltages (like the plates of the capacitors, see figure Pre-3) 

• Assign an arbitrary voltage to each grid point that is not fixed.  Try to select voltage values in the 

range of the fixed values. 

• Update the voltage on each grid point by forming the average of its nearest neighbours. 

• Using the updated values for the voltages, update them again by forming the average of nearest 

neighbours. 



• Repeat the updating process until the voltage values at each grid point no longer change.  

Usually you will specify the number of decimal points for the accuracy and once the required 

number of decimal points are resolved the updating process is stopped. 

• The final voltage values are the voltage values at the grid points. 

  

Pre-4: Potential, first derivative and second derivative 

Question Pre-2.1:  For the parallel plate capacitor given in figure Pre-3 use the numerical technique to 

obtain the voltages at the grid points for the first 5 iterations (start grid points at 50 V). Take d = 1 mm. 1 

mark 

Question Pre-2.2: Develop an XL spread sheet to solve the parallel plate capacitor numerically with 100 

iterations. (If you wish you may write a MATLAB program instead).  1 mark 

Question Pre-2.3: Instead of using 12 grid points use 102 grid points.  Modify your program to solve 

numerically Laplace’s equation for the parallel plate capacitor with 10,000 iterations. You should use a 

colour formatting for your grid points as there will likely be too much text to display 1 mark 

Question Pre-2-4: Any numerical technique utilized requires an estimate of its accuracy.  Examine the 

course lecture slides or textbooks on numerical techniques and obtain an estimate for the error involved 

in using this approach to solving Laplace’s equation. 1 mark 

  



Pre-3: Finite difference solution to Laplace’s equation in 2-D and 3-D 

The numerical approach presented above can be easily extended into 2-D and 3-D.  We need to develop 

the finite difference approximations to each of the second order derivatives in equation (P-4).  We have 

already worked out the derivative part for the z direction.  We imposed a grid along the z axis and 

formed the first and second derivative.  Now in 3-D we need to establish grid points along the other two 

axes.  We thus end up with a volume of grid points with each grid point identified by the indices (i, j, k).  

We then form the second derivatives for each additional direction.  Figure Pre-5 shows one of the grid 

points extracted (point i, j, k) and its six nearest neighbours. 

 

Pre-5: 3-D grid points about center (i, j, k) point 

The resultant combination of the three second order derivatives of equation (P-4) results in the 

following expression: 

𝜕2𝑉

𝜕𝑥2 +
𝜕2𝑉

𝜕𝑦2 +
𝜕2𝑉

𝜕𝑧2 ==
𝑉𝑖+1,𝑗,𝑘+𝑉𝑖−1,𝑗,𝑘−2𝑉𝑖,𝑗,𝑘

ℎ2 +
𝑉𝑖,𝑗+1,𝑘+𝑉𝑖,𝑗−1,𝑘−2𝑉𝑖,𝑗,𝑘

ℎ2 +
𝑉𝑖,𝑗,𝑘+1+𝑉𝑖,𝑗,𝑘−1−2𝑉𝑖,𝑗,𝑘

ℎ2  (P-9) 

When dealing with Laplace’s equation the above equation is equal to zero and thus can be simplified 

and rearranged to yield an expression for the voltage at point (i, j, k) as the average of its nearest 

neighbours (3-D Grid): 

𝑉𝑖+1,𝑗,𝑘+𝑉𝑖−1,𝑗,𝑘+𝑉𝑖,𝑗+1,𝑘+𝑉𝑖,𝑗−1,𝑘+𝑉𝑖,𝑗,𝑘+1+𝑉𝑖,𝑗,𝑘−1

6
= 𝑉𝑖,𝑗,𝑘   (P-10) 

In the situation where the geometry can be analysed in 2-D, say x and y, the averaging would involve 

only 4 nearest neighbours with the grid using indices i and j. 

𝑉𝑖+1,𝑗+𝑉𝑖−1,𝑗+𝑉𝑖,𝑗+1+𝑉𝑖,𝑗−1

4
= 𝑉𝑖,𝑗    (P-11) 

The same numerical algorithm presented above can be applied to the 2-D and 3-D grid.  The difficulty in 

using this approach in 2-D and 3-D comes from the bookkeeping required to keep all the grid point 

averaging correctly linked. 



Question Pre-3.1:  For the structure shown in figure Pre-6 use a 2-D numerical grid approach to obtain a 

mapping of the potential inside the electrode region.  To keep the problem manageable use a grid with a 

10 mm spacing.  Obtain the voltages on the grid points accurate to 1 decimal place and use either Excel 

or MATLAB to solve. 1 mark 

Note: if you are using Excel is might be useful to Enable iterative calculation under File -> Options -> 

Formulas. 

 

Pre-6: Potential well electrode structure 

Question Pre-3.2:  From the potential values determined above draw in the electric field vectors. These 

can be added to a screenshot of your values using paint or to a copy of Pre-6 with reference to your 

results 1 mark 

  



Lab 1: Numerical Solution of Laplace’s Equation 

ELEC 3105 

Updated ANSYS Lab 

1.  Before You Start 
• You will need to obtain an account on the VLSI network if you do not already have one from 

another course. 

• You can discuss the lab with peers but the lab reports are to contain only individual work. 

• Show units in all calculations, all graphs require a legend. 

• Plots can be made in Maxwell and added into reports as screenshots 

 

2. Objectives 

The objective of this lab is to illustrate the use of a powerful numerical technique known as the 

finite element method to solve Laplace’s equation for selected problems. The lab will run on the 

VLSI server Eli (access instructions in Lab 0). The software package we will use is ANSYS Electronics 

Desktop – Maxwell 2D/3D Solver from Ansys Corporation. This software will enable you to visualize 

the electric field vectors and the voltage equipotential in cross sections of structures consisting of 

conductors and insulators. 

 

3. Background 

The finite element method (FEM) is a numerical technique for finding approximate solutions to 

partial differential equations [1]. Consider the example of a 2-D solution and its corresponding mesh 

shown in Figure 1. The lines represent the direction and magnitude of flux density simulated using 

FEM in the solution image and the triangles (or sub regions) represent a single calculated solution in 

the mesh image. As an analogy, compare a jpeg file with large pixels, making the image blurry and a 

jpeg file with smaller pixels, allowing the image to become sharper. Therefore, the smaller the sub 

region, the more accurate the entire solution. A numerical solution is always an approximation of an 

analytical solution, which is based on mathematical theory.  



 

                                                              Figure 1: The 2-D solution (left) and mesh (right) [1] 

Consider Laplace’s equation describing the potential V in a 2-D region: 

𝜕2𝑉

𝜕𝑥2 +
𝜕2𝑉

𝜕𝑦2 = 0                                                                  (1) 

A solution can be found using FEM by approximating the size of dV. Smaller triangles are used where the 

potential V(x, y) is rapidly varying, and larger triangles are used where the potential is varying slowly. 

The potential is approximated within each triangle as a polynomial expansion in x and y. A numerical 

algorithm is used to solve for the coefficients of the polynomial in each triangle such that the nodes of 

adjacent triangles have the same potential. Conducting surfaces are constant potential surfaces - the 

user initially sets the value of the potential at the conductor.  

Electric energy is stored in the electric field. The energy stored is given by the expression (units Joules).  

𝑊𝐸 =
1

2
∫ �⃗⃗� • �⃗� 𝑑𝑉                                                              (2) 

where �⃗⃗� = 𝜀�⃗�  is the electric flux density (C/m2), �⃗� is the electric field intensity (V/m), and the dot 

product is used in the integrand. The energy stored in a capacitor C is given by (units J, Joules): 

𝑊𝐸 =
1

2
𝐶(𝛥𝑉)2                                                              (3) 

where ∆V is the potential difference between the conductors of the capacitor. The capacitance of a 

structure can be evaluated as (units F, Farads): 

𝐶 =
2𝑊𝐸

𝛥𝑉2                                                                            (4) 

ANSYS Maxwell 2D/3D can calculate the energy WE over the 2-D cross-section and then calculate the 

approximate value of the capacitance C per unit length (F/m) of the structure using a capacitance 

matrix. You will be analyzing five different structures: 

Problem 1 - Field at a sharp or raised point 



 Problem 2 - Field in a hollow 

 Problem 3 - Parallel wire transmission line 

  Problem 4 - Parallel wire transmission line with plastic coating 

 Problem 5-   Rectangular potential well         

You will be asked to plot the voltage and electric field vectors for these structures. The relation between 

electric field and voltage is found by using the relation below (units J/C or V). [2] (pg.60) 

𝛥𝑉𝐴𝐵 =
𝑊

𝑄𝑢𝑛𝑖𝑡
= −∫ 𝐸

𝐵

𝐴
• 𝑑𝑙 = −∫ |𝐸|

𝐵

𝐴
|𝑑𝑙| 𝑐𝑜𝑠 𝜃                                           (5) 

which describes the potential, V, of point A with respect to point B, defined as the work done, W, in 

moving a unit charge Qunit, from A to B. The electric field and the potential are perpendicular. In the case 

of the structures in this lab, equation 5 can be simplified by choosing a path integral such that cos(θ) = 1. 

If the electric field is constant in the region of integration, then all that is left to calculate is the integral 

with respect to the displacement 𝑙. Based on these special circumstances, the resulting equation is 

𝐸 =
𝛥𝑉

𝛥𝑙
                                                                                     (6) 

where ∆𝑉 is the difference in potential between two points and 𝛥𝑙 is the distance between the points. 

The structures in this lab have pre-defined voltages. Keep track of their values as you go through the lab.  

 

  



4. Running ANSYS Maxwell 2D 

Note: It is always a good idea to regularly save your projects to prevent losing progress. If the 

instructions below are not clear for you, research what you are trying to accomplish and always 

feel free to contact your TAs with any questions. Assume a plate thickness of 1mm unless 

otherwise stated. 

1. Start the ANSYS Electronics Desktop program and select Project, then Insert Maxwell 2D 

Design. You can create a new design in the same project you created in lab 0 or you can create a 

new project for lab 1. Placing a new design within the same project makes referencing your past 

labs while working easier but it is recommended that you keep only one design expanded at a 

time in the project manager. 

 
Now, select the Maxwell 2D menu option and click on Solution type. 

 
In the window the opens up, select the required solution type, for lab #1 it is Electrostatic, for 

lab #2 it is Magnetostatic. Click OK once you selected the correct option for you. 

 

You can now proceed to the first design for lab 1. When creating the geometries required for 

this lab reference the techniques used for lab 0. 

 

 

 



5. Problem 1: Field at a Raised Point 

This problem models a parallel plate capacitor in which one plate is dented toward the other as 

shown below. The top plate is at 1 V and the bottom plate is at 0 V. The material of both plates is 

copper. The material around the plates is air.  

 

Answer/complete the following questions/directions for Problem 1. 

(a) Plot the equipotential voltages and the electric field lines of your structure together in one 

printout, or individually. Modify the scale of the plot to have 10 divisions (Instead of the default 

15). Don’t forget to clearly include the legends. 2 marks  

(b) Where is the location of the maximum electric field strength? What is the value of the maximum 

field strength? Use the coloured electric field intensity plot and the accompanied legend. Don’t 

forget units. 2 marks  

(c) Insulating materials will break down or become conducting if the electric field strength exceeds 

the breakdown strength of the material. For air, the breakdown strength is about 3 x 106 V/m. If 

the gap is reduced to 1 mm, estimate the maximum voltage that could be applied to the top 

plate. Answer this question using theory and include units. You may use the simulator to check 

the calculation (Note: The simulator doesn’t actually simulate the dielectric breakdown). 1 mark 

  



6. Problem 2: Field in a Hollow 

This problem models a parallel plate capacitor with one plate dented away from the other as shown 

below. The top plate is at 1 V and the bottom plate is at 0 V source. The material of both plates is 

copper and the dielectric is air. 

 

Answer the following questions for Problem 2. 

a) Plot the equipotential voltages and electric field lines of your structure as in Problem 1. 2 marks  

b) Consider the region between the two plates. Why is the electric field different in the hollow?  

2 marks 

  



7.  Problem 3: Parallel Wire Transmission Line 

VHF and UHF antennas are usually connected to TV sets by transmission lines consisting of two 

parallel wires of fixed separation, as shown below. To design the transmission line, we need to 

find the capacitance per unit length between the wires. The capacitance per unit length is given 

analytically by (units F/m) 

                                                                              𝐶 =
𝜋𝜀

𝑐𝑜𝑠ℎ−1(
𝐷

2𝑎
)
                                                                   (7) 

where 𝜀 is the dielectric constant of the homogeneous material surrounding the wires, D is the 

center to center wire spacing, and a is the radius of the wires, as shown below. The dielectric 

constant of air is 𝜀0 = 8.854×10−12  F/m. For other materials, we multiply this value by the relative 

dielectric constant 𝜀𝑟  of the material (that is 𝜀 =𝜀0𝜀𝑟). The function 𝑐𝑜𝑠ℎ−1 is found using the 

hyp button on any scientific calculator. The object of problem 3 is to find the capacitance 

numerically and compare with the theoretical value for a range of separations (D).  

Start by setting up a Maxwell 2D model of the wires as shown in the figure below. The wires 

have a radius of a = 3 mm. The material of both wires is copper, one wire is at 1 V while the 

other is at -1 V. 

 

To parameterise the wire separation double click on each wire (Circle) in turn and set a variable 

“D” for the x-coordinate of the centre position as shown in the figure below. 

 



You should create an air box around the two wires with at least 5 mm of air between each wire 

and the edge of the boundary (think about this, you may need to include “D” in the dimensions 

for the air box).  

In order to sweep the variable “D” a parametric sweep can be inserted by right clicking 

Optimetrics then Add then Parametric… 

 

Click Add… select the variable “D” and sweep from 8 mm to 20 mm in steps of 0.5 mm. You 

should also add a Matrix to the Parameters in the Project Manager to calculate the capacitance 

for each step if you have not done so already. The sweep can then be run by right clicking 

ParametricSetup and Analyse.  

Then plot your results by right clicking Results -> Create Electrostatic Report -> Rectangular 

Plot. You should then see a window as shown below.  

 

You should plot the variable “C” from the matrix solution against the primary sweep “D”. To 

compare with the theoretical equation, you can either right click your plot from the Results 

section of the Project Manager and export as a csv file for comparison in Excel or MATLAB. Or 

with a little thought you can find a way to plot the theoretical function in Maxwell along side 

your simulation. Include a plot with both simulation and theoretical values in your report. 

 



Answer the following questions for Problem 3, D = 12 mm for these questions. 

a) Plot the equipotential voltages and electric field lines of your structure. 2 marks  

b) What do you notice about the direction of the electric field at any point in relation to the 

equipotential lines? 1 mark 

c) Specify the region at which the electric field is maximum and state the maximum value. Use 

the legend to guide you. Theoretically you will find that the maximum should not be one 

point, but several points. 3 marks  

 

d) Plot the theoretical and simulated values of the capacitance per unit length as a function of 

wire separation “D” (you should have completed this step already in the introduction to this 

problem). Compare the two capacitance curves and explain any discrepancy. Remember 

that you are comparing 2 different methods of solving for capacitance: numerical and 

analytical. 6 marks 

  



8. Problem 4: Transmission Line with Plastic Coating 

Now modify the structure in Problem 3 so that the wires are coated with a plastic (dielectric) layer 

of thickness 2.0 mm. The plastic material is Teflon and when drawing, the center of the plastic 

should be the same as the center of the copper wire. Refer to lab 0 for instructions on how to draw 

a ring. 

 

 

Answer the following questions for Problem 4. 

a) Plot the equipotential voltages and electric field lines of your structure. 2 marks  

b) State the maximum value of the electric field and state why it is greater or less than the 

maximum values found in Question 3. 2 marks 

c) Estimate the capacitance per unit length of the transmission line using the simulation 

software. 2 marks  

d) Is the capacitance greater or less than the one estimated in Problem 3? Explain. 3 marks 

  



9. Problem 5: Rectangular potential well 

The side plates and bottom plate are connected and all at 0V. The top plate is at 100V. The 

material around the plates is air. 

 
 

Answer the following questions for Problem 5.  

a) Plot the equipotential and electric field lines of your structure. 2 marks 

b) Compare results obtained here with those calculated in the pre-lab section.  2 marks 
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