
CARLETON UNIVERSITY
Deparment of Electronics

ELEC 2607 Switching Circuits March 3, ’11

© J.Knight,  March 3, ’11    U:\Carleton\2607\2011W\Lab\Midi\Theory\MidiSheets\MIDI_2011_F.fm    MIDI-1 

Laboratory 4  A MIDI Interface

Overview 
MIDI is the name for a digital interface used in electronic music. It might be used between a digital key-

board and a synthesizer or between a keyboard and a PC running a music composition program, like Cake-
Walk™. MIDI is a serial interface, the bits come in one after the other. The high-level view of a MIDI interface
is shown below.1 

The opto-isolator changes the electrical signal to light and back again. It keeps the rest
of the interface from burning out if the MIDI input gets plugged into 120 V by someone with
strong wrists and limited technical knowledge.

The keyboard sends out a 10 bit word, containing 8 bits of data called a data byte, and
two control bits. The signal is sent out serially, one bit following another.

 The Serial-to-Parallel Receiver changes the 10-bit serial word from the keyboard into an 8-bit parallel
data byte which is then sent to the computer. This is what you will design. The 10 bit serial word has a start and
stop bit which are removed for the 8-bit parallel output (See  Fig. 4.2). 

This receiver captures 10 bits as they come in serially one after the other. A group of bits may start at any
time. The receiver waits until all 8 bits are collected and stable. Then it sends them out in parallel. to some oth-
er instrument like a mixer or synthesizer. It makes the DATAVALID line true whenever the 8 data bits are stable and
available for the synthesizer to read.

Brief Higher-Level Description of the MIDI Signal (Background, not part of lab)
These 8-bit data bytes have a musical meaning. The first data byte is called the STATUS byte. It is fol-

lowed by 0, 1, or 2 bytes called DATA-1 and DATA-2 bytes, as appropriate for the STATUS byte.

1.  See for example: http://en.wikipedia.org/wiki/Musical_Instrument_Digital_Interface

OPTO
ISOLATER

serial
parallel

out
input Serial

to
Parallel

DATAVALID

Receiver

FIGURE 4.1 ©jknight 2011 

Synth
SERIN

RST
CLK

Keyboard

What you
design

e
z

si
e
r

y

10 BIT WORD

5-pin DIN
connector

?



Carleton University Overview   

MIDI-2 SWITCHING CIRCUITS © J.Knight, March 3, ’11

  Table. 4.1 shows some commands. The bytes STATUS, DATA-1 and DATA-2 are interpreted in software.
However this lab will look only at the hardware part of the interface which changes each 8-bit byte sent serial-
ly, into 8 bits sent out in parallel on 8 separate wires
.

(End of background)

The Serial Input (SerIn) Signal
The keyboard will send out a word made up of 10 bits sent serially one after the other. It contains a START bit,
8 data bits, and a STOP bit. There is an idle time between words of indefinite length. 

FIGURE 4.2 A typical MIDI signal showing three words. 

FIGURE 4.3   The protocol used by MIDI equipment. The data bits are drawn as both 1 and 0 since in general they 
may be either. Three particular examples are shown above. 

IDLE: The signal is always “1” when idle.

START BIT: The signal always has a low (0) bit before the 8 data bits start. This tells the interface to start
listening.

DATA BITS: 8 data bits follow the start bit. Any individual bit may be “1” or “0.” ”
STOP BIT: The STOP BIT follows the last data bit and is always “1”. It is really the start of the next

idle period. The next start bit may come immediately after the stop bit, or the signal may be
idle for years.

Noise on the Serial Input (SERIN) Line
Signals coming in from a long serial line may have noise on them. This may confuse the receive circuitry

and cause an incorrect input bit to be read. To try to avoid this, the receiver takes several samples inside each

Table 4.1Some MIDI commands applicable to keyboard interfaces.

STATUS DATA-1 DATA-2 Description

FF -none- -none- Reset the MIDI system

80 Note -none- Note off

90 Note  Velocity Turn on Note in DATA-1 with key Velocity in DATA-2

D0 Pressure -none- Change key pressure of the current note, in mid-note.

time
10 BIT WORD

8 Data Bits

10 BIT WORD

INDEFINITE
     IDLE
    TIME

    IDLE TIME WAS ZERO HERE

IDLEST
A

R
T

ST
O

P

ST
A

R
T

ST
O

P

ST
O

P

ST
A

R
T

10 BIT WORD

8 Data Bits 8 Data Bits

©jknight 2011

START
 BIT

8 DATA BITS

IDLE
MOST

SIGNIFC
BIT

LEAST
SIGNIFC

BIT
STOP
 BIT

NEXT
START
 BIT

time

INDEFINITE
     IDLE
    TIME

32.0 μs
0.320 ms

©jknight 2011



© J.Knight,March 3, ’11 SWITCHING CIRCUITS MIDI-3 

midi bit, one sample at each rising clock edge.  Fig. 4.4 shows the samples taken for a typical bit (data bit 6) in
a noisy midi word. The digital gates will round the analog input to the nearest 0 or 1. 

FIGURE 4.4   A midi Serial Input (SERIN) with some noise on it. Noise may be picked up by long leads, particularly 
unshielded leads that run close to motors or power cords. 

 Digital circuitry stores these samples temporarily in flip flops. The value stored is the rounded value of
SERIN  just before the active clock edge. Your circuit will take the majority of 3 sample values near the middle
of each midi bit as the value for that bit. Thus you might use MAJORITY(0,1,0) = 0, as the value for data bit 6
in  Fig. 4.4. See the prelab, question. .

 For the START bit, we will be even more careful. We will use 4 samples and demand that the 1st sam-
ple, and at least 2 more samples, be low. See the prelab, question. 7.2.

The Clock Rate and Majority Value of the Bit Samples
To have reasonable averaging benefits inside a noisy data bit, this design will have eight samples (i.e 8

clock cycles) inside each MIDI data bit. Since each incoming MIDI bit is nominally2 32μs long, Taking a sam-
ple on each rising clock edge would make the clock period 4.0μs long (0.25MHz).

FIGURE 4.5 The SERIN sampled by 8 clock edges per bit (small circles) with some digitized values. Recall in CMOS, a 
signal voltage of over 70% of a “1” is taken as a “1”, and below 30% is taken as a “0”. Between 30% and 
70% it may be taken as either.

Here the START bit is recognized after four samples of values 0100. This starts the rest of the circuitry
going (A). Then after 8 clock cycles (B) the majority of the last 3 bits is checked and its value is stored as
the value for the 1st data bit. One waits another 8 cycles (C) and again stores the majority value as the
2nd data bit, etc. until the eight data bits have been read. 

Generating the GRAB Pulses That Capture the Data
The START bit will be recognized after about four clock cycles, point(A), in  Fig. 4.5). This will start a

counter going which will count 8 more clock cycles. This should place one timewise near the middle of the 1st
data bit (point (B)). At that point, the output of the majority calcuating circuit for the past three samples will be
stored as the 1st data bit. Then the counter will count another 8 clock cycles, to point (C), and store the majori-

2.  “nominally” means it is supposed to be 32μs but may be higher or lower, perhaps by several percent.

STOP

SERIN

time©jknight 2011START

Shows 8 samples 
across a bit 

CLK

IDLE

IDLE region 

0 0 0 1 0 0 0 0Sample Values

data bit
1 2 3 4 5 7 86

DATA time
©jknight 2011START

CLK
4.0μs

100%
70%
30%

0%

0 1 0 0 1 1 1 0 1 0 ? 0 00 0 0
Valid START bit Valid “1” bit

Majority is 1
Valid “0” bit
Majority is 0

Valid “0” bit
Majority is 0

Valid “0” bit
Majority is 0 no matter what ? is.

IDLE

A
B

C

Digitized
 samples

8 cycles
32μs



Carleton University Overview   

MIDI-4 SWITCHING CIRCUITS © J.Knight, March 3, ’11

ty circuit output as the 2nd data bit. This will continue until all 8 data bits are stored. The last bit is a STOP bit,
and we do not need to store its value. Instead, we count the 8 clock cycles and then start searching for the next
start bit. 

GRAB8 is the name of the signal that tells when to store the majority circuit’s output will GRAB8. GRAB8
will have 8 pulses per MIDI word, each pulse one clock cycle (4.0μs) long, see  Fig. 4.6.

FIGURE 4.6 The detailed timing relations between the MIDI Signal and the GRAB8 signal. 
We ignore noise here.  The falling edge of the START bit is at the big black down-arrow.  4 clock-edges 
after this arrow, an average3 of 14μs, the counter will start and count from 0 to 7 (8 clock cycles). On the 
count of  7, a GRAB8 pulse will be generated. The counter will wrap around and count to 7 again, at which 
point another GRAB8 pulse is produced. This continues until these 8 pulses have grabbed the probable 
value of the 8 data bits from the majority circuit. After that GRAB8 goes low and stays low until the first data 
bit, after the next START bit is found. 

The Block Diagram of the Circuit, See Fig. 4.7
LAST4SAMP captures a sample on every active clock edge and holds the last 4 samples.

FINDSTART checks the samples for 3 zeros out of 4 samples and sends out GOTSTART when this is found.

MAJORITYCIR  sends out the majority value of the last 3 samples. These value will be collected by
SER2PAR to be delivered as parallel output. 

COUNTCLEAR checks that GOTSTART=1 indicating it has found a valid START bit. CLRCOUNT also checks
that this was not just a low data bit by checking that the bit counter, BitCount, is sending out BIT9 indicating
the last known input bit was a STOP bit and we are now in the idle period. If these conditions are met, it lowers
CLRSAMPCOUNT  so  SampCount can start counting.

SAMPCOUNT:  SampCount rests at a count of zero. It starts counting about halfway through the START
bit when CLRSAMPCOUNT goes low. It counts 0,1,2,3,4,5,6,7,0,1,2, . . . sending out a GRAB9 pulse during each 7
count. This pulse should happen roughly half way through the data bit where SIGIN is most stable. GRAB8 is the
same as GRAB9 except the last pulse is removed.

BITCOUNT keeps track of which bit has been reached in the midi word. It counts the number of GRAB9
pulses generated by SampCount, thus it counts 8 bits plus the STOP bit. Its BIT8 signal is used to remove the
final GRAB9 pulse, to change GRAB9 into GRAB8. This lets the SER2PAR circuit saves only the data and not the
STOP bit. BIT9 is high after all 8 data bits have been captured, and is used as a DATAVALID signal to tell the out-
side world the data is stable and can be read.

3.  Four clock edges take 16μs, but the MIDI signal edges are not aligned with the clock edges, so the black down ar-
row in Fig. 4.6, might come partway through the first clock cycle in making the delay; 12μs < delay < 16μs.

MIDI SIGNAL

GRAB8

Idle period

~14μs
32.0μs

32.0μs

4.0μs 28.0μs

Idle period
End of
10-bit

MIDI word

Start of
10-bit

MIDI word

ST
AR

T

ST
O

P

32.0μs

©jknight 2011

01234567 01234567 01234567 01234567 01234567 01234567 01234567 01234567 01234567

Count on
8-bit counter

When you get to FIGURE 4.14, you will see that when enabled flip flops are used, their output changes just after the
rising clock edge, which happens just before the falling edge of the GRAB8 (enable) pulse.



© J.Knight,March 3, ’11 SWITCHING CIRCUITS MIDI-5 

SER2PAR responds to each GRAB8 pulse and transfers the data bit values from MAJ to the seven parallel
data outputs, D0, D1,. . . D7.

FIGURE 4.7 The block diagram.   

FIGURE 4.8 Signals needed to derive the circuitry to control the counters

GOTSTART

GRAB9SIGIN

CLK

BIT9

BIT8

DATAVALID

D7
D6

D5

D4

D3

D2

D1

D0

MAJ

Read the eight Dn lines
only if DATAVALID =1.

©jknight 2011

    LAST4SAMP

FINDSTART

MAJORITY

CLRSAMPCOUNT

GRAB8

BitCount
En

GRAB9
GRAB8

9

8
8

9

Serial input
Counts the

bits
 received

Sends out the
majority value 
of last 3 samples 

Continuously stores
the last 4 samples 

Finds “0” samples 
in Start bit 

SER2PAR

En
Capture the 8

data bits
 entered

serially and
 sends them 
out in parallel

COUNTCLEAR Samp-

Counts the
8 samples

in
each bit 

BIT8

Clears SampCount 
 after STOP bit 

GOTSTART removes 

BIT9

 clear   except for
START

S0S1S2S3

S3 S2 S1

FIX

Pa
ra

lle
l o

ut
pu

t

S0, S1, S2, S3
are called 
Samp0, Samp1
etc. in the 
Xilinx templates 

Count

GRAB9

CLK

SERIN

SampCount

BIT9

BIT8

GOTSTART

01234567000000

1 2 3 4 5 6 7 8 0BitCount 1

CLRSAMPCOUNT

high

3 of 4 low

D0=0 D1 D2 D3 D4 D5 D6 D7 STOP STARTSTART

Possible
unwanted

clear

IDLE

Wanted clear

D0=1

0123456701234567012345670123456701234567012345670123456701234567 12345670000000000 01234567

0 0

©jknight 2010



Carleton University Overview   

MIDI-6 SWITCHING CIRCUITS © J.Knight, March 3, ’11

Counters Using D Flip Flops

(A) The D Flip Flop
The value on input D is transferred to output Q

on every active clock edge.  Let:
 Q+ = the value of Q after the clock edge
 Q  = the old value before the clock edge.
 D  = the value on D just before the clock edge.

The formula for the how the output changes is
 Q+

(just after the clock edge) = D(just before the clock edge) or
    Q+ = D

Counter Design with D Flip Flops
• The design starts with a state table ( Fig. 4.9).  
• In circuit using D flip flops, the inputs needed to get the Q+s for the next state are simply D =  Q+.

SAMPLECOUNT Design with D Flip Flops
The details of constructing and filling in the SampleCount state table are shown in  Fig. 4.11. They will be
much easier to follow if you have read the lecture notes on how to design state machines with D flip flops.

Counter Design with D Flip Flops and Clear
• In the design of SAMPLECOUNT, one needs 4 inputs, Q2 Q1 Q0, and ClrSampCount. ( Fig. 4.10). This 

will make the state table 16 lines long, and three 5 variable Kmaps.   (See the complete state table in appen-
dix ( Fig. 4.27). This is not necessary. .

• When one input has such a simple relation to the output, it can often be added very simply at the end, and 
save half the work with a little thought. You may may do it either way as you like.

FIGURE 4.9 State Next State   D inputs   
Q2 Q1 Q0 Q2

+Q1
+Q0

+ D2 D1 D0

0 1 0 0 1 1 0 1 1

0 1 1 1 0 0 1 0 0

FIGURE 4.10 State Next State 
CL=0   inputs   Next State 

CL=1 inputs   

Q2 Q1 Q0 Q2
+Q1

+Q0
+ CLD2 D1 D0 Q2

+Q1
+Q0

+ CLD2 D1 D0

0 1 0 0 1 1 0  0  1  1 0 0 0 1  0  0  0

0 1 1 1 0 0 0  1  0  0 0 0 0 1  0  0  0

8 states etc etc etc etc

CLR

D
C
CE

Q

En

Q after the clock edge takes value of
En =1 

D just before the clock edge
En =0 

Q after the clock edge does not change
CLR=1

Q goes to 0 immediately

CLR=0, thenEnabled D Flip-Flop

Q+= En⋅D+En⋅Q  

CLR

D
C Q

Q after the clock edge takes value of 
 

D just before the clock edge
CLR=1

Q goes to 0 immediately

CLR=0, thenD Flip-Flop

Q+      =    D CLR overrides all other inputs 

CLR overrides all other inputs 

(just before) (just after ) 

(just before) (just after ) 



© J.Knight,March 3, ’11 SWITCHING CIRCUITS MIDI-7 

FIGURE 4.11 Design of a 3-bit binary counter using D flip flops. The CL inputs are temporarily ignored here. They are 
added later to make a synchronous clear.

FIGURE 4.12 The counter state table arranged in K-map order.  

D

C

D

C

D

C

Q2
D2=Q2

+

Q1

Q0

Counter state table      Using D flip-flops
Count State Next State   D inputs

Q2 Q1 Q0 Q2
+Q1

+Q0
+ D2 D1 D0

0 0 0 0 0 0 1 0 0 1

1 0 0 1 0 1 0 0 1 0

2 0 1 0 0 1 1 0 1 1

3 0 1 1 1 0 0 1 0 0

4 1 0 0 1 0 1 1 0 1

5 1 0 1 1 1 0 1 1 0

6 1 1 0 1 1 1 1 1 1

7 1 1 1 0 0 0 0 0 0

Q2

Q1

Q0

Comb
Logic

To be

found

D1=Q1
+

D0=Q0
+

Steps in Designing a Finite-State Machine
1. Understand the problem (Usually hard, easier here).
2. Draw a state graph 

4. Construct a state table showing the next state.

3. Do state assignment (fill in bits for state names).

5. Find the ff inputs to change state −> next state. 

7. Draw the K-maps from the state-table input columns..
8. Loop the K-maps to get the best equations.

Explanation

6. Put the state table in K-map order

1 2 3
4

567
0

©jknight, 2010
Change state on active clock edge

Here that means substituting 010 for 2, 011 for 3 etc.

This counter counts:

D Flip Flops

Remember to share gates if it is economical to do so.

0->1->2->3->4->5->6->7->0->1 . . .
which is 8 states. 

Counter state table  In K-map order
Count State Next State   D inputs

Q2 Q1 Q0 Q2
+Q1

+Q0
+ D2 D1 D0

0 0 0 0 0 0 1 0 0 1
1 0 0 1 0 1 0 0 1 0
3 0 1 1 1 0 0 1 0 0
2 0 1 0 0 1 1 0 1 1
4 1 0 0 1 0 1 1 0 1
5 1 0 1 1 1 0 1 1 0
7 1 1 1 0 0 0 0 0 0
6 1 1 0 1 1 1 1 1 1

00
01
11
10

0 1
Q2Q1Q0

map for D0 

1Q1

Q0

1
0
0
1

0
0
100

01
11
10

0 1
Q2Q1Q0

map for D1 

1Q1

Q0

0
1
0
1

0
1
000

01
11
10

0 1
Q2Q1Q0

map for D2 

0Q1

Q0

1
1
0
1

1
0
0

 D2 = Q2⊕(?)  D1 = Q1⊕Q0  D0 = ? 

©jknight 2011

The equations for D1 is generated below with extended K-maps,

 
.

00
01
11
10

0 1
Q2Q1Q0

0

0
1
1
0

1
1
000

01
11
10

0 1
Q2Q1Q0

1

0
0
1
1

1
0
0 00

01
11
10

0 1
Q2Q1Q0

1

0
1
0
1

0
1
0

 D1 = f1⊕f1 = Q1⊕Q0f1=Q1 f2=Q0

⊕  =

 which use 1⊕1=0 



Carleton University Overview   

MIDI-8 SWITCHING CIRCUITS © J.Knight, March 3, ’11

Clearing Counters Synchronously 
Don’t even think about using the asynchronous CLR input on the flip flops to

clear the counter. This is a NONO! The asynchronous CLR responds to very fast
glitches (hazards). Such glitches are common and you should have seen them in your
simulations. The asynchronous CLR will respond to these glitches and may clear the
flip flop at times the designer did not expect.

Never use the asynchronous CLR for anything but start-up or recovery reset.

 To clear SampCount either:
-    use the state table  Fig. 4.27 and three 5 variable K-maps, 
                         or
-    put a gate on the Di input of each flip flop ( Fig. 4.13) to give the correct Qi after the active clock edge.

This gate must give the normal Di  input, that is Qi
+, when ClrSampCount is “0”.

It must make  Di  a value which will make  Qi
+= 0, when ClrSampCount is “1”

Remember. A signal performs the action given by its name when it is TRUE.
 In this case, it clears when ClrSampCount =1.

(B) The Enabled D Flip Flop
They act just like a plain D-flip flop if En =1
If En =0, Q just holds its old value.
The Enable pin is labeled: 
    CE by Xilinx software, or En by the IEEE standard.

The formula for how the output changes is
 Q+ = En⋅D + En⋅Q.   {Q+ is just after the clock edge, Q is just before}

En does not clock the flip flop, but it might appear to. (See  Fig. 4.14)
Note the exact timing relationship between a one clock-cycle long En (enable) and the change in Q. The

output Q changes after the clock edge at the end of the enable pulse (point (a)), slightly after the rising clock
edge. 

Counter Design with Enabled D Flip Flops
• Use the same state table as for D flip flops, temporarily ignoring the En input.
• In the circuit connect an addional signal to the En inputs.

   Make the En inputs, En =1 if one wants the flipflop to change after the next active clock edge.
   Make En = 0 to ignore the next active clock edge.

In the BitCount circuit the flip-flops are restricted to wait eight clock cycles before changing, i.e. they are con-
trolled by GRAB9. One could include GRAB9 as a 5th variable in the Karnaugh maps, but it is much easier to
use an En flip-flop, and use GRAB9 as an enable signal. Then the counter just sits until enabled.

Enabled D Flip-Flop with

Di

C

Qi

synchronous clear

RST Asynchronous
CLR

“homemade” 

synchronous clear=Rs

 ClearFIGURE 4.13

Qi+

Some thing
Rs

0
1

0 1
0
01

0
Qi+

Rs

Q

C

D
En

CLK
EN

EN

CLK

Q (a)

FIGURE 4.14



© J.Knight,March 3, ’11 SWITCHING CIRCUITS MIDI-9 

    BITCOUNT Design with Enabled D Flip Flops
The 0-to-9 counter, BitCount, is easier to design using

enabled D flip-flop. You will need four 4-variable K-maps, in-
stead of four 5-variable K-maps, and the maps are almost half
don’t cares.

FIGURE 4.16 Design of a 4-bit 0-to-8 binary counter using D 
flip flops. The En inputs are temporarily ignored.

D
C

En

D
C

En

D
C

En

Q3

Q2

Q1

Q3

Q1

Q0

Comb
Logic

To be

found

D
C

En

Q0

Q2

Enable Signal

FIGURE 4.15  Circuit using enabled D flip flops

 D3

D2

D1

D0

1/8 clock frequency

©jknight
 2011

D
C

En

D
C

En

D
C

En

Q2D2=Q2
+

Q1

Q0

Counter state table      Using D flip-flops
Count State Next State   D inputs

Q3Q2Q1Q0 Q3
+Q2

+Q1
+Q0

+ D2D2D1D0

0 0 0 0 0 0 0 0 1 0 0 0 1

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

 0 1 ? ?

 0 1 ? ?

8

9

etc 16 states

Q2
Q1

Q0

Comb
Logic

To be

found

D1=Q1
+

D0=Q0
+

Steps in Designing a Finite-State Machine
1. Understand the problem (Usually hard, easier here).
2. Draw a state graph 

4. Construct a state table showing the next state.
3. Do state assignment (fill in bits for state names).

5. Find the ff inputs to change state −> next state (D inputs) 

7. Draw the K-maps from the state-table input columns..
8. Loop the K-maps to get the best equations.

Explanation

6. Put the state table in K-map order

1 2 3
4

567

0
©jknight, 2011Change state on active clock edge

The first counter, counts:

The 2nd counter has to count 9 states,

D Flip Flops

Remember to share gates if it is economical to do so.

0->1->2->3->4->5->6->7->0->1 . .

i.e. 0 to 8. That requires another flip-flop

8
D

C
En

Q3
D3=Q3

+

.which is 8 states. 

Q3



Carleton University Overview   

MIDI-10 SWITCHING CIRCUITS © J.Knight, March 3, ’11

Shift Registers
The SER2PAR and LAST4SAMP blocks are usually

constructed using shift registers. 

The upper shift register takes a sample of s(t) ev-
ery active clock edge and stores it in the leftmost flip
flop. On the next edge it shifts the previous sample right
and stores a new sample. After four clock cycles the last
four samples are stored, the oldest on the right.

The lower shift register uses enabled
flip flops so it will only shift when there is an
enable pulse. It appears that one could get
same result by sending EN into the clock in-
put; however this is a NO NO! This creates a
race between the D input and the EN signal
pretending to be a clock,  and the result will
depend on which signal rises first. The details will be taught next year. For those with an unquenchable thirst
for knowledge, see the Appendix. For this course one need only remember this rule: 

Never send any signal but CLOCK into the C input of flip flops.

The COUNTCLEAR block
The counter, SampCount, has a clear input, CLRSAMPCOUNT which clears the count to zero when SIGIN is

idle.   CLRSAMPCOUNT is removed by the GOTSTART signal after 4 samples indicate a valid START. 

You should design a circuit to generates CLRSAMPCOUNT using other signals from  Fig. 4.18. 
We hope you can see that BIT9 will start the clear signal at the right time, and that GOTSTART can be used to re-
move the clear signal at the right time. 
Follow a vertical slice of the timing diagram  where CLRSAMPCount is active, and derive the formula.

However CLRSAMPCOUNT may get an unwanted pulse if D0 is a “1”, as on the top far-right of  Fig. 4.18.  You
need to find another signal, call it FIX, that will lower CLRSAMPCOUNT after SampCount has started counting.
This signal must keep CLRSAMPCOUNT low until BIT9 goes low. Then BIT9 can keep CLRSAMPCOUNT low.
Follow the vertical slice and look for this FIX a signal. This signal must not mess up CLRSAMPCOUNT at oth-
er times.4 
Too complicated? Temporarily ground the FIX signal and come back later. Your circuit will work 50% with no
FIX.

4.  Hint:  Draw a graph of the bit patterns of the Q2, Q2, and Q2, bits in SampCount. 
 Also note where the FIX signal originates on the schematic

.

CLR

Q

C

D

CLR

Q

C

D

CLR

Q

C

D

CLR

Q

C

D

RST

S3 S2 S1 S0
S(t)

FIGURE 4.17 Shift registers
©jknight 2011

CLR

Q

C

D

CLR

Q

C

D

CLR

Q

C

D

CLR

Q

C

D

RST

Q2

En En En En

Q1 Q0Q3

EN

D



© J.Knight,March 3, ’11 SWITCHING CIRCUITS MIDI-11 

FIGURE 4.18 Signals needed to derive the circuitry to control the counters

The High Level Block Diagram and I/O Signals
FIGURE 4.19 Diagram showing receiver inputs and outputs 

Signals which are restricted so they cannot change at the same time as the active clock edge are called
synchronous. If they might be able to change on that clock edge, they are called asynchronous.

The receiver input is called asynchronous because a bit at the MIDI input (SigIn) might change on the
clk edge. Thus each new bit may start at a random or asynchronous time with respect to the CLK.

The receiver has the following input and output signals:

SigIn Signal Input.....The received serial MIDI signal

GRAB9

CLK

SIGIN

SampCount

BIT9

BIT8

GOTSTART

01234567000000

1 2 3 4 5 6 7 8 0BitCount 1

high

4th low

D0 D1 D2 D3 D4 D5 D6 D7 STOP STARTSTART

using

IDLE D0=1

0123456701234567012345670123456701234567012345670123456701234567 01234567000000000 01234567

0 0

©jknight 2011

CLRSAMPCOUNT

4th low

Sa
m

pC
ou

nt

GOTSTART

CLRSAMPCOUNT Wanted clear
using

Bit9.GotStart

clear

Bit9.GotStart

unwanted

D
0

D
1

D
2

D
3

D
4

D
5

D
6

DATA-VALID SigIn

CLK ASYNCHRONOUS INPUT

 SERIAL-TO PARALLEL
 RECEIVER

RST least

 FOR AN

MIDI input

4.0μs period

D
7©jknight 2011  significant

Q

C

D
En

CLK

Q

CLK

SigIn
asynchronous

synchronous

 bit

SigIn can change anytime
Q can only change just after the CLK 

SigIn

edge. Never simutaneously.



Carleton University Prelab   

MIDI-12 SWITCHING CIRCUITS © J.Knight, March 3, ’11

CLK This is supplied externally and has a period of 4.0 μs, 8 times the signal bit speed. CLK is
not synchronized with SigIn. The rising/falling edges of CLK are at arbitrary times with re-
spect to the rising/falling edges of SigIn. 
The CLK is sacred. It must go to the clock pin of all counters and flip-flops. It must not go
through gates or be delayed in any way. All flip-flops must clock at the same time. If the
clock reaches them at different times it is called clock skew, which causes many problems

RST Asynchronous reset is used for initializing the circuit on power-up. It is also used in facto-
ries for testing. It should go to the CLR connection5 on every flip-flop. It must not be used
for things like clearing a counter at the end of its count.

D0...D7 This is the received 8-bit parallel-output word. D0 is the least significant bit. It follows the
START bit in SIGIN. If you draw your shift registers shifting left to right, DO will end up in
the rightmost flip flop.

DATAVALID DATAVALID = 1 after the STOP BIT has been received, and the parallel data is stable and may
be read out. It stays 1 until new serial input data changes the parallel output lines.
DATAVALID = 0 whenever the data byte may be corrupted by new incoming data.

Prelab
Questions   Get as close to 7.14 as you can for the first lab session.

7.1 Call the four last samples of SIGIN, S3, S2, S1, S0, with  S0 being the earliest sample and S3 the latest. 
This order is the natural order in a shift register with the input on the left, but the re-
verse of the order on timing diagrams like  Fig. 4.20.
 Write the equation for a circuit that finds the majority of the last 3 samples, S3, S2, S1. See FIGURE 4.4

7.2 Four samples of the start bit must be either 0000, 0010, 0100, or 0001 to turn on GOTSTART6.  Make a Kar-
naugh map for the FindStart circuit, and from it write an equation for GOTSTART in terms of  S3, S2, S1, S0.

7.3 Assuming there is no noise, after how many zero samples will GOTSTART go high? Explain.

7.4 At the end of the start bit with no noise, assume D0=1. How many samples of D0 =1 are needed to make 
GOTSTART turn off?  Explain.

7.5 Plot GOTSTART,  for all five midi bits, on the timing diagram below.

7.6  Design the LAST4SAMPLES circuit. Be careful to make S0 the earliest sample and S3 the latest one

7.7  Omitting the FIX signal, draw the SampCount circuit using D flip flops. If you don’t know how, reread 
the lab sheets.  

5.  Xilinx library flip-flops use CLR for asynchronous reset and R for synchronous reset.
6.  This has changed from 2010, and the TAs will be watching.

S3   S2   S1   S0 

CLK

SIGIN

GOTSTART

4th low

S3
D1 D2

D3
D3START

FIGURE 4.20

S0 S0 S3



© J.Knight,March 3, ’11 SWITCHING CIRCUITS MIDI-13 

7.8  Study  and design the gates that can make 
SampCount = 0 without using the asynchronous CLR.. 

7.9 Complete the timing diagram on the right, showing exact-
ly how Q2 responds to the inputs.  It is very important to 
show it changing just after, not on top of, the proper clock 
edge. The X  shows one spot where it does not change.

7.10 Look at the figure below. Recall that BitCount  counts   
0,1,2,3,4,5,6,7,8,0,. . . and that the BIT9 signal is high for 
the 9th  count (the STOP bit)  when BitCount holds 0. 
On the timing diagram below, plot when BitCount 
changes with respect to the GRAB9. This also determines exactly where  BIT9 goes low.
Draw hexagons  in the BitCount area of  Fig. 4.22 below to show exactly 
where the transitions occur. Do not draw sloppy transitions .

.

7.11  Add a gate to SampCount to give out the GRAB9 pulses when the count is 7.
7.12  Draw the state graph for the BitCount circuit. 
7.13 Design the circuits Parg. 7.24 to Parg. 7.27 

We suggest stopping for the prelab for the first week.
7.14  Make a state table for the BitCount circuit. We suggest you order the variables Q3Q2Q1Q0
7.15  Following the example of  Fig. 4.11, add a column to the state table for the four Dn inputs needed to give 

the desired next state.
7.16  Make Karnaugh maps to calculate D3, D2, D1 and D0. To go with the variable order above you might 

make the map coordinates  Q1Q0\Q3Q2. See  Fig. 4.12, only here you will have 4 variables instead of 3.
7.17  Obtain the equations for  D3, D2, D1 and D0. from the maps. Extended maps using XORs are useful here.

D
C

En

Q2
E2

GRAB9

E2

D2

CLK

Q2

FIGURE 4.21

X

©jknight, 2011
D2

1 20 1 20

10

BitCount 1 2 3 400

GRAB9

CLK

SIGIN

SampCount

BIT9

GOTSTART

01234567000000

4th low

D0 D1 D2 D3START

0123456701234567

CLRSAMPCOUNT(FIXED)

FIGURE 4.22

CLRSAMPCOUNT

IDLE

FIX

Q1
Q2

Q0

Areas where BIT9=1 
and GotStart=0

©jknight, 2010



Carleton University Prelab   

MIDI-14 SWITCHING CIRCUITS © J.Knight, March 3, ’11

7.18  Draw the circuit and add a gate to each enable input so the enables can only get through, 
and thus the counter can only count, when GRAB9=1.

7.19  Add gates to BitCount to give the BIT8 and BIT9 outputs.

Do this in the second week prelab. It is hard!
7.20  Fill in the K-map and design a circuit using BIT9 and GOTSTART to generate CLRSAMP-

COUNT. Add  CLRSAMPCOUNT to the timing diagram,  Fig. 4.22 above, making it high at two different times.
7.21  Look at the “possible unwanted clear” pulse in  Fig. 4.18. and hopefully in  Fig. 4.22. It comes when 

D1=1, before BIT9 goes low. Carefully highlight the value(s) SampCount has during the unwanted clear. 
List the values here __________________.

7.22  Determine a FIX signal that can be generated inside SampCount and can be used to hold  CLRSAMPCOUNT  
low until BIT9 can take over. Check it doesn’t clear SampCount when it shouldn’t.
Draw the circuit to add to SampCount.
Plot  FIX  on   Fig. 4.18. 
Draw the new  CLRSAMPCOUNT on   Fig. 4.18.

7.23  Design the circuits in Parg. 7.28 to Parg. 7.30

BIT9
GOTSTART

0
0 1

1

CLRSAMPCOUN



© J.Knight,March 3, ’11 SWITCHING CIRCUITS MIDI-15 

For The Prelab, Implement This Design
Modular Design

The interface can be divided into modules such as shown in  Fig. 4.7 and Fig. 4.23. If you use these mod-
ules with the same I/O signals, you can use the module test fixtures supplied. We strongly encourage you to en-
ter and test each part individually.

 7.24  Last4Samp block
Design a circuit to take a sample of SigIn on every active clock edge, and store the

value of the three previous samples with names S3, S2, S1, S0(oldest). It does this continu-
ously. 

On start up the simulator will send out an RST signal which will clear all the flip-
flops. Thus FindStart will think it has found a start bit and keep going.  This will give a mess
at the start of the simulation. If one puts an inverter before and after every flip-flop, the flip-
flop will  externally appear just the same, except the RST signal will not be inverted, and the output inverter
will make it appear that the  flip-flop was set to one.

 7.25  Majority Block
Design a circuit whose output is the value of the majority of the last 3 samples.

 7.26  FindStart Block
Design a circuit whose input is the last 4 samples from the SigIn lead. The output GotStart is high if the

3 of the 4 last samples of SigIn are zero.

 7.27  SampCount Block
Design a counter which counts from 0-to-7 and then repeats, one count per clock cycle. It should have an

input CLRSAMPCOUNT which, when high, sends the count to 0 on the next clock edge. On the eighth count (a
count of 7) it should send out a GRAB pulse one clock cycle long. Another output may be needed later. Con-
struct the T flip flops, using D (or enabled D) flip flops and an inverter. Alternately most flipflops have a Q out-
put which can be fed back without the inverter.

Do the counter by temporarily grounding the FIX output. Add that last when you design COUNTCLEAR.

 7.28  Ser2Par Block
Design this as per the description in the box. It only captures a bit when GRAB8 is high.

Q

C
D

RST
CLR

In

Zn

Dn



Carleton University For The Prelab, Implement This Design   

MIDI-16 SWITCHING CIRCUITS © J.Knight, March 3, ’11

FIGURE 4.23  Block Diagram, repeated.

 7.29  BitCount Block 
This circuit counts the data bits and the stop bit, a total of 9 bits. This means 4 flip flops are needed. The

input is the GRAB pulse, and it has two outputs each 8 clock cycles long. One is high during the eighth count
and one during then ninth (counts of 7 and 8 respectively).

   Alternate BitCount Block (An innovation, the test fixture won’t support this. See Prof Knight)
One does not need to design a separate

counter. The shift register in the SER2PAR
block can keep track of the number of bits
coming in. Use an extra D flip-flop and set the
first flip flop to “1” and the others to “0” ini-
tially and sometime during the start bit. For
example when BIT9=1 and SAMPCOUNT= 6.   Implementing this will require modifying midi_top and the test
fixture.

 7.30  CountClear Block
Design a block to generate the signal  CLRSAMPCOUNT, which clears SampCount during the later part of

STOP bit through to the first half of the START bit. From  Fig. 4.18, generating the “wanted clear” pulse is
easy. Avoiding the “unwanted clear” requires studying the figure carefully.

 Variations (Innovations)
The criteria for GOTSTART are somewhat arbitrary. One could think of several alternatives. You should be

able to argue that your changes are an improvement.

GOTSTART

GRAB9

CLK

BIT9

BIT8

DATAVALID

D7
D6

D5

D4

D3

D2

D1

D0

MAJ

Parallel output

Read the eight Dn lines
only if DATAVALID =1.

©jknight, 2010

CLRSAMPCOUNT

GRAB8

BitCount
En

GRAB9
GRAB8

9

8
8

9

Counts the
bits

 received

SER2PAR

En
Capture the 8

data bits
 entered

serially and
 sends them 
out in parallel

COUNTCLEAR  SampCount

Counts the
8 samples

in
each bit 

BIT8

Clears SampCount 
 after STOP bit 

GOTSTART removes 

BIT9

 clear   except for
START

SIGIN

    LAST4SAMP

FINDSTART

MAJORITY

Serial input

Sends out the
majority value 
of last 3 samples 

Continuously stores
the last 4 samples 

Finds “0” samples 
in Start bit 

S0S1S2S3

S3 S2 S1S3, S2, S1, 0
are called 
Samp3, Samp2
etc. in the
templates. 

Do these three 1st

Do this 2nd

Do this 3rd omitting FIX; Do this 4thDo this last
come back and add FIX last

FIX

CLR

Q=D4

C

D

CLR

Q=D3

C

D

CLR

Q-D2

C

D

CLR

Q=D1

C

D

CLR

Q=D0

C

D

RST

RRRRS
En En En En En

©jknight 2011



© J.Knight,March 3, ’11 SWITCHING CIRCUITS MIDI-17 

In The Lab.

After you have designed the circuit, you will enter it graphically into the
computer as schematic diagrams. After the circuit is entered, you will simulate it
to check its operation.  

While the blocks are individually simple, connecting the whole circuit at
once will make debugging difficult. Implement the above blocks one at a time.
Test fixture files are available to help you simulate the individual blocks. There is
also a test file to simulate the whole MIDI interface.

By the end of the first lab period you should aim to have entered at least-
three of the blocks. Simulating and debugging will be slow. Do not leave too
much for the second period. Try starting with the MAJORITY block.

Displaying Waveforms
The test fixture file can do a lot to help you check your circuit. There are

three waveforms, not in your circuit, which it will displayed.
  StudNumb displays your student number for comparison with the midi data.
The data in the first MIDI word is the last 6 bit of your student number in binary.
  startguide displays a pulse during the start bit to make it easy to find.
  serialin displays the serial input data as an integer.
  data  displays the parallel output data as an integer, with D0 as the least signifi-
cant (leftmost) bit.
  timetick shows the start and end of each data bit.
   samp3  shows the input delayed by the shift register. (it may be hard to display) 

The Test for the Complete Circuit
After you have run the simulation file on the full MIDI schematic, you should run it with your own data.
The test files are written in Verilog, a language for describing and simulating digital circuits. You will

use Verilog next year in ELEC3500.

All Verilog instructions end in semicolons. If there is no “;” the instruction is continued on the next line.
Comments start with  //, or are enclosed in /* . . . */.

In the midi file, the 10 values of SigIn which make up the MIDI word are written out
serially as in  Fig. 4.24 The values of SigIn are set. The #32 indicates a 32 μs delay before
the next change. Thus both boxes on the right give the pulse shown below them. Writing the
#32 between the lines makes it clearer where the delay is, but takes more space.

 A typical data word, with the start and stop bits underlined, is  0 0 1 1 0 0 0 1 1 1, see
Fig. 4.24 for the Verilog code.

Your student number, or your partners, is used as data in the midi  test_top.tf  test fixture file.
       integer StudNumb;
// ENTER YOUR STUDENT NUMBER HERE.
//-------------------------------

        initial StudNumb = 312153;  // skip the initial 100
//-------------------------------

 The Verilog program will translate it into binary, and use the 8 least significant bits as test data.

// Start bit
      SigIn =0; 
           startguide=1;
#32;    startguide=0;    
// 8 Data bits
       SigIn =0;
#32; 
       SigIn =1;
#32; 
       SigIn =1;
#32; 
       SigIn =0;
#32; 
       SigIn =0;
#32; 
       SigIn =0;
#32; 
       SigIn =1;
#32;
       SigIn =1;
#32;    
// Stop Bit
       SigIn =1;
FIGURE 4.24
Part of the test file showing 
startguide

SigIn = 0;
#32;

SigIn = 1;
#32;

SigIn = 0;
#32 SigIn = 1;
#32 SigIn =0

SigIn = 0;

SigIn 
32 64



Carleton University Your Report   

MIDI-18 SWITCHING CIRCUITS © J.Knight, March 3, ’11

In the simulation the incoming midi bits are exactly 32μs long and the receiver clock is exactly 4μs. Nor-
mally the transmitters idea of a 32 μs is not the same as the receivers. One might be a little faster. If the receiver
clock period were say 3.7 μs, the SAMPLE pulse would not be in the right place to sample the final bit.

The Test Fixture Log
 Read the simulation log, particularly at the end. It summarizes the date that went into your design, and
what came out. You will need a printout of it for your report.

Noisy Data Tests
The test file test_top_noisy.tf  which has the student number word (noise free) followed by three samples

of noisy data. You can tell how well your circuit rejects the noise. 

The signal starts with a good midi word, and changes it by XORing each sample with a random bit
string. In 2011 the random bit string was set to a 2% probability of being 1 and thus flipping the sample. With
2% noise your circuit will probably not allow errors to get through.  With 15% or more, it probably will.

With high noise the midi bits may be so distorted you cannot tell where they start. There is a variable
timetick which shows the start and end of each data bit. Also the input, before the noise is added, is called x. 

If you have noise related errors, you should be able to take the printout, showing one of the midi words
that gives an error, and explain in why the circuit failed in your report.

Your Report
The marker will not believe that you intuitively know how the Midi interface works. You must explain,

at a high level, the function of the complete interface and the individual blocks. For example, could you not
give a better explanation of the ser2par block than is in the lab sheet.

Your design and design methods should be included. Most people’s designs will follow the prelab out-
line. Brag about any changes you made, particularly if you think they are an improvement.

 Your report should be coherent, and not jump over design derivations. Put in your schematics and your
final simulation. The circuits should agree with those you actually used.

Testing and implementation are important. You should neatly highlight and write comments on the
waveforms. It is very hard for someone to make sense of simulation waveforms if they do not know what is be-
ing simulated. You must explain what the waveforms mean.

Common reasons for losing marks in MIDI reports
• The author of each section is not identified at the top of each section.
• The report uses two much unexplained jargon. For a reference level, assume your report will be used a 

crutch for a student doing the lab next year. He/she should be able to understand it. That student might just 
get a question about serial-to-parallel conversion on the final exam

• The paragraphs or sentences do not make sense. Example from a recent report, “Since SigIn is asynchro-
nous, the SigIn  data is input when the data is low.”

• Not describing the design of the modules.
• Not describing the final simulation. This is the test that your circuit works. State how you know your circuit 

works. Be sure to write short neat comments on the waveform printout.
• We repeat! Annotate your waveforms in detail.



© J.Knight,March 3, ’11 SWITCHING CIRCUITS MIDI-19 

• Not including the last part of the simulation log, showing input and output data.
• Leaving out sections.
• Copying the sections verbatim from the laboratory write-up. 
• Copying pictures from the lab sheet and not acknowledging each of them. 
• Not attaching the prelab as an appendix.
• Not placing your names on the schematics.
• Copying a last years report. The changes give this away easily. Plagiarism is a major offense.
• Passing in simulations with a student number that is not yours, your partner’s, or 312153.



Carleton University Appendix   

MIDI-20 SWITCHING CIRCUITS © J.Knight, March 3, ’11

Appendix 
Why one should not use any old signal as a clock.
Suppose one decided they would not use enabled flip flops in SER2PAR because they would apply GRAB di-
rectly to the CLK inputs. 

Clock signals are carefully designed so that they arrive at every clock input at almost exactly the same time.
They are not delayed by going through gates. 

In  Fig. 4.25, both the LAST4SAMPLES circuit and the SampCount circuit get CLK at the same time. However
the GRAB signal and the MAJORITY signal are delayed by going through flip flops and gates. Which signal
changes first?

If MAJ is high before the rising
edge of GRAB, it will be captured
properly. However if MAJ is slow-
er, then GRAB will clock the flip
flop while MAJ is still low, and
will miss it entirely. This will be
taught in more detail in the next
course. For now, follow the rule:

Never send any signal but
CLOCK into the C input of flip
flops.

Another, simpler reason for not
sending low-class signals into the
C inputs is that any glitch on GRAB

will cause the flip flop to capture
an unwanted signal from MAJ.

CLR

Q

C

D

CLR

Q

C

D

CLR

Q

C

D

CLR

Q

C

D

RST

D6 D5 D4

GRAB

D
C

En

D
C

En

D
C

En

Q2
E2

Q1

Q0

Q2

Q1

Q0

E1

E0

©jknight, 2008

C
D

C
D

C
D

C
D

RST

S3 S2 S1 S0
S(t)

FIGURE 4.25 Why one should not use GRAB as a clock.

CLR CLR CLR CLR

Q Q Q Q

Majority

MAJ

CLK

GRAB

CLKCLK

≥2

SampCount

SER2PARD7 if GRAB Faster 
D7 if MAJ Faster D7

LAST4SAMPLES

active edge of grab   

FAST SLOW

Comb
Logic



© J.Knight,March 3, ’11 SWITCHING CIRCUITS MIDI-21 

SampleCount Using 5-Variable Maps

FIGURE 4.26 State graph for SampCount.

FIGURE 4.27 The SampleCount state table using a CL (CLRSAMPCOUNT) signal. 
 

This will require three 5-variable maps. UGH!

S0

S1

S5

S6 S2

C
LRS

A
M

PC
O

U
N

T

S7
GRAB9

S3
S4

Counter state table  In K-map order

Count State Next State 
CL=0   inputs Next State 

CL=1   inputs

Q2Q1Q0 Q2
+Q1

+Q0
+ CLD2D1D0 CLD2D1D0

0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0
3 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0
2 0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0
4 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0
5 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0
7 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
6 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0

©jknight 2011

Did you think we would give you
the whole table so you could
paste it into your lab report with-
out your doing any thinking?



Carleton University Appendix   

MIDI-22 SWITCHING CIRCUITS © J.Knight, March 3, ’11


	Laboratory 4 A MIDI Interface
	Overview
	Brief Higher-Level Description of the MIDI Signal (Background, not part of lab)
	The Serial Input (SerIn) Signal
	Noise on the Serial Input (SerIn) Line
	The Clock Rate and Majority Value of the Bit Samples
	Generating the Grab Pulses That Capture the Data
	The Block Diagram of the Circuit, See Fig. 4.7

	Counters Using D Flip Flops
	(A) The D Flip Flop
	Counter Design with D Flip Flops
	Counter Design with D Flip Flops and Clear
	Clearing Counters Synchronously
	(B) The Enabled D Flip Flop
	En does not clock the flip flop, but it might appear to. (See Fig. 4.14)
	Counter Design with Enabled D Flip Flops

	Shift Registers
	The CountClear block
	The High Level Block Diagram and I/O Signals

	Prelab
	Questions Get as close to 7.14 as you can for the first lab session.
	We suggest stopping for the prelab for the first week.
	Do this in the second week prelab. It is hard!

	For The Prelab, Implement This Design
	Modular Design
	Alternate BitCount Block (An innovation, the test fixture won’t support this. See Prof Knight)
	Variations (Innovations)

	In The Lab.
	Displaying Waveforms
	The Test for the Complete Circuit
	Noisy Data Tests

	Your Report
	Common reasons for losing marks in MIDI reports

	Appendix
	Why one should not use any old signal as a clock.
	SampleCount Using 5-Variable Maps



