Bit Serial Adder

Is very suitable when the data is coming in/going out serially. - very small and can deal with data streams at ~ 1Ghz (0.18um)

Carry–Save Adder (CSA) and Carry Save Trees

Regular Way

 add each column and bring carries over to the next column 		This calculation can also be done if we seperately produce the sum and carry bits	
- the Cn +	$+$ An $+$ Bn $=$ {Cn+1, SUMn}	and add them at the end!	
	carry-bits	10011 19	
А	10011 19	$\frac{+00110}{21}$ $\frac{6}{21}$	
+ B	+00110 6	(A xor B) IntSum 10101 ²¹	
	011001 25	$\begin{array}{c} \text{Carry} \underline{00010} \underline{2^{+}2} \\ 011001 25 \end{array}$	
		011001 25	

So far this isn't particularly usefull, but if we look at a 3 input adder:

А	01100	12
+ B	$1\ 0\ 0\ 1\ 1$	19
+ C	00110	6 /
Sum bits	(11001)	25
Carry bits	00110	6*2
Final Result	$1\ 0\ 0\ 1\ 0\ 1$	37

INDEPENDENTLY, for each column produce
a sum and carry bit with a normal full-adder

Eventually add them up for the final result.

A CSA adder representation

We can build a tree and get a logarithmic circuit!