Par allel Procedures

4)

Races From Blocking “=" Assignments
Parallel Procedures
Blocking assignments follow order of Parallel procedures
statements inside a procedure blocking
Parallel procedures have no order. - With Blocking both start at same
blocking time.
always @ (posedge clk) - acould transfer to b first.
begin b could transfer to a first.
a = b;
end
always @ (posedge clk) nonblocking
begin - This is two parallel flip-flops
b = a;

- Both clocked at same time.

end Think: next-state <= previous state
nonblocking a" <= b; b*— b
always @ (posedge clk) b" <= a;
begin
a <= b;
end

always @ (posedge clk)

b <= a;
end
Printed; 26/09/03 Department of Electronics, Carleton University Slide 45
Modified; September 26, 2003 © John Knight Vrlg p. 89

Races From Using Blocking Assignments

Races From Using Blocking Assignments
Inside a procedure blocking assignments are executed in the order of the statements

always @(b)
begin M akes
a=b; } c=b;
c=a;
end

Inside a procedure nonblocking assignments always use the data valid before the trigger.

always @(b)
begin isequivalent to
a<=b; C<=a;
c<=a; a<=b;
end

Parallel proceduresin different always blocks, have no predefined order with blocking assignments.

always @(b)
a=b; May make or it may make
alwizz-@(b) c=b; c=a;//for some old a

Parallel proceduresin different always blocks are defined with nonblocking assignments.

always @(b)
a<=b; Will make
always @(b) c=a;//for some old a
c<=a;
Printed; 26/09/03 Department of Electronics, Carleton University Comment on Slide 45

Modified; September 26, 2003 © John Knight Vrlg p. 90

Two Outputs Connected Together

4)
Multiple Assignments
Two Outputs Connected Together Multiple Assignment
« Mutually exclusive means that Q<=D1
1 Clk
a z:ig,'in@ (posedge) and Q<=D2 could never happen
if (Enl) O<=D1; together.
end - If they were both in one if-else
statement the compiler would know
always @(posedge CLk) they could never happen together.
begin - Here both EN1 and EN2 might be true
if (En2) Q<=D2; together.
end : : .
Possible Simulation Results
« The simulator will choose one to do
first. No one knows which. The lasting
result will be the final one.
Possible Synthesis Results
- The compiler chooses one result.
- The compiler generates two flip-flops
and ANDs the result.
- All outputs my be disconnected.
N J
Printed; 26/09/03 Department of Electronics, Carleton University (Slide 46

Modified; September 26, 2003 © John Knight Vrlg p. 91

Multiple Assignments

Multiple Assignments

If both statements are in the same procedure, the En2 would replace the Enl result in zero time.
In synthesis this would mean the En2 result would take priority over Enl.

always @(posedge CIK)
begin
if (En1) Q=D1,;
if (En2) Q=D2;
end

Blocking was used for flip flops, to ensures Q=D2 is done after Q=D1 and hence replaces Q=D1.

If delays are put on the statements simulation could give a glitch. Synthesis would not. It would generate a

circuit which would give EN2 priority.
aways @(posedge CIk) D1

begin 5 e,
if (Ent) #2 Q<=D1; D2 %:D i
EN1__| c1

if (En2) #3 Q<=D2:

end EN2 — Clk_r

EN2 has priority over EN1

20.e PROBLEM
What happens here?!

always @ (posedge Clk)
begin if (Enl) Q=D1;
end

always @ (posedge Clk)
begin if (~En2) Q=D2;
end

1. Thisisapoor way to code. It should work for simulation since the two Qs are never activated at once. Synthesis might do anything.

Printed; 26/09/03 Department of Electronics, Carleton University Comment on Slide 46
Modified; September 26, 2003 © John Knight Vrlg p. 92

Demux I nference from case

4 _)
Using Case Statements

Demux Inference from case

wire [2,0] in;
reg [7:0] Y;

Full Case

« All cases are covered.
It avoids latches

always @(in) begin Parallel Case (Mutually Exclusive)
case'(:Ln) , - No two cases can be active at once.
37d0: Y=8"b00000001; It can be implemented as a mux.
3’dl: Y=8'b00000010;
3’d2: Y=8'b00000100;
3'd3: Y=8'b00001000; No undefined or parallel cases
3!345 Y=8,200210000f - The compiler can statically determine
37d5: ¥Y=8'b00100000; that all possible cases are covered.
3’d6: Y=8'b01000000; _ _ _
37d7: Y=8'110000000; . Thhe compiler can statlcal!y determine
endcase that no two cases are active at once.
O@@\yﬁ
— 10
in{ _1}Gi Y [7:0]
bl T o——
s
1— 3
| would put in a default statement, even g_
though it is not needed. g—
default: $display (* Error”);

N\ /

Printed; 26/09/03 Department of Electronics, Carleton University Slide 47
Modified; September 26, 2003 © John Knight Vrlg p. 93

Multiple Assignment Race (cont. from

Multiple Assignment Race (cont. from previous page)

21.» PROBLEM dk 1L 1
What common simulation problem might be caused by y \‘ L |
this code? m=(ck)xy y .
wire clk, x, V; q<=m(t-) we hope |V ME*
reg m,dq; X 3 m
always @ (posedge clk) \m |1D7q
begin: storage y 0 1
qd <=M clk
end Thisisa subtle simulation race. Both the

always @(clk or x or v) mux and the flip flop respond to clk. The flip
begin: mux flop, as per the rule uses nonblocki ng assigns.
if (clk) m=x; Q The mux, as per the rule uses blocking assigns.
else m=y; \e However on posedge clk the
end; Q) simulator might choose the mux first. Then the
mux code would block the flip flop until the mux
Here the mux needs nonblocking®! | had switched.(red dashed line)

The actual circuit would capture the mux
value before the clock switched aslong as the
clock to output delay in the mux was greater than
the hold time of the flip-flop.

1. Another way of insuring the mux is done last isto write:
If (clk) #0 m=x; else#0 m=y; “#0” declaresthat a statement isto be donelast in that time step. See S. Palitkar, Verilog HDL, p. 127.

Printed; 26/09/03 Department of Electronics, Carleton University Comment on Slide 47
Modified; September 26, 2003 © John Knight Vrlg p. 94

Full Case; Latch Inferencein Case

Not Obvious Full-Case,
Case with a restricted input

Full Case; Latch Inference in Case

reg [6:1] Y;

always @(a or b or c)
begin

/lifab,c=1,1,1 make c1=0
cl = (a&b&c) 20 : c

case({a,b,cl})
3’d0: Y=000000;
3’7dl: Y=000001;
3’d2: Y=000010;
3’d3: Y=000100;
3’d4: Y=001000;
3’d5: Y=010000;
3’d6: Y=100000;

endcase

end

N\

Apparent undefined cases
3'd7: Y=000000;

a,b,c =1,1,1 cannot occur.
Synthesis does not know that.
Thus synthesis will infer 7 latches.

To avoid latches
Put in default

3 d5: Y =010000;
3 d6: Y=100000:
default: Y=000000:;

Better default

A better default is:
default: Y=XXXXXX;
It gives the synthesizer more choice.

\

/

Printed; 26/09/03
Modified; September 26, 2003

Department of Electronics, Carleton University Slide 48
© John Knight Vrlg p. 95

Using Case

Using Case
There are severa problems that can happen with case statement synthesis.

1. If the caseis known to cover all the possibilities the input condition can assume it is said to be a full case.
Unfortunately the synthesizer will not know this unless case covers all oN possibilities for an N bit
condition. If the synthesizer does not know it isafull case, it will insert latches.

2. If two different conditions may happen at once, they will activate two different outputs at the same time.
Thisis called a nonparallel case.

Not Obvious Full-Case

If acase contains all 2" cases no latches will be generated.

If it contains less than 2" cases, latches will be generated unlessiit is very obvious all cases are covered.
Synthesizers do not ook back very far to determine if all cases are covered.

Use Default
The default statement does no harm if it is put in and not needed.

Always put in a default, whether you need it or not, unless you want the latches.

Place xxxx asathe Default Output

If you know the default will never be selected by the case, then you can put in anything you want.
Thelogic that is easiest to minimizeis x (don’t care). Requiring the default to take some particular value, like

zero, can greatly increase the size of the circuit.

Printed; 26/09/03 Department of Electronics, Carleton University Comment on Slide 48
Modified; September 26, 2003 © John Knight Vrlg p. 96

Nonparallel Case

N\

\
Nonparallel Case .
Not Mutually Exclusive (nonparallel) Case
_ - Two cases can be active at once.
NOT Mutually Exclusive Priority encoder generated.
always @(x or y or z) begin
(1 bl) X HPRI / BIN Y[l]
case (1’ -
0 2
x: Y=2/b01; I N -y (U
y: Y=2'b10; y 2
Z: Y=2'bll; 3
default: Y=2'bxx; z
endcase _ _ _
Svynopsys Compiler Directive
) Simulater treats as comments
always @(x or y or z) begin happen at the same time.
case ({x,y,z}) Designer must enforce this!
3'b100: Y=2'b01; Force Parallel Case
3'b010: Y=2:b10; Il synopsys parallel_case
3'b001: ¥=2"bll; avoids creating a priority encoder
default: Y=2'bxx; ,
endcase case(1’bl) // synopsys parallel_case
X 262 b0
y: ‘3‘?!—2)&@160
z: 2§22 111 ;
default: Y=2'bxx;
endcase
J

Printed; 26/09/03
Modified; September 26, 2003

Department of Electronics, Carleton University
© John Knight

Slide 49
Vrlg p. 97

Par allel-Case

Par allel-Case

Whenever two or more lines of the case statement may be selected at once, the simulation executesthe first line
encountered in the listing. Thisislike a priority encoder.

In aparallel case, the synthesizer assumes some other circuit keeps two lines from being selected at once.

l/synopsis directives can be used to tell the synthesizer to force a parallel-case but one can also write the code
to explicitly say what is desired. This latter method is synthesizer independent and keeps the ssmultation and
synthesisin agreement. Such code may require the casex (or casez) command described on the next slide.

Codingfor full decoding. priority encoder. or parallel case

_— YI1]
rO
g Y[2]
%)
HEED-T

dways@(xory or 2)
n

ces({xy,z})
3'b100: Y=3b100:;
3'b010: Y=3b010;
3'b001 : Y=3b001L
default; Y=3b000;
endcase

Full decoding:
Assumes more than one
of x,y,zcan be 1 and
removes those cases.

Y[1 Y[1]
~-1 EY)
‘_OD_Y[Z] somebody 3_ (2]
Y[3 else makes Y[3]
83 3] mutually }
| exclusive
dways@(x ory or2) dways@(x ory orz)
n n
casx({xyz}) casex({Xy.z})
3 bixx: Y=3b100; 3 blxx: Y=3blxx;
3b01x : Y=3b010; 3 bx1x: Y=3bx1x;
3b001: Y=3b001; Jbxx1: Y=3bxx1;
ddfault: Y=3b000; default: Y=3bxxx;
endcase endcase

Priority decoder
Assumes more than one
of X,y, zcan be 1 but
takes the first one as
correct

Parallel case
Assumes only one of
X,Y,z can be 1 at atime.
Depends on some other
circuit to enforce this.

Printed; 26/09/03
Modified; September 26, 2003

Department of Electronics, Carleton University
© John Knight

Comment on Slide 49
Vrlg p. 98

Difference between case, casez and casex

-

N\

\
Difference between Cae caxz and casex
Case treats 1,0,x,z as seperate; x matches only x; x matches only z.
Casez treats z as awild card. It matches 1, 0, x and z.
Casex treats both x and z as wild cards; either will match anything
case() casez () casex()
1: matches 1 1: matches 1 1l1: matches 1
0 matches 0 0 matches 0 0O: matches 0
z: matches z x: matches x x: matches z,x,0,1
X matches x z matches z,x,0,1 z: matches z,x,0,1
1x0 1x0 1x0
case (£) casez() casex>)
110: no 110: no 110: match
x10: no x10: no x10: match
1z0: no 1z0: match 1z0: match
1x0: match 1x0: match 1x0: match
" x, z on left z on left
are not wild cards matches anything
J

Printed; 26/09/03

Modified; September 26, 2003

Department of Electronics, Carleton University
© John Knight

Slide 50
Vrlg p. 99

Casex/casez

Casex/casez

For simulation

Ca= treats abit in avariable as having four possible values {0, 1, x, z}, thus x only matches x, not 1 or O.
Casex treats x, z or ? asadon’t care which can match O, 1, X or z.
Casez treats z or ? asadon't care which can match O, 1, x or z, but x cannot match O or 1.

\data
case

0
1

z,?

For example: Given- aa=3b'1x0;

case casex casez
0 1 x z casd®@® 0 1 x z case, @ 0 1 x oz
1 0 0 0 o[1 0o 1 1 o[1 0o o0 1
0 1 0 0 1 0 1 1 1 1 0 1 0 1
0 0 1 0 X 1 1 1 1 X 0 0 1 1
0 0 0 1 z,? 1 1 1 1 z,? 1 1 1 1

case (ag)
3'b110: ...// No match because 1 does not match x with a case statement.
3 b1x0: ... // Matches

casex (a8)
3bl110: ...// Matches aa because 1 does match x with a casex statement.
3'bx10: ..// Matches aa

casez (aq)
3'bxx0: ... // x does not match 1 with a casez statement, although x matches x.
3'bzz0: ../l Matches aa

For synthesis

No x valuesever propagate in synthesis. However x values in the simulation cause an unex pected match with
casex. Usng casezwill avoid those problems.

Don’'t caresin the outputs are fine for case, casez or casex.

Printed; 26/09/03
Modified; September 26

Department of Electronics, Carleton University Comment on Slide 50
, 2003 © John Knight Vrlg p. 100

Don’t CaresIn Case Control-ltems

N\

\
| Don’t Cares In Case Control-ltems
Generates a priority encoder
wire [3,1] in; - zz1 has the highest priority.
reg [1:0] Y; Default
always (in) begin « Covers only 3'b000.
casez (in)

/[With casez, in=11x will match only default. 0 HPR”B'ZN Y[1]

14 . —) 7 . 1 0 |
3'bzzl: Y=2'b01; in[1]— |4 1 YIOl
3’bz10: Y=2'b10; in[2] 5
3’b100: Y=2'bl1l; 1n[3]—'_'3
default Y¥=2'b00;
endcase

: : . Don’'t Cares Can Simplify Logic
Don’t Cares In Right-Hand Side
. - Don’t force the defaults to
always @(x or y or z) begin zero if you don't care.
case ({x,y,z}) It makes the logic larger.
3’b001: Y=2'b01; c ¢ ¢ tout
37b010: Y=2'b10; d:rs]’fzcgroesnecessary or outpu
3’b100: Y=2'bl1l; '
default Y=2'bxx; - casez prefered over casex.
endcase
J

Printed; 26/09/03

Modified; September 26, 2003 © John Knight

Department of Electronics, Carleton University Slide 51

Vrlg p. 101

Casez will stop unknownsin simulation

Casez will stop unknowns in simulation

With casez, x inputs will give an error message.
wire [2,0] ct;
reg [1:0] Y;
always (ct) begin: Proc-Safey
casez (ct)
/] With casez, ct = 1x will match only default.
3'bzl: Y=2'b01;
3'b10: Y=2'bl0;
3'b00: Y=2'Db00;
default $display(“1lor X input in Proc-Safey”)
endcase

always (ct) begin: Proc-Sloppy
casex (ct)
/] With casex, ct = 1x will match 3'bx0 (also 3'b10).
3'bx0: Y=2'b01;
3'b10: Y=2'bl0;
3'b00: Y=2'b00;
default $display(“11l input in Proc-Sloppy”)
endcase

Printed; 26/09/03 Department of Electronics, Carleton University Comment on Slide 51
Modified; September 26, 2003 © John Knight Vrlg p. 102

Confusion Between Reg and I nteger

4)
Negative Numbers J—
+2 010
Confusion Between Reg and Integer +01 883
Integersare 2's Complement % ﬁé
Integers declarations default to a 32-bit 2’s complement number. -3 101
The compiler will eventually decide how many bits are needed. 4 100
Reg numbers are nonnegative integers) 3-bi§ t
The length of registered numbers is given in the declaration. S ggrn:]gee;gwen
Negative reqgister numbers sign extend only to the length of the reqister
Value of X
| reg [7:0] B,C; X will hold a 5-bit -7
reg [4:0] X; -00111 = 11000 +1=> 11001 {-7 in 2's complement}
ziblways @(B, C, X) Reg numbers are never negative,
e)g(m_ 5 g7 Hence 11001 is taken as 25.
, B = 10: - BI;WII gg(l)(?) fgfglOlO (10 truncated to reg[7:0])
C=B+X; - = : 10
ad - T +X = 41,001 25
C =0010,0011 35
Did you want 35 or 37?
N _/
Printed; 26/09/03 Department of Electronics, Carleton University Slide 52
Modified; September 26, 2003 © John Knight Vrlg p. 103

Negative Numbers

Negative Numbers
Two’'s Complement

To change a binary number toitstwo’'s complement

Change the exchange the ones and zeros, then add 1, ignore any off-end carries from the add.
-10 = -001010 = 110101 +1 = 110110 {-10 in 2's complement}

Sign Extension
Two's complement numbers of the same length may be added in a normal adder.

Two's compliment numbers of different lengths must be sign extended when added.
The leftmost bit is replicated until the words are the same length. For example

0000,1010 Signextend 0000,1010 (10)

~50T0-6011 0000,0011 (3)
A one-bit sign extension in Verilog might be written:
reg [4:0] x; reg [5:0] vy, z;
z = {x[4], x} + v ; [/l signextend x to 6 bits.
|f the bits represent unsigned numbers, then do not sign extend.
Sign Extension and Overflow

Two's complement addition is subject to overflow.
If one sign extends before adding, one can never get overflow.

010 (2) signextend o0o10 2)
+011 (3) = + 0011 1©
101 (-3) 0101 (5)

Printed; 26/09/03 Department of Electronics, Carleton University
Modified; September 26, 2003 © John Knight

Comment on Slide 52n
Vrlg p. 104

Confusion Between Reg and I nteger

4)
Using For Loops For Building Iterative Hardware

Build an W-bit ripple-carry adder.

parameter W = 5; /l Take W=5 here
reg [W-1:0] A, B, reg [W:0] S; /I Sis the sum
wire c in, c; /I ¢ changes its meaning in each loop
integer i; /I always make the index an integer
always @(c in or A or B)

begin

c = c in;
for (i=0; i < W; i=i+l)

begin
{c, S[il} = A[i] + BI[i]l + ¢ // Concatenate the outputs into a 2-bit vector.
end
S = {c: S(W-1:01};
end

c in

N\ _/

Printed; 26/09/03 Department of Electronics, Carleton University Slide 53
Modified; September 26, 2003 © John Knight Vrlg p. 105

Hardware L oops

Har dwar e L oops!

L oops give multiple copies of a basic instance.

The codein the loop will be synthesized, a different instance for each iteration.
Output leads from one block, with the same name as an input lead, will connect between iterations.

Seethevariable “c” in the program.

Theindex variable “i” is not changed outside the loop, so it should not be in the trigger list.
While loops are partially supported for synthesis. They represent a conditional branch. All while loops must be

broken by an @(posedgedock) statement. Thus:-
always @ (posedge clock)

begin
while (b <8)
begin
@ (posedge clock) ; // break the zero delay loop
b <= b+2;
end
end

1. Palnitakar, Verilog, Prentice Hall, 1998, p..285

L

L

CLKE]

S

Register

L

8 s

Compare

Printed; 26/09/03 Department of Electronics, Carleton University
Modified; September 26, 2003 © John Knight

Comment on Slide 53
Vrlg p. 106

Confusion Between Reg and I nteger

\

An Iterative Comparator Hardware

Build an 5-bit comparator from blocks.

reg [4:0] A, B;
reg x, Y;
integer 1i;
always @(A or B)
begin
x=0; y=0; // Above the highest order bit, the two are equal
for (i=4; i>=0; i=i-1) // x=0, y=0 goes in at high end.
begin
x=(A[i] > B[i])&(~y) | x; // Aislarger at this bit or at a higher order bit.
y=(B[i] > A[i]) & (~x) | y; // B is larger at this bit or at a higher order bit.

end
end
Ay B A, B A, B A, B Ap B
VO i i VR e PV A JRRORR i WAV A i)
O —» ==|—>»—p» == —>—» —— > —— > —p == —>
Y Y Y Y Y Y Y Y Y Y
0O —» i~ — > ——Pr L L -
At the output:
X,y =0,0 means A=B, x,y=1,0meansA>B, x,y=0,1means A<B,
Printed; 26/09/03 Department of Electronics, Carleton University Slide 54
© John Knight Vrlg p. 107

Modified; September 26, 2003

L oops to Generate Iterative Circuits

L oopsto Generate Iterative Circuits

Thisisan iterative comparator used as alab in the Switching Circuits course at Carleton.
It only compares non-negative integers, where the number with the leftmost “1” isthe largest.
22.+ PROBLEMS

a. Writeafor loop to calculate the parity of a 6-bit number. It should include-
if (data[i]) OddPar= ~OddPar;

b. Oneway to change a binary number to its two’'s complement is:
Start at the right hand side.

Leave all bits unchanged until after thefirst “1” isfound.
Invert all bitsto the left of the initial “1”.

Thus: 1001 1000 has complement 0110 1000
Write aloop to generate such acircuit.

Printed; 26/09/03 Department of Electronics, Carleton University

Comment on Slide 54
Modified; September 26, 2003 © John Knight

Vrlg p. 108

Confusion Between Reg and I nteger

N\

Complier Directives

Tell The Synthesizer What To Do

Written like comments
/[synopsys . ..

The simulator will ignore them
Directs synthesis.

Simplifies some language problems.
However it is nearly always possible
to avoid them by proper coding.

Thus simulation will agree with synthesis
only if it was coded properly.

Limits you to one compiler.
Makes formal verification difficult.
There are many of these compiler

directives.
Check the Synopsys Manual

\

Example
Force Asynchronous Reset

module latch(Q,D,C,R);
input D,C,R;
output Q; reg Q;

/Isynopsys asynch set reset “R”
always @(C or R)
begin:
if (R)
Q= 0;
else if (Q)
Q = D;
end
endmodule

/

Printed; 26/09/03
Modified; September 26, 2003

Department of Electronics, Carleton University
© John Knight

Slide 55
Vrlg p. 109

= Compiler Directives

Compiler Directives
Other Compiler Directives

/] synopsys async_set_reset Thisoneis needed to synthesize proper asynchronous resets.
I/ synopsys sync_set_reset

//synopsys async_set reset local applies directive to specified signals in a named block
//synopsys one_hot indicates only one of alist of signalsistrue at atime.

Useful to show set and rest are never both applied at once.

One of the more useful compiler directivesis used to force a particular library module for arithmetic operations
(next dlide).

Formal verification

Thisiswhere the logic of aprogram is compared weith the logic of another program. This is often done after
inserting special structures only used for testing, or after had optimizations on a compiled circuit.

The verification programs have trouble with compilier assertions.

Printed; 26/09/03 Department of Electronics, Carleton University Comment on Slide 55
Modified; September 26, 2003 © John Knight Vrlg p. 110

Forcing Specific Synopsys Designware
4 | N .)
Forcing Specific Synopsys Designware
Synopsys uses designware to implement counters, adders, comparators, etc.
Control the type of function used by inserting compiler directives into your code.

Example:
Library DWO1 has two increments, ripple carry “rpl” and carry look-ahead “cla.”

Force the named block bill to use acarry look-ahead incrementer.
always @(price)
begin : bill //named procedure
/* synopsys resource billspecial:

map to module = "DWOl inc",
implementation = "cla",
ops = "greasedIncr";

*/

newprice = price + 1; //synopsys label greasedlncr
end

« Must insert only in a nonclocked, named procedure or function.
i.e not after @(posedge. . .,

« billspecial will be the name given this instantiation.
- "DW01 inc"and"cla"are from the Synopsys library DWO1

« The label applies to the most recently parsed function.
newprice = price + 1 // synopsyslabel greasedincr

N\ /

Printed; 26/09/03 Department of Electronics, Carleton University Slide 56
Modified; September 26, 2003 © John Knight Vrlg p. 111

= M apping to a Specific Library Module

Mapping to a Specific Library Module

Y ou may not need this
Both Synopsis and Ambit (PKS) will select smple circuits like adders, to meet your constraints.
Named Procedures

pecifically map an operation it must be inside a named procedure. named by writing the name after begin.

always @(a or ...
begin: bill

M eanings of the mapping labels

I/ synopsys label greasedincr labelsthe + operation with name greasedinar.
Thislabel isbound to the instantiation named billspecial by the ops=" greasedinc’ ; statement.

The resource is module DWOL1 inc, in the designware library DWO1
The specific implementation in the library is da.
Librariesarefairly automatic

The simulator will automatically choose an implementation for your criteria.
Experiencewith Library Adders

The DWOL1 library has (1999) had five adders. For a 4 to 7 bit adds in a Viterbi decoder, a Carleton graduate
student, Youxing Zhao found:

The conditional sum adder (csa) was the fastest.

Theripple carry adder (rpl) was second and significantly slower.

The fast carry look-ahead (clf) was third.

The Brent-Kung (bk) and the carry look-ahead adder (cla) were last and about the same.

Printed; 26/09/03 Department of Electronics, Carleton University Comment on Slide 56
Modified; September 26, 2003 © John Knight Vrlg p. 112

Guidelies:

N\

Summary

Guidelies:

Partition FSMs into next-state calc, outputs and registers.
Use <=in the register procedure; use =in the others.

In procedures:
Feed all right-hand side variables through the trigger list (unless also on the left side.)
Make all branches evaluate all left-hand side variables.

If you are using negative numbers, add/sub only registers of equal length, and do sign
extensions.

Do not have the same left-hand side variable stored in two different procedures.

For case statements:

Always use a default at the end. The default can be $display (“error”)
Use casez if there are don’t cares in the control.

Use x for don’t care outputs to minimize logic.

If you want a priority encoder, use casez and conditions like xxx1, xx10, x100, . ..
Flip-flops procedures must start @(...edge clk) or @(...edge clk or ...edge reset)
Never reset combinational logic.

A “rst” signal that is initially 1, may not be seen as having arising edge at zero.
Do not use initial, except in your test bench.

\

/

Printed; 26/09/03 Department of Electronics, Carleton University Slide 57
Modified; September 26, 2003 © John Knight Vrlg p. 113

M apping to a Specific Library Module

Printed; 26/09/03 Department of Electronics, Carleton University Comment on Slide 57
Modified; September 26, 2003 © John Knight Vrlg p. 114

