
Parallel Procedures

Print
Modif Vrlg p. 89

s

both start at same

r to b first.
r to a first.

allel flip-flops

t same time.

<= previous state

1D
C1

1D
C1

b+

a+

b

a

Slide 45
ed; 26/09/03 Department of Electronics, Carleton University
ied; September 26, 2003 © John Knight

Races From Blocking “=” Assignme

Parallel Procedures
Blocking assignments follow order of
statements inside a procedure

Parallel procedures have no order.

blocking

always @(posedge clk)
begin

a = b;
end

always @(posedge clk)
begin

b = a;
end

nonblocking

always @(posedge clk)
begin

a <= b;
end

always @(posedge clk)
b <= a;

end

Parallel procedure

blocking

• With Blocking
time.

• a could transfe
b could transfe

nonblocking

• This is two par

• Both clocked a

Think: next-state
a+ <= b;

b+ <= a;
nts

P
M Vrlg p. 90

Races From Usin locking Assignments

nt

e trigger.

cking assignments.

gnments.

Comment on Slide 45
rinted; 26/09/03 Department of Electronics, Carleton University
odified; September 26, 2003 © John Knight

Races From Using Blocking Assignments
Inside a procedure blocking assignments are executed in the order of the stateme
always @(b)

begin
a=b;
c=a;

end

Inside a procedure nonblocking assignments always use the data valid before th

always @(b)
begin

a<=b;
c<=a;

end

Parallel procedures in different always blocks, have no predefined order with blo
always @(b)

a=b;
always @(b)

c=a;

Parallel procedures in different always blocks are defined with nonblocking assi

always @(b)
a<=b;

always @(b)
c<=a;

c=b;

Makes

c<=a;
is equivalent to

a<=b;

c=b;

May make
c=a;//for some old a

or it may make

c=a;//for some old a

Will make
g B

s

Two Outp Connected Together

Print
Modif Vrlg p. 91

t

eans that Q<=D1
ver happen

one if-else
iler would know
ppen together.

EN2 might be true

Results

hoose one to do
which. The lasting
al one.

Results

es one result.

ates two flip-flops
t.

isconnected.

CommentonSlide1Slide 46
ed; 26/09/03 Department of Electronics, Carleton University
ied; September 26, 2003 © John Knight

Multiple Assignments

Two Outputs Connected Together

always @(posedge Clk)
begin

if (En1) Q<=D1;
end

always @(posedge Clk)
begin

if (En2) Q<=D2;
end

Multiple Assignmen

• Mutually exclusive m
and Q<=D2 could ne
together.

• If they were both in
statement the comp
they could never ha

• Here both EN1 and
together.

Possible Simulation

• The simulator will c
first. No one knows
result will be the fin

Possible Synthesis

• The compiler choos

• The compiler gener
and ANDs the resul

• All outputs my be d
uts

P
M

ultiple Assignments

lt ro time.

epl

ld n

onc

ity
M

in ze
Vrlg p. 92
Comment on Slide 46

aces Q=D1.

ot. It would generate a

e. Synthesis might do anything.

1D

C1

Q

over EN1
rinted; 26/09/03 Department of Electronics, Carleton University
odified; September 26, 2003 © John Knight

Multiple Assignments
If both statements are in the same procedure, the En2 would replace the En1 resu
In synthesis this would mean the En2 result would take priority over En1.

always @(posedge Clk)
begin

if (En1) Q=D1;
if (En2) Q=D2;

end

Blocking was used for flip flops, to ensures Q=D2 is done after Q=D1 and hence r

If delays are put on the statements simulation could give a glitch. Synthesis wou
circuit which would give EN2 priority.
always @(posedge Clk)

begin
if (En1) #2 Q<=D1;
if (En2) #3 Q<=D2;

end

20.• PROBLEM
What happens here?1

always @(posedge Clk)

begin if (En1) Q=D1;
end

always @(posedge Clk)
begin if (~En2) Q=D2;
end

1. This is a poor way to code. It should work for simulation since the two Qs are never activated at

EN1
EN2

D2

D1

Clk
EN2 has prior

De Inference from case

Print
Modif Vrlg p. 93

red.

lly Exclusive)

be active at once.
nted as a mux.

llel cases

statically determine
ases are covered.

statically determine
are active at once.

UX

0

6

4

7

1

5

2
3

Y [7:0]

Slide 47
ed; 26/09/03 Department of Electronics, Carleton University
ied; September 26, 2003 © John Knight

Using Case Statements

Demux Inference from case
wire [2,0] in;
reg [7:0] Y;

always @(in) begin
case(in)

3’d0: Y=8’b00000001;
3’d1: Y=8’b00000010;
3’d2: Y=8’b00000100;
3’d3: Y=8’b00001000;
3’d4: Y=8’b00010000;
3’d5: Y=8’b00100000;
3’d6: Y=8’b01000000;
3’d7: Y=8’b10000000;

endcase

I would put in a default statement, even
though it is not needed.

default: $display (“ Error”);

Full Case

• All cases are cove
It avoids latches

Parallel Case (Mutua

• No two cases can
It can be impleme

No undefined or para

• The compiler can
that all possible c

• The compiler can
that no two cases

0
1 G 0

7

DEM

2
in

1

mux

P
M

Multiple Assi ent Race (cont. from

S. P

1

0

sim
p r
us
ru
on
os
ck

ash
it

ck
y i
fli

e

gnm
Vrlg p. 94
Comment on Slide 47

alitkar, Verilog HDL, p. 127.

m
q

1D
C1

m

ulation race. Both the
espond to clk. The flip
es nonblocking assigns.
le uses blocking assigns.

posedge clk the
e the mux first. Then the
the flip flop until the mux
ed line)
would capture the mux
switched as long as the
n the mux was greater than
p-flop.
rinted; 26/09/03 Department of Electronics, Carleton University
odified; September 26, 2003 © John Knight

Multiple Assignment Race (cont. from previous page)

21.• PROBLEM

What common simulation problem might be caused by
this code?

wire clk, x, y;
reg m,q;

always @(posedge clk)
begin: storage

q <= m;
end

always @(clk or x or y)
begin: mux

if (clk) m = x;
else m = y;

end;

Here the mux needs nonblocking1!

1. Another way of insuring the mux is done last is to write:

if (clk) #0 m=x; else #0 m=y; “#0” declares that a statement is to be done last in that time step. See

clk

x

y

This is a subtle
mux and the flip flo
flop, as per the rule
The mux, as per the

However
simulator might cho
mux code would blo
had switched.(red d

The actual circu
value before the clo
clock to output dela
the hold time of the

x
y

m=(clk)?x:y

q<=m(t-) we hop

clk

BAD

Full Case; tch Inference in Case

Print
Modif Vrlg p. 95

cases

ccur.
know that.
infer 7 latches.

;

;

er more choice.

Slide 48
ed; 26/09/03 Department of Electronics, Carleton University
ied; September 26, 2003 © John Knight

Full Case; Latch Inference in Case
Not Obvious Full-Case,

Case with a restricted input

reg [6:1] Y;

always @(a or b or c)
begin

// if a,b,c = 1,1,1 make c1=0
c1 =(a&b&c)?0:c

case({a,b,c1})
3’d0: Y=000000;
3’d1: Y=000001;
3’d2: Y=000010;
3’d3: Y=000100;
3’d4: Y=001000;
3’d5: Y=010000;
3’d6: Y=100000;

endcase
end

Apparent undefined

3’d7: Y=000000;

a,b,c = 1,1,1 cannot o
Synthesis does not
Thus synthesis will

To avoid latches

Put in default

. . . .
3’d5: Y=010000;
3’d6: Y=100000;
default: Y=000000

Better default

A better default is:

default: Y=xxxxxx

It gives the synthesiz
La

P
M

Using Case

e said to be a full case.
ss ies for an N bit
es.

nt

s a

yth
e

e l
it is
ibilit
Vrlg p. 96
Comment on Slide 48

outputs at the same time.

ll cases are covered.

ing you want.
some particular value, like

atches.
rinted; 26/09/03 Department of Electronics, Carleton University
odified; September 26, 2003 © John Knight

Using Case
There are several problems that can happen with case statement synthesis.

1. If the case is known to cover all the possibilities the input condition can assum
Unfortunately the synthesizer will not know this unless case covers all 2N po
condition. If the synthesizer does not know it is a full case, it will insert latch

2. If two different conditions may happen at once, they will activate two differe
This is called a nonparallel case.

Not Obvious Full-Case
If a case contains all 2n cases no latches will be generated.

If it contains less than 2n cases, latches will be generated unless it is very obviou
Synthesizers do not look back very far to determine if all cases are covered.

Use Default

The default statement does no harm if it is put in and not needed.

Place xxxx as a the Default Output

If you know the default will never be selected by the case, then you can put in an
The logic that is easiest to minimize is x (don’t care). Requiring the default to tak
zero, can greatly increase the size of the circuit.

Always put in a default, whether you need it or not, unless you want th

Nonparallel Case

Print
Modif Vrlg p. 97

arallel) Case

a e at once.
enerated.

irective

mments
nd z can never
ime.

ce this!

case
ority encoder

sys parallel_case
2’b01;
2’b10;
2’b11;
2’bxx;

2
1

HPRI / BIN

1
2
3

Y[0]

Y[1]
0

omm
end

ed

Slide 49
ed; 26/09/03 Department of Electronics, Carleton University
ied; September 26, 2003 © John Knight

Nonparallel Case

NOT Mutually Exclusive

always @(x or y or z) begin

case(1’b1)
x: Y=2’b01;
y: Y=2’b10;
z: Y=2’b11;
default: Y=2’bxx;

endcase

FORCE Mutually Exclusive (Parallel)
always @(x or y or z) begin

case({x,y,z})
3'b100: Y=2’b01;
3'b010: Y=2’b10;
3'b001: Y=2’b11;
default: Y=2’bxx;

endcase

Not Mutually Exclusive

• Two cases can be
Priority encoder g

Synopsys Compiler D

Simulater treats as co
Tells Synopsys x, y a
happen at the same t

Designer must enfor

Force Parallel Case

// synopsys parallel_
avoids creating a pri

case(1’b1) // synop
x: Y=
y: Y=
z: Y=
default: Y=

endcase

x

y

z

Not

Rec
(nonp

ctiv

P
M

Parallel-Case

mu n executes the first line

m g selected at once.

ut
d
scr

@

{x,
x :Y
x :Y
1:Y
t:
e

Par
um
, z
en
ui
latio

bein
Vrlg p. 98
Comment on Slide 49

one can also write the code
keeps the simultation and
ibed on the next slide.

(xoryorz)

y,z})
=3'b1xx;
=3'bx1x;
=3'bxx1;

Y=3'bxxx;

allel case
es only one of
can be 1 at a time.
ds on some other

t to enforce this.

Y[1]

Y[2]

Y[3]
rinted; 26/09/03 Department of Electronics, Carleton University
odified; September 26, 2003 © John Knight

Parallel-Case
Whenever two or more lines of the case statement may be selected at once, the si
encountered in the listing. This is like a priority encoder.

In a parallel case, the synthesizer assumes some other circuit keeps two lines fro

//synopsis directives can be used to tell the synthesizer to force a parallel-case b
to explicitly say what is desired. This latter method is synthesizer independent an
synthesis in agreement. Such code may require the casex (or casez) command de

Coding for full decoding, priority encoder, or parallel case
Y[1]

Y[2]

Y[3]

Y[1]

Y[2]

Y[3]

always@(xoryorz)

case({x,y,z})
3’b100:Y=3'b100;
3’b010:Y=3'b010;
3’b001:Y=3'b001;
default:Y=3'b000;
endcase

begin
always@(xoryorz)

casex({x,y,z})
3’b1xx:Y=3'b100;
3’b01x:Y=3'b010;
3’b001:Y=3'b001;
default:Y=3'b000;
endcase

begin
always

casex(
3’b1x
3’bx1
3’bxx
defaul
endcas

begin

Full decoding:
Assumes more than one
of x, y, z can be 1 and
removes those cases.

Priority decoder
Assumes more than one
of x, y, z can be 1 but
takes the first one as
correct

Ass
x, y
Dep
circ

somebody
else makes
mutually
exclusive

Difference bet n case, casez and casex

Print
Modif Vrlg p. 99

sex()
0: match
0: match
0: match
0: match

1x0

s ly z.

thing

x()

matches z,x,0,1
matches z,x,0,1
matches 0
matches 1

Slide 50
ed; 26/09/03 Department of Electronics, Carleton University
ied; September 26, 2003 © John Knight

Difference between case, casez and casex

case()
110: no
x10: no
1z0: no
1x0: match

1x0

casez()
110: no
x10: no
1z0: match
1x0: match

ca
11
x1
1z
1x

1x0

Case treats 1,0,x,z as seperate; x matches only x; x matche
Casez treats z as a wild card. It matches 1, 0, x and z.
Casex treats both x and z as wild cards; either will match any

casez()

x: matches x
z: matches z,x,0,1

0: matches 0
1: matches 1

case()

x: matches x
z: matches z
0: matches 0
1: matches 1

case

z:
x:
0:
1:

are not wild cards
x, z on left z on left

matches anything
wee

on

P
M

Casex/casez

nly ches x, not 1 or 0.

h 1.

use

ez\
mat

0 or
Vrlg p. 100
Comment on Slide 50

an unex pected match with

casez
data 0 1 x z
0 1 0 0 1

1 0 1 0 1

x 0 0 1 1

z,? 1 1 1 1
rinted; 26/09/03 Department of Electronics, Carleton University
odified; September 26, 2003 © John Knight

Casex/casez
For simulation

Case treats a bit in a variable as having four possible values {0, 1, x, z}, thus x o
Casex treats x, z or ? as a don’t care which can match 0, 1, x or z.
Casez treats z or ? as a don’t care which can match 0, 1, x or z, but x cannot matc

For example: Given- aa = 3b'1x0;
case (aa)

3’b110: ...// No match because 1 does not match x with a case statement.
3’b1x0: ... // Matches

casex (aa)
3’b110: ... // Matches aa because 1 does match x with a casex statement.
3’bx10: ...// Matches aa.

casez (aa)
3’bxx0: ... // x does not match 1 with a casez statement, although x matches x.
3’bzz0: ...// Matches aa.

For synthesis
No x values ever propagate in synthesis. However x values in the simulation ca
casex. Using casez will avoid those problems.

Don’t cares in the outputs are fine for case, casez or casex.

case casex

case\data 0 1 x z casx\data 0 1 x z cas

0 1 0 0 0 0 1 0 1 1

1 0 1 0 0 1 0 1 1 1

x 0 0 1 0 x 1 1 1 1

z,? 0 0 0 1 z,? 1 1 1 1

Don’t Car Case Control-Items

Print
Modif Vrlg p. 101

p ity encoder

hest priority.

ly 3’b000.

an Simplify Logic

e the defaults to
u don’t care.
he logic larger.

t necessary for output
s.

efered over casex.

2
1

HPRI / BIN

1
2
3

Y[0]

Y[1]
0

Slide 51
ed; 26/09/03 Department of Electronics, Carleton University
ied; September 26, 2003 © John Knight

Don’t Cares In Case Control-Items

wire [3,1] in;
reg [1:0] Y;

always (in) begin
casez(in)

// With casez, in=11x will match only default.
3’bzz1: Y=2’b01;
3’bz10: Y=2’b10;
3’b100: Y=2’b11;
default Y=2’b00;
endcase

Don’t Cares In Right-Hand Side
always @(x or y or z) begin
case({x,y,z})

3’b001: Y=2’b01;
3’b010: Y=2’b10;
3’b100: Y=2’b11;
default Y=2’bxx;

endcase

Generates a

• zz1 has th

Default

• Covers on

Don’t Cares C

• Don’t forc
zero if yo
It makes t

• Casez no
don’t care

• casez pr

in[1]
in[2]

1n[3]

0

es In

rior

e hig

P
M

Casez will stop nowns in simulation
unk
Vrlg p. 102
Comment on Slide 51
rinted; 26/09/03 Department of Electronics, Carleton University

odified; September 26, 2003 © John Knight

Casez will stop unknowns in simulation
With casez, x inputs will give an error message.

wire [2,0] ct;
reg [1:0] Y;

always (ct) begin: Proc-Safey
casez(ct)

// With casez, ct = 1x will match only default.
3’bz1: Y=2’b01;
3’b10: Y=2’b10;
3’b00: Y=2’b00;
default $display(“11 or x input in Proc-Safey”)
endcase

always (ct) begin: Proc-Sloppy
casex(ct)

// With casex, ct = 1x will match 3’bx0 (also 3'b10).
3’bx0: Y=2’b01;
3’b10: Y=2’b10;
3’b00: Y=2’b00;
default $display(“11 input in Proc-Sloppy”)
endcase

Confusion B een Reg and Integer

Print
Modif Vrlg p. 103

gister

+3 011
+2 010
+1 001
0 000

-1 111
-2 110
-3 101
-4 100

3-bit
2’s complement

numbers

7 in 2's complement}

tive,

ncated to reg[7:0])

Slide 52
ed; 26/09/03 Department of Electronics, Carleton University
ied; September 26, 2003 © John Knight

Negative Numbers

Confusion Between Reg and Integer

Integers are 2’s Complement

Integers declarations default to a 32-bit 2’s complement number.
The compiler will eventually decide how many bits are needed.

Reg numbers are nonnegative integers

The length of registered numbers is given in the declaration.

Negative register numbers sign extend only to the length of the re

Value of X
X will hold a 5-bit -7
-00111� 11000 +1� 11001 {-

Reg numbers are never nega
Hence 11001 is taken as 25.

B will hold 00001010 (10 tru

reg [7:0] B,C;
reg [4:0] X;

always @(B, C, X)

X = - 5'd7;
B = 10;
C= B+ X;

end

begin

10
25
35

Did you want 35 or 3?

B
+ X

= 0000,1010
= + 1,1001
= 0010,0011C
etw

P
M

Negative Numbers

rom add.

ed
the
Vrlg p. 104
Comment on Slide 52n

.

rinted; 26/09/03 Department of Electronics, Carleton University
odified; September 26, 2003 © John Knight

Negative Numbers
Two’s Complement

To change a binary number to its two’s complement

Change the exchange the ones and zeros, then add 1, ignore any off-end carries f

-10� −001010 � 110101 +1 � 110110 {-10 in 2's complement}

Sign Extension

Two’s complement numbers of the same length may be added in a normal adder.

Two’s compliment numbers of different lengths must be sign extended when add
The leftmost bit is replicated until the words are the same length. For example

A one-bit sign extension in Verilog might be written:

reg [4:0] x; reg [5:0] y, z;

z = {x[4], x} + y ; // sign extend x to 6 bits.

If the bits represent unsigned numbers, then do not sign extend.

Sign Extension and Overflow

Two’s complement addition is subject to overflow.
If one sign extends before adding, one can never get overflow.

0000,1010
1,1001

0000,1010
1111,1001�

sign extend

0010,0011 0000,0011
+ +

(10)
(-5)
(3)

010
011

0 010
0 011�

sign extend

101
0101

+ +
(2)
(3)

(5)(-3)

(2)
(3)

Confusion B een Reg and Integer

Print
Modif Vrlg p. 105

dware

each loop

n integer

uts into a 2-bit vector.

c

S0

c

B0A0

� c_in

Slide 53
ed; 26/09/03 Department of Electronics, Carleton University
ied; September 26, 2003 © John Knight

Using For Loops For Building Iterative H

Build an W-bit ripple-carry adder.
parameter W = 5; // Take W=5 here

reg [W-1:0] A, B, reg [W:0] S; // S is the sum

wire c_in, c; // c changes its meaning in

integer i; // always make the index a

always @(c_in or A or B)
begin

c = c_in;

// Concatenate the outp

S = {c: S(W-1:0]};
end

for(i=0; i < W; i=i+1)
begin
{c, S[i]} = A[i] + B[i] + c
end

c

S2

c

B2A2

�c

S3

c

B3A3

�c

S4

c

B4A4

� c

S1

c

B1A1

�

S5
etw

ar

P
M Vrlg p. 106

Hardware Loops

et iterations.

trigger list.

ranch. All while loops must be

bΣ

CLK

Register

>
8

dd

Compare

Comment on Slide 53
rinted; 26/09/03 Department of Electronics, Carleton University
odified; September 26, 2003 © John Knight

Hardware Loops1

Loops give multiple copies of a basic instance.

The code in the loop will be synthesized, a different instance for each iteration.
Output leads from one block, with the same name as an input lead, will connect b
See the variable “c” in the program.

The index variable “i” is not changed outside the loop, so it should not be in the

While loops are partially supported for synthesis. They represent a conditional b
broken by an @(posedge clock) statement. Thus:-
always @(posedge clock)

begin
while (b <8)
begin

@ (posedge clock); // break the zero delay loop
b <= b+2;

end
end

1. Palnitakar, Verilog, Prentice Hall, 1998, p..285

2

b

A

ween

Confusion B een Reg and Integer

Print
Modif Vrlg p. 107

r

nd.

a higher order bit.
higher order bit.

A < B,

X X
B0A0

= =
Y Y

Slide 54
ed; 26/09/03 Department of Electronics, Carleton University
ied; September 26, 2003 © John Knight

An Iterative Comparator Hardwa

Build an 5-bit comparator from blocks.
reg [4:0] A, B;
reg x, y;
integer i;
always @(A or B)
begin

x=0; y=0; // Above the highest order bit, the two are equal
// x=0, y=0 goes in at high e

// A is larger at this bit or at
// B is larger at this bit or at a

end

At the output:
x,y = 0,0 means A=B, x,y = 1, 0 means A > B, x,y = 0,1 means

for(i=4; i>=0; i=i-1)

x=(A[i] > B[i])&(~y) | x;
y=(B[i] > A[i])&(~x) | y;

begin

end

X X
B2A2

X X
B3A3

= =
X X

B4A4

= =
X X

B1A1

= = = =Y YY YY Y YY
0

0

etw

e

P
M Vrlg p. 108

Loops to Ge ate Iterative Circuits

ar .

is t rgest.

Comment on Slide 54
rinted; 26/09/03 Department of Electronics, Carleton University
odified; September 26, 2003 © John Knight

Loops to Generate Iterative Circuits
This is an iterative comparator used as a lab in the Switching Circuits course at C

It only compares non-negative integers, where the number with the leftmost “1”

22.• PROBLEMS

a. Write a for loop to calculate the parity of a 6-bit number. It should include-
if (data[i]) OddPar= ~OddPar;

b. One way to change a binary number to its two’s complement is:
Start at the right hand side.
Leave all bits unchanged until after the first “1” is found.
Invert all bits to the left of the initial “1”.

Thus: 1001_1000 has complement 0110_1000

Write a loop to generate such a circuit.
ner

leton

he la

Confusion B een Reg and Integer

Print
Modif Vrlg p. 109

nous Reset

Q,D,C,R);
;
eg Q;

nch_set_reset “R”
or R)

0;
f (C)
D;

Slide 55
ed; 26/09/03 Department of Electronics, Carleton University
ied; September 26, 2003 © John Knight

Complier Directives

Tell The Synthesizer What To Do

• Written like comments
// synopsys . . .

• The simulator will ignore them

• Directs synthesis.

• Simplifies some language problems.
However it is nearly always possible
to avoid them by proper coding.

• Thus simulation will agree with synthesis
only if it was coded properly.

• Limits you to one compiler.

• Makes formal verification difficult.

• There are many of these compiler
directives.

Check the Synopsys Manual

Example

Force Asynchro

module latch(
input D,C,R
output Q; r

//synopsys asy
always @(C

begin:
if (R)

Q =
else i

Q =
end

endmodule
etw

P
M Vrlg p. 110

Compiler Directives

sy onous resets.

named block

ue at a time.
h applied at once.

dule for arithmetic operations

ram. This is often done after
ompiled circuit.

Comment on Slide 55
rinted; 26/09/03 Department of Electronics, Carleton University
odified; September 26, 2003 © John Knight

Compiler Directives
Other Compiler Directives

// synopsys async_set_reset This one is needed to synthesize proper a

// synopsys sync_set_reset

//synopsys async_set_reset_local applies directive to specified signals in a

//synopsys one_hot indicates only one of a list of signals is tr
Useful to show set and rest are never bot

One of the more useful compiler directives is used to force a particular library mo
(next slide).

Formal verification

This is where the logic of a program is compared weith the logic of another prog
inserting special structures only used for testing, or after had optimizations on a c

The verification programs have trouble with compilier assertions.
nchr

Forcing Speci ynopsys Designware

Print
Modif Vrlg p. 111

a , etc.

to your code.

-ahead “cla.”

ter.

r

Slide 56
ed; 26/09/03 Department of Electronics, Carleton University
ied; September 26, 2003 © John Knight

Forcing Specific Synopsys Designware
Synopsys uses designware to implement counters, adders, compar

Control the type of function used by inserting compiler directives in

Example:

Library DWO1 has two increments, ripple carry “rpl” and carry look

Force the named block bill to use a carry look-ahead incremen

always @(price)
begin : bill //named procedure

/* synopsys resource billspecial:
map_to_module = "DW01_inc",
implementation = "cla",
ops = "greasedIncr";

*/
newprice = price + 1; //synopsys label greasedInc

end

• Must insert only in a nonclocked, named procedure or function.
i.e not after @(posedge. . .,

• billspecialwill be the name given this instantiation.

• "DW01_inc" and "cla" are from the Synopsys library DW01

• The label applies to the most recently parsed function.
newprice = price + 1 // synopsys label greasedIncr
fic S

tors

P
M Vrlg p. 112

Mapping to a cific Library Module

straints.

g the name after begin.

atement.

oder, a Carleton graduate

he same.

Comment on Slide 56
rinted; 26/09/03 Department of Electronics, Carleton University
odified; September 26, 2003 © John Knight

Mapping to a Specific Library Module
You may not need this

Both Synopsis and Ambit (PKS) will select simple circuits like adders, to meet you

Named Procedures

pecifically map an operation it must be inside a named procedure. named by writin

always @(a or ...
begin: bill

...

Meanings of the mapping labels

// synopsys label greasedIncr labels the + operation with name greasedIncr.
This label is bound to the instantiation named billspecial by the ops =”greasedInc”; st

The resource is module DW01_inc, in the designware library DW01

The specific implementation in the library is cla.

Libraries are fairly automatic

The simulator will automatically choose an implementation for your criteria.

Experience with Library Adders

The DW01 library has (1999) had five adders. For a 4 to 7 bit adds in a Viterbi dec
student, Youxing Zhao found:

The conditional sum adder (csa) was the fastest.
The ripple carry adder (rpl) was second and significantly slower.
The fast carry look-ahead (clf) was third.
The Brent-Kung (bk) and the carry look-ahead adder (cla) were last and about t
Spe

r con

Guidelies:

Print
Modif Vrlg p. 113

also on the left side.)

l length, and do sign

nt procedures.

ror”)

1, xx10, x100, . . .

r ...edge reset)

g edge at zero.

Slide 57
ed; 26/09/03 Department of Electronics, Carleton University
ied; September 26, 2003 © John Knight

Summary

Guidelies:
• Partition FSMs into next-state calc, outputs and registers.

• Use <= in the register procedure; use = in the others.

• In procedures:
Feed all right-hand side variables through the trigger list (unless
Make all branches evaluate all left-hand side variables.

• If you are using negative numbers, add/sub only registers of equa
extensions.

• Do not have the same left-hand side variable stored in two differe

• For case statements:
Always use a default at the end. The default can be $display (“er
Use casez if there are don’t cares in the control.
Use x for don’t care outputs to minimize logic.

• If you want a priority encoder, use casez and conditions like xxx

• Flip-flops procedures must start @(...edge clk) or @(...edge clk o

• Never reset combinational logic.

• A “rst” signal that is initially 1, may not be seen as having a risin

• Do not use initial, except in your test bench.

P
M Vrlg p. 114

Mapping to a cific Library Module

Comment on Slide 57
rinted; 26/09/03 Department of Electronics, Carleton University
odified; September 26, 2003 © John Knight
Spe

