
Words or Pictures

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 1

Verilog’s Purpose

Words or Pictures

A Hardware Description Language (HDL)

Are words better than pictures?

• For digital design, the words seem to be ahead.
(for now)

• In Simulink the pictures are ahead.

Two Purposes for an HDL

1. Simulation

• Simulate parallel components.

• Simulate timing.

• Describe operation with higher-level concept (like If and Case).

• Also describe circuits at gate-level.

2. Synthesis

• Generates the gate-level description from the high-level one.

• Acts as input for a logic minimizer.

always @(S0 or S1 or A or B)
case({S0, S1})
1: Z = A;
2: Z = A&B;
3: Z = B;

endcase

0
1 G0

3

MUX

0
1
2
3B

A

S0
S1

Z

4: Z = A|B;

Words

Pictures

Slide 1

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 2

Verilog For Synthesis What is the clearest way to describe a

Verilog For Synthesis1

What is the clearest way to describe a circuit
Differential encoding

1. In words:

If both inputs are 1, change both outputs.
If one input is 1 change an output as follows:

If the previous outputs are equal
change the output with input 0;

If the previous outputs are unequal
change the output with input 1.

If both inputs are 0, change nothing.

2. With equations:

Iout=(I⊕Q)(I⊕Iprev + (I⊕Q)(Q⊕Qprev)
Qout=(I⊕Q)(Q⊕Qprev + (I⊕Q)(I⊕Iprev)

3. By a schematic; does not give much insight.

4. By tables; two forms are shown.
An output vs. input table.
An output-change vs. input table.

Which representation would you choose?

1. File Ver1SynO.fm

1D
C1

1D
C1

Iprev

Q

I

Iout
Qout

00 01 11 10

00

(I,Q)prev
IQ

01

11

10

00 01 11 10

11

01

00101101

11 10 00

010010

Iout,Qout

= ≠
00

01

11

10

- -

- ∆

∆ ∆

∆ -

∆Iout,∆Qout

(I,Q)prev)
IQ

- -

∆ -

∆ ∆

- ∆

Comment on Slide 1

Verilog For Synthesis Two Purposes: Simulation and Synthesis

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 3

Two Purposes: Simulation and Synthesis

Simulation Was Original Purpose
Verilog-XL simulator and language developed by Gateway Design Automation

Synthesis Adopted The Language Later
Verilog based synthesis tool introduced by Synopsys.

What’s Good for Simulation May Be So-so For Synthesis

• Computers have different constraints than other hardware.
They have huge cheap storage.
They do not mind wasting a few instructions

• Hardware uses small expensive storage (flip-flops)
Custom hardware is usually chosen for high speed (don’t waste operations).

• Compiling as for a computer is an inefficient way to compile to hardware.

Only a Subset of Verilog is Synthesizable

1984

1987

y=A&B

w=C|y

z=w(~y) | (~w)y;

calculate y and store

calculate w and store

calculate z and store
1D
C1

A
B

C

y

w

z

Hardware only stores at endWill simulate easily, but uses extra storage

CommentonSlide1Slide 2

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 4

Verilog For Synthesis Developed for Simulation, Used for

Comment on Slide 2

Developed for Simulation, Used for Synthesis
Verilog was developed as an input language for simulation. In one sense a compiling for simulation is a

construction of a logic circuit. It yields a digital machine that gives the right outputs. However it is not an
implementation people normally want for synthesis.

The development costs of implementing logic in a microcomputer are much smaller than other methods.
Furthermore simple microcontrollers are produced in such quantity that one must produce many millions of a
specialized chip to beat their cost. Thus one will normally only do custom logic to gain speed, reduce size, or
reduce power. However, if the extra design costs can be justified, one can gain one to three orders of magnitude
in speed. size or power by custom logic design.

The implementation for a circuit compiled for simulation is quite different from the implementation for a
custom chip. In simulation all intermediate results are saved in memory or an internal register. For a circuit, this
practice would waste memory and would slow down the circuit, because each save represents a clock cycle. A
compiler for synthesis must remove all unnecessary saves. This is fairly difficult.

Also, when running the logic in simulation, only one logic operation is done at a time in the computer. This
is because the computer normally has only one arithmetic-logic unit (ALU). A compilation for synthesis will
want to generate parallel hardware. However the change from serial to parallel operations is normally easy.

In summary, although they use the same Verilog input, synthesis is a different, and harder job than
simulation.

The Synthesis Subset of Verilog
Not all Verilog commands synthesize easily. For example initial initializing variables) is easy to do in a

program where all variables are stored. However in hardware only variables stored in flip-flops are easy to
initialize. For this reason only a subset of Verilog is synthesizable. These notes will concentrate on that subset.

Verilog For Synthesis Two Purposes: Simulation and Synthesis

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 5

Lexicography

Character Set
• 0123456789ABCD..YZabcd...yz_$

Cannot start with a number or $

• Verilog is case sensitive.

• All keywords are in lower case.

White Space
• The white space characters are:

space (\b), tabs (\t), newlines (\n).

• These are ignored except in strings and tokens.

• The space is also used as a delimiter

Comments
• Two types:

- single line comments starting with

//Comment
- multiple line comments delimited by

/* Comment */

• Comments cannot be nested.

Tom, Tom-Jones

Really_Long_Winded_Type_Names

_2cows, __2bulls, 2guys

abc2 /* is not the same as*/ ABC2

assign x = a&b | c&(~d) |
e&(~g)&f;

// is the same as

assign
x=a&b|c(~d)|e&(~g)&f

A=3+2; // Comment starts
// with “//” Good for
// commenting code.

/* These comments extend
over multiple lines. Good
for commenting out code */

No hyphen

Key word

Slide 3

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 6

Verilog For Synthesis Lexicography

Comment on Slide 3

Lexicography
Character Set

No hyphen is allowed

There are escaped identifiers which are- \<any ascii characters except white space><white space>.
Thus \#ba is a legal name but \#ba, is not. However \#ba , is all right. The white space
placement is critical. This feature is useful for asserted low variables like \reset , that is “reset when
low.”

Comments

Sometimes /* . . . */ is used to put a comment in the middle of a line of code.

1.• PROBLEMS1

Which of the following are valid?

OK$ OK_flip OK#flop OK$latch _OK $OK _ _All_Right_ 23OK June-Bug

/* Comment out code
assign _OK= a|b; /* “|” is a logic OR */
assign Fill= _OK & c;
End of removed code */

assign x = /* If y is over 3 or the gastric resonance will overflow the bedorfulls! */

y + bedorfull;

1. The bad tokens are OK#flop, $OK, 23OK and June-Bug. The nested comment will fail, but the two line statement with an
embedded comment is all right. Note a statement ends when a semicolon is reached. A new line does not end a statement.

Verilog For Synthesis Statements

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 7

Statements
Statement Delimiters

• End of Statement is a “;”

• Returns usually do not
matter.

• Multiple statements of the
same kind can be grouped,
and separated by commas.

Data Values
Constants

Specified by number of bits
and value.

Integer values are truncated to
fit variable size.

Strings

Store in reg, 8 bits per
character.

Treated like any other number.
Parameters

Values used during
compilation but not
synthesized or simulated.

assign Long_Count = A + B + C + D + E
+ F + G + H + I + J;

assign X=1, Y=2, Z=3;

5’b10111; //5 bits, binary value 10111.
5’d23; //5 bits, decimal value 23
5’h17; //5bit, hex value 17

re

wire [3:0] tom, dick;
assign tom=23; // is the same value as
assign dick=4’b0111;

reg [8*5:1] hi;
initial hi = ‘Hello’;

parameter n=4;
reg [n-1:0] tom, dick, harry;

parameter Reset_state = 0, state_B = 1;
Run_state = 2, finish_state = 3;

Slide 4

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 8

Verilog For Synthesis Data Values

Comment on Slide 4

Data Values
Strings

Note that:-
reg (8*5:1) hi

makes a 40 x1 dimensional array.

Parameters

Can give states meaningful names instead of digits. Alternately use the macro definition `define:

`define Reset_state = 0, state_B = 1, Run_state = 2, finish_state = 3;
Add a backquote when using a macro i.e. if(state = = `Run_state)

2.• PROBLEMS

Continuation lines

how do you make them?

Binary representation of Constants

4'b10 gives ? 1

4'd10 gives ?

reg [8:0] A; initial A=16; gives ?

reg [8:0] B, C; initial
begin

B = ’B’; gives?
C = B+1; gives?

end

1. 4'b10 is

'A'=8'h41
'B'=8'h42
'C'=8'h43
'D'=8'h44

'J'=8'h4a

ASCII

0 0 1 0

Verilog For Synthesis Data Types for Synthesis

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 9

Verilog Variables

Data Types for Synthesis
• Wire

Used for left hand side of structural code
Wire variables synthesize into wires.
Inputs are of type wire.

• Reg
Used for left hand side of procedural code.
May synthesis into latches and flip flops.
May also synthesize into wires.
Most (not all) outputs are of type reg.

module typ_sample(W,B,Row,Rr);

input W, B;
wire W;
wire [7:0] B;

output Row,Rr;

reg Row;
reg [2:0] Rr;

B[0]B[7]

Rr[2] Rr[0]

1. Procedural

Think like C code

Example:

reg c, d;
wire a, b, e;
always @ . . . //Starts a Verilog procedure
begin
c = a & b; // Store c in a “reg”
d = c | e; // Store d in a “reg”

2. Structural

Think like a circuit

Example:

wire e,c,d,a,b;

assign c = a & b; // Circuit
assign d = c | e; // Circuit

b
a

e

d
c

Two Paradigms

More later

Assign is used
with structural
coding.

Slide 5

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 10

Verilog For Synthesis Verilog Data Types

Comment on Slide 5

Verilog Data Types
Wires

These always correspond to a wire or a bus of wires in a circuit.
Unfortunately reg may also correspond to wires.

However wires never store. They just transfer inputs to outputs.

Note the “dimension” of the bus (vector) comes before the name of the bus.

Reg

These correspond to variables in the C language. In Verilog for simulation they are always stored.

In synthesis the compiler will generate latches or flip-flops for them. However if it can be sure their output does
not need to be stored it will synthesise them into wires. It can be sure they do not have to store if their outputs is
based only on their present inputs.

Rule for reg and wire.
A variable is declared type reg if it appears on the left hand side of an equal sign in a procedure.
A procedure starts with the word always or initial.

A variable is declared of type wire if it appears on the left side of an equal sign in structural code.
Structual code statements start with the word assign.

3.• PROBLEMS

reg [3:0] AA; always . . .
AA=15; // Will AA synthesize into wires, flip-flops, or latches?1

wire [7:0] BB; assign BB = AA + BB; // Will this statement generate storage?

1. Clearly AA does not need to be stored since it is always a constant. Just hard wire it to four 1s.
The second statement will not generate storage because wire variables are never stored. The statement is an asynchronous

feedback loop where BB keeps incrementing by 15 continuously. No working circuit like that could ever be synthesized.

Verilog For Synthesis Data Types for Synthesis

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 11

Data Types for Synthesis

• Integer
Normally used for things like loop
indexes which do not synthesize.

Converted to right number of bits
automatically if stored in a scalar or
vector

• Scalar
A single wire or reg (like W or Wr) is
a scalar. It can contain only 1 bit .

• Vector
A wire or reg made of multiple bits.
reg [7:0] B;

• Array
A 2-dimensional array of wire or reg.

Operations are very restricted

wire W;
wire [7:0] B;

reg Wr;
reg [2:0] Rr;

integer IMe; initial IMe=4012;

// Integer “1” converted to 1 bit and assigned
// to a scalar

assign W=1;

assign B= 254;

// Array

reg [2:0] memy [5:1]
. . .
Rr=memy[3];
Wr=Rr[1];
. . .

memy[5]

memy[1]

Vcc
W

1 1 1 1 1 1 1 0

These are
undeclared integers

Slide 6

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 12

Verilog For Synthesis Data Types

Comment on Slide 6

Data Types
Integers

Integers do not synthesize to physical hardware, unless they are synthesized as power and ground connections
as shown.

Beware; integers are the only two’s complement numbers in Verilog. Recall -1 as bit vector is all ones. Thus-
assign B = -1; // would put a value of 255 in B. since on the slide B is defined with eight bits.

Vectors

Conventionally arrays are dimensioned [7:0] (left down to right) so the most-significant bit of an 8-bit bus is
number 7. One can go [0:7] or [8:1] or [1:8] or even [15:8] if one wishes.

Array

The example shows a reg array which is far the most common.
However wire arrays can be made.

Verilog is very restrictive for arrays. Their is little programming convenience in using them. The advantage of
arrays is in specifying embedded RAM. Arrays must be accessed like a memory, that is only one word at a time.

reg [7:0] memry [0:1023]; //Storage

// One can only get at rows of the array directly. Define a vector to extract bits.
reg [7:0] Mem_Word; //Not storage

Mem_Word = memry[997];

Problems: what are the bit patterns?

reg [9:0] B; initial B = 1;

reg [9:0] B; initial B = -1;

reg [5:7] H; initial H=8'ha6;

8'ha6
=1010_0110

hex

Verilog For Synthesis Data Types for Synthesis

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 13

Operators

Verilog has three types of operators,
They take either one, two or three operands.

1. Unary operators appear on the left of their operand:

clock = ~clock; // ~ is the unary bitwise negation operator,

// clock is the operand

2. binary in the middle,

c = a || b; // || is the logical or, a and b are the operands

3. and ternary separates its three operands by two operators.

r = (s) ? t : u; // ?: is the ternary conditional operator, which

// reads r = [i f s is t rue then t e lse u]

// Verilog has only one ternary operator

t

u

Y

s

MUX

1

1

Slide 7

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 14

Verilog For Synthesis Operators, General

Comment on Slide 7

Operators, General
Unary operators

They are:
~, !, sometimes - or + as in -2 or +3, and in one sense the reduction operators (next slide).

Ternary operator

The only one is:
r = s ? t : u

One can see binary operators are by far the most common.

1

1. Foot note for the previous page: reg [5:7] H; initial H=8'ha6 gives H=110. The numbers do not care what
subscripts you put on their bits.

Verilog For Synthesis Operators

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 15

Operators
Arithmetic

+, -, *
% (modulus) / (divide)

Relational

<, <=, >, >=, == !=

Logical

! (not), &&, ||

Shift

A<<3 B>>1

Bitwise

~(not), &,|,^ (xor), ~^ or ^~

Reduction

&, ~&, |, ~|, (̂xor), ~^ or ^~

Concatenation

{ }

Conditional

(condition)? if true: if false;

• Modulus and division are for test benches
only. Not for synthesis.

12%5 ==> 2

• Logical: The whole variable is treated as false
(0) zero, or true (1) for anything but zero.
27 && -3 ==> 1
27 && 0 ==> 0
A || 33 ==> 1 (for any A)

• Shift A left 3 bits and zero fill
Shift B right 1 place and zero fill

• Bit-by-Bit operations between two variables.
5’b11001 ^ 5’b01101 ==> 5’b10100
5’b11001 & 5’b01101 ==> 5’b01001

• Reduction: Between the bits of one variable.
& 5’b01101 ==> 0
^ 5’b01101 ==> 1

• Concatenate:
wire[2:1] A, wire [3:1] B;
wire [5:1] C;
C={A, B};

• Conditional:
// Increment A if C==D, else decrement A.
assign newA = (C==D) ? A+1 : A-1:

Slide 8

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 16

Verilog For Synthesis Operators, General

Comment on Slide 8

Operators
modulus

a%b is the remainder of a/b. 7%3=> 1, 13%15 => 13

Other Operators
Replication; A useful operation not mentioned above.

Concatenation of n copies of the same thing can be written {n{X}} instead of {X,X,X, . . .X}
Thus to fill an 8-bit word Z with 8 copies of the least-significant bit of word W, use:

wire [7:0] W, Z;
assign Z = {8{W[1]};

4.• PROBLEMS

reg [2:0] A, B;
initial begin A=3'b111; B=3'b101; end

To what value would the following expressions evaluate?
a) A && B;
b) A & B;
c) & A;
d) & B;
e) B>>1

f) B<<2
g) {A,B}
h) (A~^B)= =(B^~A)

Note on assign newA = (C==D) ? A+1 : A-1;
Assigning the left side to a right side containing the same variable, like “assign
A=A+1;”, will cause a loop continuously incrementing A.

+
1

A

Infinite loop
continually
incrementing A

Verilog For Synthesis The Module

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 17

Verilog Structure

The Module
• The subroutines1 of verilog

• All code is contained in modules.

• Modules can invoke other modules.

• Modules are never defined inside other
modules.
Think: any module definition can be
made a separate file.

• In C one thinks of calling one module
(procedure) and then calling it again in
sequence.

• In Verilog one builds two instances of a
module. They both exist and run at the
same time.

1. Procedure has a different meaning in Verilog.

module gate(Z, A,B,C);
input A,B,C;
output Z;

assign Z = A|(B&C);

endmodule

module two_gates(Z2, A2,B2,C2)
input A2,B2,C2;
output Z2;

gate gate_1(G2, A2,B2,C2);
gate gate_2(Z2, G2,A2,B2);

endmodule

C
A

B

Z

C2
A2

B2

G2

B2
A2

Z2

Two instances of “gate.”

Slide 9

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 18

Verilog For Synthesis Operators, General

Verilog Structure
Modules

All statements in Verilog are contained between:
module

//and
endmodule

Modules cannot contain another module’s definition.

Modules can contain invoke another module. On the slide, module two-gates invokes module gate twice.
Once as gate_1 and once as gate_2.
These are called two different instances of gate.
Instances are not recursive.

5.• PROBLEM,: complete the module using submodules

module five-gates(Y, A3, B3, C3, C4, B4,
A4, B5, A6);

input A3, B3, C3, C4, B4, A4, B5, A6;
wire A3, B3, C3, C4, B4, A4, B5, A6,

U, V, W, X; //1

outputY; // Is Y reg or wire?

assign U=gate gate_u(...

endmodule

1. Module interconnections default to type Scalar wir. However making a wir declaration reminds you check the defaults are correct.

module thing1
. . .

endmodule

module thing2
. . .

endmodule

module thing1
. . .

endmodule

module thing2
. . .

endmodule
. . .

OK

UB3
A3

C3
B5

B4
C4

A4

V

U
A6

1'b1

X

W

Y

Comment on Slide 9

Verilog For Synthesis A Hierarchy of Modules

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 19

A Hierarchy of Modules

The main module is the test_bench
• It generates all signals to feed the

module, like the clk.

• It likely prints out the outputs
(not shown here).

• It is never synthesized.
It is only simulated.

• It drives the simulation of the other
modules before synthesis.

- Then they are synthesized into gates

- Then it drives a check simulation on
the synthesized gates.

The top module
• Is the top of the synthesized code.

• It often collects the other module
invocations.

• The chip I/O signals pass thru top.

The other modules
• They collect at the bottom

module test_bench;
reg clk, A, B, Z;
initial begin

clk=0;
A=1;
B=0;

end
always #25 clk=~clk;

top top1(Z, A,B,clk);
endmodule

module top(Z, A,B,clk);
input A,B,clk; Output Z;
gate g1(G,A,B,clk);
two_gates g2(Z, clk,A,G);

endmodule

module
two-gates

module
gate

Slide 10

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 20

Verilog For Synthesis Module Hierarchy

Module Hierarchy
Common hierarchy

The hierarchy on the slide is very common.
The test bench only invokes one module.
This corresponds to the “pins” on an IC.

Note module A will have three instances but only
one module definition.

Another hierarchy

If one was designing a system of say six chips,
one might want to structure the modules
differently.

I said six chips because one has two instances of
the chip A defined by module A.

6.• PROBLEM

If one line entering the top of a block represents
an instance, list the number of instances each
module in the figure a) will have.

module Test_bench

module Top

mod A mod B mod C mod D mod E

module Test_benchy

mod A mod B mod C mod D mod E

Figures a) and b) show modules, not instances

mod X
mod Z

mod Y

mod Z
mod Y

mod X

Test_benchy_1

A1 B1 C1 D1 E1

Z1Y1X2X1 Z2

Z3 Z4

A2

X3

Z5

X4

Z6

Figure c) shows
instances of b)

a)

b)

c)

IC pin connections

Hierarchy with
six chips

Comment on Slide 10

Verilog For Synthesis Two Paradigms

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 21

Structural vs Procedural Verilog
Two Paradigms

1. Procedural
Think like C code

Example:

reg c, d;

always @ /* Starts a Verilog procedure,
more later. */

c = a & b;
// Store c in a register

d = c | e;
// Store d in a register

• After c is stored, changing a, b, or e
does not change c or d.

• Order of statements is important.

d = c | e;
c = a & b; //gives diff ans

• Every statement requires storage by
default.
- This is all right for simulation where

storage is cheap.

2. Structural

Think like a circuit

Example:

wire c, d;

assign c = a & b; // Circuit
assign d = c | e; // Circuit

• Changing a, b, or e any time may
immediately change c, d.

• Reversing statement order does nothing

assign d = c | e;
assign c = a & b;

• Add flip-flops for storage
but only when needed.

- Minimizes expensive flip flops.

b
a

e

d
c

Slide 11

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 22

Verilog For Synthesis Structural vs Procedural Verilog

Structural vs Procedural Verilog
Structural Verilog

Structural Verilog code looks like a netlist, a textual description of the schematic.
Structural code is written with some combination of :

- assign statements as is shown, and/or
- interconnections of modules.

Statement order in the code has no more meaning than where on the page one puts a schematic symbol.

Procedural Verilog
The Verilog code looks much like c code. Procedures always start with

initial, or
always.

Initialprocedures start at time = 0, run sequentially through the statements in the procedure block.
Always procedures start at time = 0.1 They run sequentially through the block. However at the end of the block
they come back and run through the block again. That is the reason for the word “always.”

Memory
When running a computer, one has huge amounts of dynamic RAM but little parallel calculation ability. Thus
all calculation results are stored. When running logic there is a large amount of parallel computation ability, but
storage is in expensive flip-flops.

1. However they can be combined with an @(some_time) statement which starts them later.

Comment on Slide 11

Verilog For Synthesis Two Paradigms (cont.)

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 23

Two Paradigms (cont.)
1. Procedural

• Describe how a function works, but
not how to build it.
Usually easier to code.

Example: 2-bit to one-of-4 decoder
reg [3:0] Q;
wire [1:0] y;

always@ ... // Start of procedure,
more later.

case(y)
2’b00: Q[0]=1;
2’b01: Q[1]=1;
2’b10: Q[2]=1;
2’b11: Q[3]=1;
endcase

• Easier to code.
Let the synthesizer do the logic.

• In c-like code we depend on storing
each result

• One can avoid having the synthesizer
add latches, by proper coding.

• Note this circuit can’t clear the latches.

2. Structural
• Describes how to build a circuit usually

at gate level, hard to follow.

Example: 2-bit to one-of-4 decoder
wire [3:0] Q;
wire [1:0] y;

assign
Q[0]=(~y[1]) & (~y[0]),
Q[1]=(~y[1]) & y[0],
Q[2]= y[1] & (~y[0]),
Q[3]= y[1] & y[0];

• Have to work out the logic to write code.

• All Q values are calculated in parallel by
hardware. No need to remember.

y[0]
y[1]

Q[0]

Q[1]

Q[2]

Q[3]

Q[0]

Q[1]

Q[2]

Q[3]y[1]

y[0]

Y
o

u
d

o
n

’t
h

av
e

to
w

o
rk

o
u

t
lo

g
ic

1D
C1

1D
C1

1D
C1

1D
C1

proper coding
Avoid latches
with

Slide 12

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 24

Verilog For Synthesis Two Paradigms for Synthesis

Two Paradigms for Synthesis
Structual code

Structual code is like a schematic in words. It is easy for the computer to converted it to hardware. However
a large program of structural code is hard to write and hard to read.

Procedural code
This code is easier to write. The problem is computers have much memory and only one arithmetic logic

unit. Thus they tend to store all intermediate results. One would expect to store C in:
C = A & B;
F = C ^ E;

In hardware one can have plenty of extra gates, and one would feed the output of the AND directly into the
XOR.

The compiler must decide when to insert storage and when not to. This can get complicated.

Comment on Slide 12

Verilog For Synthesis Two ways to write procedural code

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 25

Two ways to write procedural code
1. Procedural with latches

• The synthesized circuit must give the
same result as the simulation.

Example: 2-bit to one-of-4 decoder
reg [3:0] Q;
wire [1:0] y;

always@ ... // Start of procedure, more later.

case(y)
2’b00: Q[1]=1;
2’b01: Q[2]=1;
2’b10: Q[3]=1;
2’b11: Q[4]=1;

endcase

• Then y changes the code executes.

• Only one of the cases is selected.
One new Q is calculated.

• Must remember the 3 other Q values?

• In C they are stored in memory.
In synthesis they are stored in latches.

• This synthesis must include latches.

2. Procedural without latches
• The synthesized circuit must give the

same result as the simulation.

Example: 2-bit to one-of-4 decoder
reg [3:0] Q;
wire [1:0] y;

always @ ... // Start of procedure, more later.

Q=4’b0000;
case(y)

2’b00: Q[0]=1;
2’b01: Q[1]=1;
2’b10: Q[2]=1;
2’b11: Q[3]=1;

endcase

• When y changes the code executes.

• Q=4'b0000 calculates four Q values.

• Case overwrites one of them.

• Nothing has to be remembered.

• This synthesis does not need latches.

Q0]

Q[1]

Q[2]

Q[3]
y[1]

y[0]

Y
o

u
d

o
n

’t
h

av
e

to
w

o
rk

o
u

t
lo

g
ic

1D
C1

1D
C1

1D
C1

1D
C1

Q[0]

Q[1]

Q[2]

Q[3]
y[1]

y[0]

Yo
u

d
o

n
’t

h
av

e
to

w
o

rk
o

u
t

lo
g

ic

Slide 13

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 26

Verilog For Synthesis Structural vs Procedural Verilog (cont.)

Structural vs Procedural Verilog (cont.)
The procedure must evaluate all four Q values each time it is run through.
If it does not then it must maintain the old values calculated at some earlier time.

One can remove the need for latches by adding one statement to the code on the slide.

always @ ... // Start of procedure

Q =4'b0000; // Statement to add
case(y)
2’b00: Q[0]=1;
2’b01: Q[1]=1;
2’b10: Q[2]=1;
2’b11: Q[3]=1;
endcase

Without Q=4’b0000;

Here only one-of-four Q values is calculated so three latches are needed on any pass through. Four since a
different three are needed on different passes.

With Q=4’b0000;
Here all four Qs are calculated each time the procedure is run. This will synthesize to a circuit without

latches that will give the same result as if the procedure was executed in C code.

7.• PROBLEMS
a. Write a code segment for a 2-bit to one-of-4 decoder which includes the statements:

reg [3:0] Q; Q=4'b0000; Q[y]=1;

b. Write a code segment, for a 4-output demux, in procedural Verilog.
It will look very much like the 2-to-4 decoder.

PROBLEMS CONTINUED NEXT COMMENT PAGE

Q[3]

Q[2]

Q[1]
Q[0]

y[1]

y[0]

x

D
E

M
U

X

Comment on Slide 13

Verilog For Synthesis Two ways to write procedural code

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 27

Why Procedural is Better ⇔ Why Structural is Better

1. Procedural

Easier To Code

• Don’t have to work out logic.

• Can code like we learned to do in C.

• Can use case, while, for, if . . .
Conceptually difficult in structured
coding.

40

Synthesis is Harder

• C compilers code into hardware which:
- runs one instruction at a time.
- they store every result.

• Synthesizers build a machine which:
- calculate results in parallel.
- feed results forward without storing.

• Synthesizer must substitute parallel
calculation for storage.

2. Structural

Harder to Code

• Designer has to know what circuit will do
at a logical level.

• Synthesizer will only minimize logic.

• Coding style is unlike what one learned
in Programming 101.

• Unclear how to incorporate high level
concepts: case, while, for, . . .

Synthesis is Easier

• First pass of converting to logic is done.

• Synthesis is logic optimization.
Can optimize for:
- area
- speed
- testability
- power

Slide 14

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 28

Verilog For Synthesis Procedural vs Structural

Procedural vs Structural

Procedural Synthesis is Harder

• Compilers generate code for hardware which:
- runs one instruction at a time.
- latches every result.

• Hard to compile into a machine which:
- runs many operations in parallel.
- continuously calculates parallel results.
- can feed the results of one calculation directly into another without storing.

• Hardware memory is flip-flops and is expensive.
A synthesizer must avoid using much of the storage a compiler would tend to put in.

7.• PROBLEMS (CONT)
c. Write it in structual code using the replicate operator. See “replication” on page 16

assign Q = {4{x}} & {y[0]&y[1], ...

d. Does this code segment require the synthesizer to generate storage?

reg [3:0] Q;
wire [1:0] y;

always @ (y)
case(y)
2’b00: Q[0]=1; Q[3:1]=3’b000;
2’b01: Q[1]=1; Q[0]=0; Q[3:2]=2’b00;
2’b10: Q[2]=1; Q[3]=0; Q[2:1]=2’b00;
2’b11: Q[3]=1; Q[2:0]=3’b000;

endcase

Comment on Slide 14

Verilog For Synthesis A Verilog Procedure

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 29

A Verilog Procedure
Starts with always or initial.

• begin and end bracket the procedure.

• initial is not synthesizable and is used for test benches.
always without @ condition, is normally only used in test
benches.

• Variables on the left-hand side should be of type reg,
or at least not of type wir.

always
begin

always@(some condition)
begin

endend

initial
begin

end

Statements including
if
case
for
while

Statements inc’d
if
case
for
while

Statements inc’d
if
case
for
while

. . .

.

.

w = a+ c;

type reg

Slide 15

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 30

Verilog For Synthesis Verilog Procedures

Verilog Procedures
Commands only Usable Inside a Procedure

for
while
forever
repeat
disable
if. . . else . . . elseif
case, casex, casez

Procedures run Concurrently

Several or all of the procedures may be active at the same time, just as different parts of a logic circuit can
execute at the same time. Being active here means changing values.

Only “always@” is Synthesizable, not “always”.

always without an @ condition repeats continuously. It is an infinite loop with no delay between loops. It is
tamed in simulation by placing delays inside the procedure, but one cannot synthesize numerical delays. One
can place the @ command as a separate statement inside the procedure. See “Time In Verilog” on page 37.

Comment on Slide 15

Verilog For Synthesis The HDL Compromise

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 31

The HDL Compromise
1. Make Procedures a Subunit of Structural Code

• Inside a procedure one codes like in C.

• Outside, a procedure it is a chunk of hardware.

• All procedures run in parallel with other procedures
.

D = A & B

always @(posedge clk)
case (S)

1'b0 : Y2 = D;
1'b1 : Y2 = C;

endcase

F = C | D

always @(C or D or S)
case (S)

1'b0 : Y1 = D;
1'b1 : Y1 = C;

endcase

B
A

A
1

1
G1

S

MUX

Y1

1

1
G1

MUX

Y2
1D
C1

CLK

S

C

D

D

C

C
F

Y1

Y2

How to think of Verilog (especially procedures) as a circuit
What will be synthesised

CLK

S

F

from the code

// Procedure

// Procedure
C = A & ~B

assign

assign

assign

Slide 16

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 32

Verilog For Synthesis Procedure as Blocks in a Circuit

Procedure as Blocks in a Circuit
Procedures are less formally denoted than in many languages.

In hardware, the whole procedure is a block of circuitry..

Comment on Slide 16

Verilog For Synthesis The HDL Compromise

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 33

The HDL Compromise
2. Only Put in Latches If Necessary

• Many procedures do not need to store values.

• If all left-hand values can be calculated from a single procedure entry,
nothing needs to be stored.

Example: Enabled 2-bit to 1-of-4 decoder.

reg [4:1] Q;
wire [1:0] x; wire Enb;

• If Enb=1, only Q[x] calculated.

• The other three Q[i]s must be
remembered from when Enb = 0.

• To remember, insert latches.

• To behave like C code this circuit
needs latches.

• NOT A GOOD WAY TO WRITE CODE

reg [4:1] Q;
wire [1:0] x; wire Enb;
// Procedure
always @(x or Enb)
begin

Q=4’b0000;
if (Enb) Q[x]=1;

end

• If Enb=1, Q[x] immediately
overwrites Q=4’b0000.

• All Q[i]s are calculated in one entry.

• No need to remember.

• This circuit behaves like C code but
uses no latches.

• BETTER WAY TO WRITE CODE

// Procedure
always @(x or Enb)
begin
if(Enb) Q[x]=1;
else Q=4’b0000;

end

Slide 17

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 34

Verilog For Synthesis Avoid Unnecessary Latches

Avoid Unnecessary Latches
To avoid unnecessary latches, one must code carefully.

One of the rules, illustrated above, is:-
Every time one executes a procedure all of the variables defined anywhere in the procedure must be calculated.
Otherwise latches will be generated.

8.• PROBLEMS:

Assuming the following statements are alone inside a procedure,1 will they generate latches?

a) if (a>1) y=1; else y=0;

b) if (a = = 3) x=1; else y=1;

c) if (a) begin x=1; y=1; end // else do nothing

d) if (a) begin x=0; y=0; end
else begin x=1; y=1; end

e) x=1; y=1;
if (a) x=0; else y=0;

1. For those who know about the trigger list, assume it is @(a).

Comment on Slide 17

Verilog For Synthesis The HDL Compromise

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 35

Avoiding Unwanted Latches: Rule 1

Else synthesis will insert latches to hold the old values of those unevaluated outputs.

Methods
Method 1:

Set all outputs to some value at the start of the procedure.
Later on different values can overwrite those values.

always @(. . .
begin
x=0; y=0; z=0;

if (a) x=2; elseif (b) y=3; else z=4;
end

Method 2:

Be sure every branch of every if and case generate every output.

always @(. . .
begin
if (a) begin x=2; y=0; z=0; end

elseif (b) begin x=0; y=3; z=0; end
else begin x=0; y=0; z=4; end

end

If the procedure has several paths,
every path must evaluate all outputs

Slide 18

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 36

Verilog For Synthesis Writing Procedural Code Without Latches

Writing Procedural Code Without Latches
Eliminating Latches

Let the inputs to a combinational logic block be held by latches,
flip flops, or by input switches. Then the outputs only change if
an input(s) change.

To duplicate the behaviour of a combinational block with
sequential code, one need only be sure the outputs are re-
evaluated every time any input changes. Then nothing needs to
be stored inside the combinational block.

All outputs must be evaluated on all paths.

If the procedure has several paths, every path must evaluate all
outputs. Otherwise latches must be inserted to hold the previous values of those unevaluated outputs.

Methods

Method 1:
Set all outputs to some value at the start of the procedure.

Later on different values can overwrite those values. In simulation, with delays, one could get glitches by doing
this. For synthesis one does not use delays within procedures and the glitches are at worst 0 ns.
The synthesizer will take out the extra “writes” during logic minimization.

Method 2:
Be sure every branch of every if and case generate every output.

This is usually a lot more work for the coder. The synthesizer can handle either method.

Inputs
Latched

A

B

Combinational

Comment on Slide 18

Verilog For Synthesis There are three concepts of time.

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 37

Time In Verilog

There are three concepts of time.

1. # <delay> <event> Q = #5 x&y;
This is not useful for synthesis. // Q changes 5 units after x or y changes
One cannot synthesize a given delay.

2. @<edge-triggered event> @(posedge clock) //
For procedural code. // Respond to rise
Proceed past this point when the @(A or B) // Respond to rise and fall.
correct edge happens. @negedge clock // Respond to fall

3. wait(<signal_has_high_level>) wait(enable)
Proceed when signal has a #10 count = count + 1;
high logic level. // Count every 10 time units while enable =1

Not supported for synthesis
Handy in test-benches.

Slide 19

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 38

Verilog For Synthesis Time in Verilog

Time in Verilog
The difference between wait and @

In some cases edge and level triggered act the same. In some places they are not.

wait(x) //will trigger if x starts out high. It will continuously trigger if x stays high.

@(posedge x) //will need an edge.

A common reset problem

Reset generation in test bench.
initial begin reset=1; #1 reset=0; end

Possible reset implementations inside flip-flops
always @(posedge reset) Q=0; //will not reset.

always wait (reset) Q1=0; //This will reset, but wait causes an infinite loop (see below).

Better make your test-bench reset-pulse a true pulse rather than a step.

An infinite loop

always

begin

wait(!reset) x=1; // As soon as reset goes low, this is a zero delay loop.
end // This will stop a simulator from advancing the simulation..

Comment on Slide 19

Verilog For Synthesis Timing and Procedures

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 39

Timing and Procedures

Execution of Procedures
• Two procedure types:

initial
always>

• initial implicitly starts at t=0.

• alwaysmust explicitly state when in will
be executed

Initial
1. Initial

Starts running at t=0.
Continues until told to stop.

2. Initial is not synthesizable

- Used mainly for test-benches.

3. Initializes test bench variables

4. Simulation must have an initial
procedure that ends with $finish

//Typical initial procedure
Initial
begin

clk =0;
#5 A=1;
#5 B=0;
end // end after 10

units.

//Common test-bench clock.
initial clk=0;
always #50 clk=~clk;

Initial

#5000 a=1;
#5000 $finish;
// Simulation will run t=0 to 10,000.

t=0
t=0
t=5
t=10
t=10

Slide 20

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 40

Verilog For Synthesis Procedure Timing

Procedure Timing

Multiple Procedures

One may have many initials procedures all running in parallel. They all start at time t=0.

$finish

$finish ends the simulation. Without it one must manually abort the simulator.

9.• PROBLEMS:
initial
begin

aa=0;bb=0
#50 aa=1;
#50 aa=0;

#50 $finish
end

always @(aa) bb=~bb;

a. How long will the simulation run?

b. When will the value of bb change?

Comment on Slide 20

Verilog For Synthesis Timing and Procedures

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 41

Procedure Timing

Always
Must explicitly state when the
procedure will be executed.

1. Always
This runs all the time.
When it finishes it starts again.

2. Always @(A or B)
Runs when A or B change value.
Used for combinational logic.

3. Always @(posedge clk)
Runs after each rising clk
Synthesizes to flip-flops.
If you don’t want FF don’t use
posedge /negedge.

4. Always @(clk)
Runs when either edge of clk
changes
Can be made to give latches.

//Common test-bench clock.
initial clk=0;
always #50 clk=~clk;

// always reruns every 50 ns.

always A=~A;
// Zero delay loop. Kills computer.

always @ (A or B)
Y= A | B; // will synthesize to an

OR gate.

always @ (posedge clk)
Q=d;

// a Flip-flop is implied to hold the old Q
// in between rising clock edges.

always @ (clk)
if (clk) Q=d;

// implied else;
// a latch is inserted to hold the old Q

#00

#50

Slide 21

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 42

Verilog For Synthesis Procedure Timing

Procedure Timing
Multiple Procedures

One may have many always procedures all running in parallel. Typically they start on the same clock edge.

always wait

always @(. . .) is commonly used. However
always wait can be useful in test benches. Also one can have several @ checks inside an always loop.
always @(a)

#5 x= ...;
@(b)

An alternate clock loop

This uses a forever loop which can only be used inside a procedure.

initial
begin

clk=0;
forever #5 clk=~clk;

end

Comment on Slide 21

Verilog For Synthesis Timing and Procedures

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 43

Slide 22

Printed; 09/09/03 Department of Electronics, Carleton University
Modified; September 9, 2003 © John Knight Vrlg p. 44

Verilog For Synthesis Procedure Timing

Comment on Slide 22

