. Wordsor Pictures

4 ,)
Verilog's Purpose

Words or Pictures always @(SO0 or S1 or A or B)
— case({S0, S1})
A Hardware Description Language (HDL) 1: 2 = A;
_ 2: Z = A&B; Words
Are words better than pictures? 3: Z = B;
- For digital design, the words seem to be ahead. 4: 7 = A|B;
(for now) endcase
- In Simulink the pictures are ahead. So |
Sy O}GQ
1 11/C3
A 0 | Z
Pictures ;
Two Purposes for an HDL)&j’
B j —3
1. Simulation

- Simulate parallel components.

- Simulate timing.

- Describe operation with higher-level concept (like If and Case).
- Also describe circuits at gate-level.

2. Synthesis
- Generates the gate-level description from the high-level one.
- Acts as input for a logic minimizer.

N J

Printed; 09/09/03 Department of Electronics, Carleton University Slide 1
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 1
Verilog For Synthesiss What isthe clearest way to describe a

Verilog For Synthesis?

What isthe clearest way to describe a circuit
Differential encoding

1. Inwords:

If both inputs are 1, change both outputs. =
If oneinput is 1 change an output as follows:
I the previous outputs are equal
change the output with input O;
If the previous outputs are unequal

change the output with input 1. Q
If both inputs are 0, change nothing.
2. With equations:
lout=(1©Q)(I®lprev + (19Q)(Q@Qprev) (1.Q)prev) (1.Q)prev
Qout=(12Q)(Q@Qprev + (1®Q)(I®lprev) IQ_00 01 11 10 o= #
3. By aschematic; does not give much insight. 0 oojo1]1 |10 0
01| 10| 0001|117 01| A-|-A
4. By tables; two forms are shown. ul w0 u =
An output vs. input table. 10 o aa
An output-change vs. input table. 10| 01| 11| 10/ 00 10|-a |a-
. . lout,
Which representation would you choose? out.Qout Alout,AQout
1. File VerlSynO.fm
Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 1

Modified; September 9, 2003 © John Knight Vrlg p. 2

Verilog For Synthesiss Two Purposes: Simulation and Synthesis
\

Two Purposes: Simulation and Synthesis
Simulation Was Original Purpose
198A Verilog-XL simulator and language developed by Gateway Design Automation
Synthesis Adopted The Language Later
1987 Verilog based synthesis tool introduced by Synopsys.

What's Good for Simulation May Be So-so For Synthesis

- Computers have different constraints than other hardware.
They have huge cheap storage.
They do not mind wasting a few instructions

- Hardware uses small expensive storage (flip-flops)
Custom hardware is usually chosen for high speed (don’t waste operations).

- Compiling as for a computer is an inefficient way to compile to hardware.

/'calculatey and store

Y A y
y=A&B il >
»_—calculatew and store B - z
w=Cl|y 1D
calculate z and store bC1

Ew(-y) | (~w)y; c w)
Will simulate easily, but uses extra storage Hardware only stores at end

Only a Subset of Verilog is Synthesizable

- J

Printed; 09/09/03 Department of Electronics, Carleton University (Slide 2
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 3
Verilog For Synthesiss Developed for Simulation, Used for

Developed for Simulation, Used for Synthesis

Verilog was devel oped as an input language for simulation. In one sense a compiling for simulationis a
construction of alogic circuit. It yields a digital machine that gives the right outputs. However it isnot an
implementation people normally want for synthesis.

The development costs of implementing logic in a microcomputer are much smaller than other methods.
Furthermore simple microcontrollers are produced in such quantity that one must produce many millions of a
specialized chip to beat their cost. Thus one will normally only do custom logic to gain speed, reduce size, or
reduce power. However, if the extradesign costs can be justified, one can gain one to three orders of magnitude
in speed. size or power by custom logic design.

The implementation for a circuit compiled for simulation is quite different from the implementation for a
custom chip. In simulation al intermediate results are saved in memory or an internal register. For acircuit, this
practice would waste memory and would slow down the circuit, because each save represents a clock cycle. A
compiler for synthesis must remove al unnecessary saves. Thisisfairly difficult.

Also, when running the logic in simulation, only one logic operation is done at atime in the computer. This
is because the computer normally has only one arithmetic-logic unit (ALU). A compilation for synthesiswill
want to generate parallel hardware. However the change from serial to parallel operationsis normally easy.

In summary, athough they use the same Verilog input, synthesisis a different, and harder job than
simulation.

The Synthesis Subset of Verilog

Not all Verilog commands synthesize easily. For exampleinitial initializing variables) iseasy to doina
program where all variables are stored. However in hardware only variables stored in flip-flops are easy to
initialize. For thisreason only a subset of Verilog is synthesizable. These notes will concentrate on that subset.

Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 2
Modified; September 9, 2003 © John Knight Vrlg p. 4

Verilog For Synthesiss Two Purposes. Simulation and Synthesis

4 _)
L exicography

Character Set

T TSRS /o)
« 0123456789ABCD..YZabcd...yz_$

Cannot start with a number or $ Really Long Winded Type Names

. Verilog is case sensitive. _2cows, __2bulls,
abc2 /*isnot the same as*/ ABC2

assigf x = a&b | c&(~d) |

White Space e& (~g) &£f;

- The white space characters are: // isthe same as
space (\b), tabs (\t), newlines (\n).

- All keywords are in lower case.

assign
- These areignored except in strings and tokens. | x_a&b |c(~d) |e& (~g) &F

- The spaceis also used as a delimiter

A=3+2; // Comment starts
// with “//" Good for

Comments // commenting code.
- Two types:
- single line comments starting with
/* These comments extend
// Comment

over multiple lines. Good
- multiple line comments delimited by for commenting out code */

/* Comment */
- Comments cannot be nested.

N J

Printed; 09/09/03 Department of Electronics, Carleton University Slide 3
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p.5
Verilog For Synthesiss L exicography

L exicography
Character Set
No hyphenisalowed

There are escaped identifiers which are- \<any ascii characters except white space><white space>.

Thus \#ba isalegad namebut \#ba, isnot. However \#ba , isal right. The white space
placement is critical. This featureis useful for asserted low variableslike \reset , thatis“reset when
low.”

Comments
Sometimes /* ... */ isused to put acomment in the middle of aline of code.
1.. PROBLEMS'

Which of thefollowing are valid?
OK$ OK flip OK#flop OK$latch _OK $OK _ _All_Right 230K June-Bug

/* Comment out code

assign _OK=galb; /*“|"isalogic OR */

assign Fill=_OK & ¢;

End of removed code */

assign x = /* If y isover 3 or the gastric resonance will overflow the bedorfulls! */

y + bedorfull;

1. The bad tokens are OK#flop, $OK, 230K and June-Bug. The nested comment will fail, but the two line statement with an
embedded comment is al right. Note a statement ends when a semicolon is reached. A new line does not end a statement.

Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 3
Modified; September 9, 2003 © John Knight Vrlg p. 6

Verilog For Synthesiss

Satements

Statements

\

Statement Delimiters
- End of Statementisa “;”

« Returns usually do not
matter.

- Multiple statements of the
same kind can be grouped,
and separated by commas.

Data Values
Constants

Specified by number of bits
and value.

Integer values are truncated to
fit variable size.
Strings

Store in reg, 8 bits per
character.

Treated like any other number.
Parameters

Values used during
compilation but not

assign Long Count =A + B+ C+ D+ E
+ F+G+H+ I+ J;

assign X=1, Y=2, Z=3;
5’b10111; //5 bits, binary value 10111.
57d23; /5 bits, decimal value 23
5'hl17; /I5bit, hex value 17

wire [3:0] tom, dick;
assign tom=23; /l'is the same value as
assign dick=4'b0111;

reg [8*5:1] hi;
initial hi = ‘Hello’;

parameter n=4;

reg [n-1:0] tom, dick, harry;

synthesized or simulated. parameter Reset state = 0, state B = 1;
Run state = 2, finish state = 3;
Printed; 09/09/03 Department of Electronics, Carleton University Slide 4
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 7
Verilog For Synthesiss Data Values
Data Values
Strings
Note that:- | | | |
reg (8%5:1) hi HEEEEEEENEEEEEEREEEEEEEEEEEEEEEEEEEEEEN
makes a 40 x1 dimensional array.
Parameters
Can give states meaningful names instead of digits. Alternately use the macro definition ~define:
‘define Reset state = 0, state B = 1, Run state = 2, finish state = 3;
Add a backquote when using amacro i.e. if (state = = “Run_state)
2.« PROBLEMS ASCIT
Continuation lines A'=8'h4l
how do you make them? 'B'=8'h42
Binary representation of Constants 'C'=8'n43
aw10 gives? ([[[[T T[] * D'=8'h44
4'aro gives? [[[[[[[[]
reg [8:0] A; initial A=16; gives? [| | | | [| | | J=8'h4a
reg [8:0] B, C; initial
begin
B=Bgves? [[[[[[T[]
c=B+l;gves? [[[[[[[[]
end

1.4p10is NNNWoJo[1]o]

Printed; 09/09/03
Modified; September 9, 2003

Department of Electronics, Carleton University

Comment on Slide 4

© John Knight Vrlg p. 8

Verilog For Synthesiss Data Types for Synthesis

4 , ,)
Verilog Variables

Data Types for Synthesis module typ sample (W,B,Row,Rr) ;
. Wire input W, B;
Used for left hand side of structural code wire W;
Wire variables synthesize into wires. wire [7:0] B; BT B[O]
Inputs are of type wire. ! T
- Reg
. tput Row,Rr; Rr[2] Rr[0]
Used for left hand side of procedural code. outpu oWy RE E
May synthesis into latches and flip flops. reg Row;
May also synthesize into wires. reg [2:0] Rr;
Most (not all) outputs are of type reg.
Two Paradigms
1. Procedural 2. Structural
Think like C code Think like a circuit Assign is used
Example: Example: V(\:”Otgl gtgructural
reg c, d; More later wire e,c,d,a,b; '

wire a, b, e;

always @ ... //Starts a Verilog
begin

c =a & b; [/Sworecina“reg”
c| e

assign ¢ = a & b; // Circuit

procedure assign d = ¢ | e; // Circuit

. Cc
d = ; M/ Store d ina‘“reg” ﬁ:DD’
e —
Printed; 09/09/03 Department of Electronics, Carleton University Slide 5
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 9
Verilog For Synthesiss Verilog Data Types

Verilog Data Types
Wires

These always correspond to a wire or abus of wiresin acircuit.
Unfortunately reg may also correspond to wires.
However wires never store. They just transfer inputs to outputs.

Note the “dimension” of the bus (vector) comes before the name of the bus.
Reg
These correspond to variables in the C language. In Verilog for simulation they are always stored.

In synthesisthe compiler will generate latches or flip-flops for them. However if it can be sure their output does
not need to be stored it will synthesise them into wires. It can be sure they do not haveto storeif their outputsis
based only on their present inputs.

Rulefor reg and wire.

A variableisdeclared type reg if it appears on the left hand side of an equal sign in a procedure.
A procedure startswith theword always or initial.
A variable is declared of type wire if it appears on the left side of an equal sign in structural code.
Structual code statements start with the word assign.

3. PROBLEMS

reg [3:0] AA; always . . .
an=15; /I Will AA synthesize into wires, flip-flops, or latches?*

wire [7:0] BB; assign BB = AA + BB; // Will this statement generate storage?

1. Clearly AA does not need to be stored since it is always a constant. Just hard wire it to four 1s.
The second statement will not generate storage because wire variables are never stored. The statement is an asynchronous
feedback loop where BB keeps incrementing by 15 continuously. No working circuit like that could ever be synthesized.

Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 5
Modified; September 9, 2003 © John Knight Vrlg p. 10

Verilog For Synthesiss Data Types for Synthesis

\

Data Types for Synthesis

wire W;
- Integer wire [7:0] B;
Normally used for things like loop reg Wr;

indexes which do not synthesize.

Converted to right number of bits . L.
automatically if stored in a scalar or integer IMe; initial IMe=4012;
vector

reg [2:0] Rr;

/I Integer “1” converted to 1 bit and assigned

/l'to a scalar
- Scalar assign W=1;
A single wire or reg (like W or Wr) is

a scalar. It can contain only 1 bit . assign B= 254;\~ [1,1,1,11,1,1,0]

These are

- Vector undeclared integers

A wire or reg made of multiple bits.
reg [7:0] B;

memy|[5]
Il Array T T
« Array 5. 5.1
A 2-dimensional array of wire or reg. reg [2:0] memy [5:1] o ¢
. . . T
Operations are very restricted Rr = memy (315 memy[i]
Wr=Rr[1];

N J

Printed; 09/09/03 Department of Electronics, Carleton University Slide 6
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 11
Verilog For Synthesiss Data Types
Data Types
Integers
Integers do not synthesize to physical hardware, unless they are synthesized as power and ground connections
as shown.

Beware; integers are the only two’s complement numbersin Verilog. Recall -1 as bit vector isall ones. Thus-
assign B = -1; //would put avalue of 255in B. since on the dide B is defined with eight bits.
Vectors
Conventionally arrays are dimensioned [7:0] (left down to right) so the most-significant bit of an 8-bit busis
number 7. One can go [0:7] or [8:1] or [1:8] or even [15:8] if one wishes.
Array

The example shows a reg array which isfar the most common.
However wire arrayscan be made.

Verilog is very restrictive for arrays. Their islittle programming convenience in using them. The advantage of
arraysisin specifying embedded RAM. Arrays must be accessed like amemory, that is only oneword at atime.

reg [7:0] memry [0:1023]; //Storage

// One can only get at rows of the array directly. Define a vector to extract bits.
reg [7:0] Mem Word; //Not storage

Mem Word = memry [997];

hex
Problems: what are the bit patterns? 8'hab6
reg [9:0] B; dnitial B = 1; [[[[[[[T [[]] =1010_0110
reg [9:0] B; initial B=-1; [[[[T [T T []]
reg [5:7] H; initial H=8'ha6; [| |]
Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 6

Modified; September 9, 2003 © John Knight Vrlg p. 12

Verilog For Synthesiss

4)
Operators

Data Types for Synthesis

Verilog has three types of operators,
They take either one, two or three operands.

1. Unary operators appear on the left of their operand:
clock = ~clock; /I ~is the unary bitwise negation operator,
/I clock is the operand
2. binary in the middle,
c=a || b; Il || isthe logical or, aand b are the operands

3. and ternary separates its three operands by two operators.
r=(s) ? t :u; /I ?: isthe ternary conditional operator, which
/I reads r = [if s is true then t else u]

/I Verilog has only one ternary operator

t My
1 Y
u_ |1
Printed; 09/09/03 Department of Electronics, Carleton University Slide 7
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 13
Verilog For Synthesiss Operators, General

Operators, General

Unary operators
They are:
~, I, sometimes - or + asin-2or+3, andin one sense the reduction operators (next slide).

Ternary operator

Theonly oneis:
r=s?t:u

One can see binary operators are by far the most common.

1. Foot note for the previous page: reg [5:7] H; initial H=8'haé gives H=110. The numbers do not care what
subscripts you put on their bits.

Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 7
Modified; September 9, 2003 © John Knight Vrlg p. 14

Verilog For Synthesiss Operators
[

\

Operators,
Arithmetic « Modulus and dIVISIOI’.] are for test benches
I only. Not for synthesis.
+, = * o __
$ (modulus) / (divide) 12%5 ==> 2
Relational - Logical: The whole variable is treated as false
_ ___ L (0) zero, ortrue (1) for anything but zero.
<, <=, >, >=, == I=
. 27 && -3 ==>1
Logical 27 && 0 ==>0
! (not), &&, || A || 33 =>1 (for any A)
Shift - Shift A left 3 bits and zero fill

Shift B right 1 place and zero fill
A<<3 B>>1

- Bit-by-Bit operations between two variables.

Bluse . 57511001 * 5'b01101==> 5'b10100
~(not), & |,* (xor), ~*or “~ 5'b11001 & 5’b01101==> 501001
Reduction

. A - Reduction: Between the bits of one variable.
& ~& |, ~|, “(xor), ~"or "~ & 5'b01101 ==> 0
* 5/b01101 ==> 1

Concatenation
- Concatenate:

{ } wire [2:1] A, wire [3:1] B;
Conditional wire [5:1] C;
c={a, B};

(condition)? if true: if false; .
- Conditional:

/I Increment A if C==D, else decrement A.
assign newA = (C==D) ? A+l : A-1:

- J

Printed; 09/09/03 Department of Electronics, Carleton University Slide 8
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 15
Verilog For Synthesiss Operators, General
Operators
modulus

a%b istheremainder of alb. 7%3=> 1, 13%15 => 13
Other Operators
Replication; A useful operation not mentioned above.
Concatenation of n copies of the same thing can be written {n{X}} instead of { X, X ,X, .. .X}
Thusto fill an 8-bit word Z with 8 copies of the least-significant bit of word W, use:
wire [7:0] W, Z;
assign Z = {8{w[1l};
4. PROBLEMS
reg [2:0] A, B;
initial begin A=3'blll; B=3'bl0l; end
To what value would the following expressions evaluate?
a) A && B;
b) A & B;

c) & A;

d) & B;

e) B>>1 L

f) B<<2

9 {aB} a

h) (A~"B) = =(B"~3)

Infinite loop

Noteon assign newA = (C==D) ? A+l : A-1; continually
Assigning the left side to a right side containing the same variable, like “assign incrementing A
A=A+1;", will cause aloop continuously incrementing A.

Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 8
Modified; September 9, 2003 © John Knight Vrlg p. 16

Verilog For Synthesiss

TheModule

[

-

Verilog Structure

The Module
< The subroutines? of verilog

« All code is contained in modules.
- Modules can invoke other modules.

- Modules are never defined inside other
modules.
Think: any module definition can be
made a separate file.

« In C one thinks of calling one module
(procedure) and then calling it again in
sequence.

- In Verilog one builds two instances of a

module. They both exist and run at the
same time.

1. Procedure has a different meaning in Verilog.

\

module gate(z, A,B,C);
input A,B,C;
output Z;

assign Z
endmodule

A| (B&QC) ;
& z
C@
B

module two gates(Z2, A2,B2,C2)
input A2,B2,C2;
output Z2;
gate gate 1(G2, A2,B2,C2);
gate gate 2(Z2, G2,A2,B2);

Printed; 09/09/03
Modified; Tuesday, September 09, 2003

Verilog For Synthesiss

Department of Electronics, Carleton University
© John Knight

endmodule
A2 G2
o7
B B2 22
a4
» Two instances of “gate.”
Slide 9
Vrigs p. 17

Operators, General

Verilog Structure
Modules

All statementsin Verilog are contained between:
module
/land
endmodule

Modules cannot contain another modul €' s definition.

modulethingl

endmodule(_\'\é\

module thing2

ehdrﬁodule endmodule

M odules can contain invoke another module. On the slide, modul e two-gates invokes modul e gate twice.

Once asgate_1 and once as gate_2.
These are called two different instances of gate.
Instances are not recursive.
PROBLEM,: complete the module using submodules
module five-gates(Y, A3, B3, C3, C4, B4,
A4, B5, AB);

input A3, B3, C3, C4, B4, A4, B5, A6;
wire A3, B3, C3, C4, B4, A4, B5, A6,

U, V, W, X; "
output Y; /I'1sY reg or wire?
assign U=gate gate_u(...

endmodule

1. Module interconnections default to type Scalar wir. However making awir declaration reminds you check the defaults are correct.

Printed; 09/09/03
Modified; September 9, 2003

Department of Electronics, Carleton University
© John Knight

Comment on Slide 9
Vrlg p. 18

Verilog For Synthesiss

A Hierarchy of Modules

A Hierarchy of Modules

The main module is the test_bench

- It generates all signals to feed the
module, like the clk.

- It likely prints out the outputs
(not shown here).

- Itis never synthesized.
It is only simulated.

- It drives the simulation of the other
modules before synthesis.

- Then they are synthesized into gates

- Then it drives a check simulation on
the synthesized gates.

The top module
- Isthe top of the synthesized code.

- It often collects the other module
invocations.

- The chip I/O signals pass thru top.

The other modules
- They collect at the bottom

-

\

module test bench;

reg clk, A, B, Z;

initial begin
clk=0;
A=1;
B=0;

end
always #25 clk=~clk;

| top topl(z, A,B,clk); |
endmodule

module top(Z, A,B,clk);
input A,B,clk; Output Z;

gate gl(G,A,B,clk); |
| two gates g2(Z, clk,A,G);
endmodule
Al
|
module module
gate two-gates

J

Printed; 09/09/03
Modified; Tuesday, September 09, 2003

Verilog For Synthesiss

Department of Electronics, Carleton University
© John Knight

Slide 10
Vrigs p. 19

Module Hierarchy

Module Hierarchy

Common hierarchy
The hierarchy on the slide is very common.
The test bench only invokes one module.
This corresponds to the “pins’ onan IC.
Note module A will have three instances but only
one modul e definition.

Anocther hierarchy

If one was designing a system of say six chips,
one might want to structure the modules
differently.

| said six chips because one has two instances of
the chip A defined by module A.
PROBLEM

If one line entering the top of a block represents
an instance, list the number of instances each
module in the figure a) will have.

a)

b)

0)

module Test_bench IC pin connections
|
‘ module Top
[T I I I I
|modMod B| |mod C| |mod D| |mod EI
Y
mod X mod Z
Figures a) and b) show modules, not instances
module Test_benchy| Hierarchy with
- six chips
[mod Mod B [modd |modD| [modE]|
mod X Y d Z
Test_benchy_1 Figure c) shows
instances of b)
[Aa1] [BL] [c1]| [p1] [EL]
T
[26

Printed; 09/09/03
Modified; September 9, 2003

Department of Electronics, Carleton University
© John Knight

Comment on Slide 10
Vrlg p. 20

Verilog For Synthesiss Two Paradigms

4 ,)
Structural vs Procedural Verilog

Two Paradigms

1. Procedural 2. Structural
Think like C code Think like a circuit
Example: Example:
reg ¢, d; wire ¢, d;
always @.... /* Starts a Verilog procedure, assign ¢ = a & b; /Circuit
more later. */ assign d = ¢ | e; /[Circuit

|
c=a & b; a c
/I Store ¢ in aregister b— d
d=c| e; .

/I Store d in aregister

- Changing a, b, or e any time may

- After cis stored, changing a, b, or e immediately change c, d.

does not change c or d.

L . i hi
. Order of statements is important. Reversing statement order does nothing

assign d = ¢ | e;
d=c| e; i = .
c=a&b; //givesdiff ans assign ¢ = a & b;
- Every statement requires storage by + Add flip-flops for storage
default. but only when needed.

- This is all right for simulation where - Minimizes expensive flip flops.

storage is cheap.

N J

Printed; 09/09/03 Department of Electronics, Carleton University Slide 11
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 21
Verilog For Synthesiss Structural vs Procedural Verilog

Structural vs Procedural Verilog

Structural Verilog
Structural Verilog code looks like a netlist, atextual description of the schematic.
Structural code is written with some combination of :
- assign statementsasisshown, and/or
- interconnections of modules.

Statement order in the code has no more meaning than where on the page one puts a schematic symbol.

Procedural Verilog
The Verilog code looks much like ¢ code. Procedures always start with
initial, or
always.
Initial procedures start at time = 0, run sequentially through the statements in the procedure block.
Always proceduresstart at time = 0.1 They run sequentially through the block. However at the end of the block
they come back and run through the block again. That is the reason for the word “aways.”

Memory

When running a computer, one has huge amounts of dynamic RAM but little parallel calculation ability. Thus
all calculation results are stored. When running logic there is alarge amount of parallel computation ability, but
storage isin expensive flip-flops.

1. However they can be combined with an @(some_time) statement which starts them later.

Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 11
Modified; September 9, 2003 © John Knight Vrlg p. 22

Verilog For Synthesiss Two Paradigms (cont.)
[

\

Two Paradigms (cont.)

1. Procedural 2. Structural
+ Describe how a function works, but - Describes how to build a circuit usually
not how to build it. at gate level, hard to follow.
Usually easier to code.
Example: 2-bit to one-of-4 decoder Example: 2-bit to one-of-4 decoder
reg [3:0] Q; wire [3:0] Q;
wire [1:0] y; wire [1:0] y;
always @... // Start of procedure, —Q[0] assign
more later. o1 [Qlol=(~y[1]) & (~y[0]), Q[0]
case (y) oS ¢ ! Q1l=(~y[1]) & yloO],
27b00: Q[0]=1; & S o1 Ql2]= yl1] & (~yl[o0l), Ql1]
2'b01: QH =1; = ‘g—a or2 Q3]= yl1] & ylol; Q12]
2'bl0: QI[2]=1; c ol ot
2/b11: QI3]=1; yio) [| 8 Sles y[o] (3]
endcase vig |12 5_?3[3] yli]
> = Cc1

Avoid latches - |
with proper coding
- Easier to code.

Let the synthesizer do the logic. - Have to work out the logic to write code.

« In c-like code we depend on storing

each result - All Qvalues are calculated in parallel by

hardware. No need to remember.
- One can avoid having the synthesizer

add latches, by proper coding.
- Note this circuit can’t clear the latches.

N J

Printed; 09/09/03 Department of Electronics, Carleton University Slide 12
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 23
Verilog For Synthesiss Two Paradigms for Synthesis

Two Paradigms for Synthesis
Structual code
| Structual code s like a schematic in words. It is easy for the computer to converted it to hardware. However
alarge program of structural code is hard to write and hard to read.
Procedural code

This codeis easier to write. The problem is computers have much memory and only one arithmetic logic
unit. Thus they tend to store all intermediate results. One would expect to store C in:

C=A & B;

F=C"E;
In hardware one can have plenty of extra gates, and one would feed the output of the AND directly into the
XOR.

The compiler must decide when to insert storage and when not to. This can get complicated.

Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 12
Modified; September 9, 2003 © John Knight Vrlg p. 24

Verilog For Synthesiss Two waysto write procedural code

[

Two ways to write procedural code

1. Procedural with latches 2. Procedural without latches
- The synthesized circuit must give the - The synthesized circuit must give the
same result as the simulation. same result as the simulation.
Example: 2-bit to one-of-4 decoder Example: 2-bit to one-of-4 decoder
reg [3:0] Q; reg [3:0] Q;
wire [1:0] y; wire [1:0] vy;
aways@ ... // Start of procedure, more |aIle0] aways@ ... // Start of procedure, more Iatgr.
U_g — Q=4"b0000; Q—Q[]
case (y) oo | case (y) =
2'b00: Q[1]=1; 3 9 5 AU 2'b00: Q[0]=1; g 2 Q1
2'b01: Q[2]=1; f‘S—c1 2'b01: QI[11=1; f5
2'b10: Q[3]=1; = O /92 2/p10: QI[2]=1; c S Q2
S 1D o x—
2'bll: Q[4]=1; v[ol T 51 2'bll: QI[3]=1; vIo] S5
endcase = 2| —QI3] endcase 3 2| Q[3]
ylu—|2 o [yln—| S o
=L 2
- Theny changes the code executes.
.« Only one of the cases is selected. + Wheny changes the code executes.
One new Q is calculated. « Q=4'pb0000 calculates four Q values.
« Must remember the 3 other Q values? . Case overwrites one of them.
« In Cthey are stored in memory. » Nothing has to be remembered.

In synthesis they are stored in latches.
« This synthesis must include latches.

- This synthesis does not need latches.

N

\

Printed; 09/09/03 Department of Electronics, Carleton University Slide 13
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 25
Verilog For Synthesiss Sructural vs Procedural Verilog (cont.)

Structural vs Procedural Verilog (cont.)

The procedure must evaluate all four Q values each time it is run through.
If it does not then it must maintain the old values calculated at some earlier time.

One can remove the need for latches by adding one statement to the code on the dide.
aways@ ... // Start of procedure
Q=4b0000; // Statement to add

case(y)
2'b00: Q[0]=1;
2'b01: Q[1]1=1;
2/'b10: Q[2]=1;
2'bl1: QI[3]1=1;
endcase

Without Q=4'b0000;
Here only one-of-four Q valuesis cal culated so three latches are needed on any pass through. Four since a
different three are needed on different passes.

With Q=4'b0000;
Here all four Qs are calculated each time the procedure is run. Thiswill synthesize to a circuit without
latches that will give the same result asif the procedure was executed in C code.

7. PROBLEMS
a. Write a code segment for a 2-bit to one-of-4 decoder which includes the statements:

reg[3:0] Q; Q=4b0000; Q[yl=1, { Q3]
b. Write a code segment, for a 4-output demux, in procedural Verilog. X g [2]
It will look very much like the 2-to-4 decoder. | [1
0" QO
PROBLEMS CONTINUED NEXT COMMENT PAGE %
yiII
Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 13

Modified; September 9, 2003 © John Knight Vrlg p. 26

Verilog For Synthesiss

Two waysto write procedural code

[

\

Why Procedural is Better < Why Structural is Better

1. Procedural
Easier To Code
- Don’t have to work out logic.

. Can code like we learned to do in C.

- Can use case, while, for, if . . .
Conceptually difficult in structured
coding.

Synthesis is Harder

-« Ccompilers code into hardware which:

-runs one instruction at a time.
- they store every result.

« Synthesizers build a machine which:
- calculate results in parallel.
- feed results forward without storing.

« Synthesizer must substitute parallel
calculation for storage.

2. Structural
Harder to Code
- Designer has to know what circuit will do
at a logical level.
« Synthesizer will only minimize logic.

- Coding style is unlike what one learned
in Programming 101.

« Unclear how to incorporate high level
concepts: case, while, for, . ..

Synthesis is Easier
- First pass of converting to logic is done.

- Synthesis is logic optimization.
Can optimize for:
-area
- speed
- testability
- power

N J

Printed; 09/09/03 Department of Electronics, Carleton University Slide 14
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 27

Verilog For Synthesiss Procedural vs Sructural

Procedural vs Structural

Procedural SynthesisisHarder
« Compilers generate code for hardware which:
- runs one instruction at atime.
- latches every result.
« Hard to compile into a machine which:
- runs many operationsin parallel.
- continuously calculates parallel results.
- can feed the results of one calculation directly into another without storing.
« Hardware memory isflip-flops and is expensive.
A synthesizer must avoid using much of the storage a compiler would tend to put in.

7. PROBLEMS (CONT)

c. Writeitin structual code using the replicate operator. See “replication” on page 16
assign Q = {4{x}} & {y[ol&yI[1],
d. Doesthis code segment require the synthesizer to generate storage?

reg [3:0] Q;

wire [1:0] y;

always @(y)

case(y)
2'000: Q[0]=1; Q[3:1]1=3'Db000;
2'p01: Q[1]=1; Q[0]=0; Q[3:2]=2"b00;
2'pb10: Q[2]=1; Q[3]=0; Q[2:1]=2"b00;
2'b11: QI[3]1=1; Q[2:0]=3"b000;

endcase

Printed; 09/09/03
Modified; September 9, 2003

Comment on Slide 14
Vrlg p. 28

Department of Electronics, Carleton University
© John Knight

Verilog For Synthesiss A Verilog Procedure
[

\

A Verilog Procedure
Starts with always or initial.

always@(some condition) always initial
begin begin begin
Statements including Statements inc’d Statements inc’d
if if if
case case case
for for for
while while while
end end end

- begin and end bracket the procedure.

- initial is not synthesizable and is used for test benches. De Te
always without @ condition, is normally only used in test
benches. w = at c;

- Variables on the left-hand side should be of type reg,
or at least not of type wir.

N J

Printed; 09/09/03 Department of Electronics, Carleton University Slide 15
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 29
Verilog For Synthesiss Verilog Procedures

Verilog Procedures

Commandsonly Usable Inside a Procedure

for

while

forever

repeat

disable

if...else. .. elsaif
case, casex, casez

Proceduresrun Concurrently

Several or al of the procedures may be active at the same time, just as different parts of alogic circuit can
execute at the same time. Being active here means changing values.

Only “always@" is Synthesizable, not “always’.
always without an @ condition repeats continuously. It is an infinite loop with no delay between loops. Itis
tamed in simulation by placing delays inside the procedure, but one cannot synthesize numerical delays. One
can place the @ command as a separate statement inside the procedure. See “Time In Verilog” on page 37.

Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 15
Modified; September 9, 2003 © John Knight Vrlg p. 30

Verilog For Synthesiss TheHDL Compromise
[

\
The HDL Compromise

1. Make Procedures a Subunit of Structural Code
- Inside a procedure one codes like in C.
- Outside, a procedure itis a chunk of hardware.
- All procedures run in parallel with other procedures

/I Procedure ! A c
always @(CorDorS) B Y1
case (S) | V1
1'b0:Y1=D; }a— A D
1bl:Y1=C;
' endcase :
"""""""""""" CLK c
,,,,,,,,,,,,,,,,,,,,,,, ’.
i I/l Procedure !
© always @(posedge clk)
. case (S) }
1'b0: Y2 = D; } Y2
1'bl:Y2=C;
endcase . .
”””””””””””””” What will be synthesised
How to think of Verilog (especially procedures) as a circuit from the code

- J

Printed; 09/09/03 Department of Electronics, Carleton University Slide 16
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 31
Verilog For Synthesiss Procedure as Blocksin a Circuit

Procedure as Blocksin a Circuit

Procedures are less formally denoted than in many languages.
In hardware, the whole procedure is ablock of circuitry..

Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 16
Modified; September 9, 2003 © John Knight Vrlg p. 32

Verilog For Synthesiss

TheHDL Compromise

The HDL Compromise

2.0nly Put in Latches If Necessary

- Many procedures do not need to store values.

- If all left-hand values can be calculated from a single procedure entry,
nothing needs to be stored.

Example: Enabled 2-bit to 1-of-4 decoder.

reg [4:1] Q; . reg [4:1] Q;
wire [1:0] X; wire Enb; wire [1:0] X; wire Enb;

// Procedure
always @(x or Enb)

begin
if (Enb) Q[x]=1;
else Q=4'b0000;
end
If Enb=1, only Q[x] calculated.

The other three Q[i]s must be
remembered from when Enb = 0.

To remember, insert latches.
To behave like C code this circuit

// Procedure
always @(x or Enb)
begin

Q=4'b0000;

if (Enb) Q[x]=1;

end

- If Enb=1, Q[x] immediately
overwrites Q=4'b0000.

- All Q[i]s are calculated in one entry.

« No need to remember.

needs latches.
« NOTA GOOD WAY TO WRITE CODE

- This circuit behaves like C code but
uses no latches.

- BETTER WAY TO WRITE CODE

N

\

Printed; 09/09/03
Modified; Tuesday, September 09, 2003

Slide 17
Vrigs p. 33

Department of Electronics, Carleton University
© John Knight

Verilog For Synthesiss

Avoid Unnecessary L atches

Avoid Unnecessary L atches

To avoid unnecessary latches, one must code carefully.
One of therules, illustrated above, is:-

. Every time one executes a procedure all of the variables defined anywhere in the procedure must be cal culated.

Otherwise latches will be generated.
8.c PROBLEMS:
Assuming the following statements are alone inside a procedure,l will they generate latches?
a) if (a>1l) y=1; else y=0;
b) if (a = = 3) x=1; else y=1;
c 1if (a)

d) if (a) Dbegin x=0; y=0; end
else begin x=1; y=1; end

begin x=1; y=1; end /I elsedo nothing

e) x=1; y=1;
if (a) x=0; else y=0;

1. For those who know about the trigger list, assumeitis @(a).

Printed; 09/09/03
Modified; September 9, 2003

Department of Electronics, Carleton University

© John Knight Vrlg p.34

Comment on Slide 17

Verilog For Synthesiss TheHDL Compromise

4 o)
Avoiding Unwanted Latches: Rulel

If the procedure has several paths,
every path must evaluate all outputs

Else synthesis will insert latches to hold the old values of those unevaluated outputs.

Methods

Method 1:

Set all outputs to some value at the start of the procedure.
Later on different values can overwrite those values.

always @ (.
begin
x=0; y=0; z=0;
if (a) x=2; elseif (b) y=3; else z=4;
end
Method 2:
Be sure every branch of every if and case generate every output.
always @ (.
begin
if (a) begin x=2; y=0; z=0; end
elseif (b) begin x=0; y=3; z=0; end
else begin x=0; y=0; z=4; end
end
Printed; 09/09/03 Department of Electronics, Carleton University Slide 18
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 35
Verilog For Synthesiss Writing Procedural Code Without L atches

Writing Procedural Code Without Latches

Eliminating L atches
Let the inputs to a combinational logic block be held by latches, Irllgltjéf]ed Combinational
flip flops, or by input switches. Then the outputs only change if A
an input(s) change. [
To duplicate the behaviour of a combinational block with B
sequential code, one need only be sure the outputs are re- [
evaluated every time any input changes. Then nothing needs to
be stored inside the combinational block.

All outputs must be evaluated on all paths.

If the procedure has severa paths, every path must evaluate all
outputs. Otherwise latches must be inserted to hold the previous val ues of those unevaluated outputs.

M ethods

Method 1:
Set dl outputs to some value at the start of the procedure.
Later on different values can overwrite those values. In simulation, with delays, one could get glitches by doing
this. For synthesis one does not use delays within procedures and the glitches are at worst 0 ns.
The synthesizer will take out the extra“writes” during logic minimization.
Method 2:

Be sure every branch of every if and case generate every output.
Thisisusually alot more work for the coder. The synthesizer can handle either method.

Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 18
Modified; September 9, 2003 © John Knight Vrlg p. 36

Verilog For Synthesiss There arethree concepts of time.

4 _ _)
TimelIn Verilog

There are three concepts of time.

1. #<delay> <event> Q = #5 x&y;
This is not useful for synthesis. /I Q changes 5 units after x or y changes
One cannot synthesize a given delay.

2. @<edge-triggered event> @ (posedge clock) // —
For procedural code. /I Respond to rise
Proceed past this point when the @(A or B) // Respond to rise and fall.
correct edge happens. @negedge clock // Respond to fall

3. wait(<signal_has_high_level>) wait(enable)
Proceed when signal has a #10 count = count + 1;
high logic level. /I Count every 10 time units while enable =1

Not supported for synthesis
Handy in test-benches.

N J

Printed; 09/09/03 Department of Electronics, Carleton University Slide 19
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 37
Verilog For Synthesiss Timein Verilog

Timein Verilog
The difference between wait and @
In some cases edge and level triggered act the same. In some places they are not.
wait (x) /iwill trigger if x starts out high. It will continuously trigger if x stays high.
@ (posedge x) //will need an edge.

A common reset problem

Reset generation in test bench. —‘—

initial begin reset=1; #1 reset=0; end

Possible reset implementations inside flip-flops
always @ (posedge reset) Q=0; //will not reset.

always wait (reset) Q1=0; //Thiswill reset, but wait causes an infiniteloop (see below).
Better make your test-bench reset-pulse a true pulse rather than a step.

An infinite loop
always
begin
wait (!reset) =x=1; // Assoon asreset goeslow, thisisa zero delay loop.
end /I Thiswill stop a simulator from advancing the simulation..
Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 19

Modified; September 9, 2003 © John Knight Vrlg p. 38

Verilog For Synthesiss

[)

Timing and Procedures

Timing and Procedures

Execution of Procedures
- Two procedure types:

initial
always> /[Typical initial procedure
. initial implicitly starts at t=0. Initial _
L . . begin t=0
- always must explicitly state when in will t=0
be executed clk =0; t=5
#5 A=1; t=10
Initial #5 B=0; t=10
L end // end after 10
1. Initial . units.
Starts running at t=0.
Continues until told to stop.
2. Initialis not synthesizable /ICommon test-bench clock.

initial clk=0;

- Used mainly for test-benches.
always #50 clk=~clk;

3. Initializes test bench variables
4. Simulation must have an initial
procedure that ends with $finish Initial

#5000 a=1;
#5000 $finish;
/I Simulation will run t=0 to 10,000.

N J

Printed; 09/09/03 Department of Electronics, Carleton University Slide 20
Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 39
Verilog For Synthesiss Procedure Timing

Procedure Timing

Multiple Procedures

One may have many initials procedures all running in parallel. They all start at time t=0.
$finish
$finish ends the simulation. Without it one must manually abort the simulator.
9. PROBLEMS:
initial
begin
aa=0;bb=0
#50 aa=1;
#50 aa=0;

#50 $finish
end

always @(aa) bb=~bb;
a. How long will the simulation run?
b. When will the value of bb change?

Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 20
Modified; September 9, 2003 © John Knight Vrlg p. 40

Verilog For Synthesiss Timing and Procedures
[

\

Procedure Timing

Always
Must explicitly state when the J/ICommon test-bench clock. 450
procedure will be executed. initial clk=0;
1 50 clk=~clk;
1. Always always #50 c c

This runs all the time. /I always reruns every 50 ns.

When it finishes it starts again.

(]

always A=-~A;

VA . Ki .
2. Always @(A or B) Il Zero delay loop. Kills computer

Runs when A or B change value. always @ (A or B)
Used for combinational logic. Y= A | B; // will synthesize to an
OR gate.

3. Always @(posedge clk)
Runs after each rising clk
Synthesizes to flip-flops.

If you don’t want FF don’t use always @ (posedge clk)
posedge /negedge. Q=d;
/I a Flip-flop is implied to hold the old Q
4. Always @(clk) /l'in between rising clock edges.
Runs when either edge of clk
changes
Can be made to give latches. always @ (clk)

if (clk) Q=d;
Il implied else;
1 alatch is inserted to hold the old Q

N J

Printed; 09/09/03 Department of Electronics, Carleton University Slide 21
Modified; Tuesday, September 09, 2003 © John Knight Vrigs p. 41
Verilog For Synthesiss Procedure Timing

Procedure Timing

Multiple Procedures
One may have many always procedures all running in parallel. Typically they start on the same clock edge.

always wait
always @(. . .) iscommonly used. However
always wait can beuseful intest benches. Also one can have several @ checksinside an always loop.
always @(a)
#5 x= ...;
@(b)

An alternate clock loop

This uses aforever loop which can only be used inside a procedure.
initial
begin
clk=0;
forever #5 clk=~clk;
end

Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 21
Modified; September 9, 2003 © John Knight Vrlg p. 42

Verilog For Synthesiss

[)

Timing and Procedures

N J

Printed; 09/09/03 Department of Electronics, Carleton University Slide 22

Modified; Tuesday, September 09, 2003 © John Knight Vrlgs p. 43
Verilog For Synthesiss Procedure Timing

Printed; 09/09/03 Department of Electronics, Carleton University Comment on Slide 22

Modified; September 9, 2003 © John Knight Vrlg p. 44

