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Convolution Codes

1.0  Prologue:
Convolutional codes, why should complicate our lives with them

People used to send voice waveforms in electrical form over a twisted pair of wires. These

telephone voice signals had a bandwidth of 4KHz. If the channel polluted the signal with a bit of

noise, the only thing that happened was that the conversation got a bit noisier. As technology de-

veloped, we digitized the voice signals at 8000 samples per second (twice the highest frequency to

prevent aliasing) and transmitted the bits. If noise corrupted a few bits, the corresponding sample

value(s) would be slightly wrong or very wrong depending on whether the bad bits were near the

most-significant-bit or least-significant-bit. The conversation sounded noisier, but were still dis-

cernible. Someone saying “cat” will not be thought to have said “dog,” and probably would not

even be thought to have said “caught.”

When people started to send data files rather than voice, corrupted bits became more impor-

tant. Even one wrong bit could prevent a program from running properly. Say the noise in a chan-

nel was low enough for the probability of a bad bit to be 1x10-9 i.e. the chances of a bit being

correct is 0.999999999 (nine 9’s). The chances of 1000 bits being all correct is 0.999999 (six 9’s)

and the chances of 106 bits being all correct is 0.999 (three 9’s). A 1 megabyte file (8x106 bits) has

almost a 1% chance of being corrupted. The reliability of the channel had to be improved.

The probability of error can be reduced by transmitting more bits than needed to represent

the information being sent, and convolving each bit with neighbouring bits so that if one transmit-

ted bit got corrupted, enough information is carried by the neighbouring bits to estimate what the

corrupted bit was. This approach of transforming a number of information bits into a larger

number of transmitted bits is called channel coding, and the particular approach of convolving the

bits to distribute the information is referred to as convolution coding. The ratio of information bits

to transmitted bits is the code rate (less than 1) and the number of information bits over which the

convolution takes place is the constraint length.

For example, suppose you channel encod-
ed a message using a convolution code. Suppose

you transmitted 2 bits for every information bit

(code rate=0.5) and used a constraint length of 3.

 Then the coder would send out 16 bits for every

8 bits of input, and each output pair would de-

pend on the present and the past 2 input bits

(constraint length =3). The output would come

out at twice the input speed.

Since information about each input bit is

spread out over 6 transmitted bits, one can usual-

ly reconstruct the correct input even with several

transmission errors.

The need for coding is very important in the use of cellular phones. In this case, the “chan-

nel” is the propagation of radio waves between your cell phone and the base station. Just by turn-

ing your head while talking on the phone, you could suddenly block out a large portion of the

transmitted signal. If you tried to keep your head still, a passing bus could change the pattern of
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Convolution Codes
bouncing radio waves arriving at your phone so that they add destructively, again giving a poor

signal. In both cases, the SNR suddenly drops deeply and the bit error rate goes up dramatically.

So the cellular environment is extremely unreliable. If you didn’t have lots of redundancy in the

transmitted bits to boost reliability, chances are that digital cell phones would not be the success

they are today. As an example, the first digital cell system, Digital Advance Mobile Phone Service

(D-AMPS) used convolution coding of rate 1/2 (i.e. double the information bit rate) and constraint

length of 6. Current CDMA-based cell phones use spread-spectrum to combat the unreliably of the

air interface, but still use convolution coding of rate 1/2 in the downlink and 1/3 in the uplink (con-

straint length 9). What CDMA is, is not part of this lab. You can ask the TA if you are curious.

2.0  Example of Convolution Encoding

This is a convolution encoder of code rate 1/2 This means there are two output bits for each

input bit. Here the output bits are transmitted one after another, two per clock cycle.

   The output z1 = x(n)⊕  x(n-1)⊕ x(n-2).

Here x(n) is the present input bit, x(n-1) was the previous (yesterdays) bit, etc.

  The output z0= x(n)⊕  x(n-2).

The input connections to the XORs can be written as binary vectors Gz1=[1 1 1] and Gz0=[1 0 1]

are known as the generating vectors or generating polynomials for the code. They indicate where

the taps are drawn off the register into each XOR gate.
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Convolution Codes
2.1  The Encoder as a Finite-State Machine
The correlation encoder can be described as a Mealy

machine. The state is the two bits in the shift register.

Let the first input bit to the shift register be x(n) = 1,

and let the flip-flops be reset to zero so x(n-1)=x(n-2)=0 .

Then:-

State= 00 = S00 = {x(n-1),x(n-2)}

Output z={z1,z0}

z1 = x(n-2)⊕  x(n-1)⊕ x(n)

     = 1⊕  0⊕ 0 =1

z0 = x(n-2)⊕ x(n)

     = 1⊕  0 =1

z={z1,z0}= 11

After the clock, state bit x(n-1)=0 will shift right

into x(n-2), the input x(n)=1 will shift left into x(n-1), and

the next state will be 01 = S10.

2.2  The Trellis Encoding Diagram

To get the trellis diagram, squash the state diagram so

S00, S10, S01 and S11 are in a vertical line. This line repre-

sents the possible states at time t=n (now). Make time the

horizontal axis. Put in another line of states to show the

possible states at t=n+1.

Then add the transitions to the diagram. Make the

them all go from states @ t=n to states @ t=n+1. Thus the

self loop at state S00 in the state graph becomes the hori-

zontal line from S00@t=n to S00 @t=n+1 in the trellis dia-

gram.

The complete trellis diagram extends past t=1 to as

many time steps as are needed.

Suppose the encoder is reset to state S00=00, and the

input is 1,0,1,1,0,0. By following the trellis one sees that
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Convolution Codes
the output is 11 10 00 01 01 11. Also it passes through states S00, S10, S01, S10, S11, S01 ending in

S00 @ t=6.

2.3  Lab and Problem Rules
The Convolution encoder/Viterbi decoder design problem will be done by a groups of

three persons.

The number of exercises is (usually) divisible by three so one person in each group can do

every third problem and thus do one-third of the exercises. The three are to be submitted together

with the name of the person doing each part attached to the part.

Five marks will be assigned for each persons questions and will be given to the person in the

group answering the question. Two person groups should take turns answering the odd questions

which will be assigned three marks. This applys to temporary two person groups, groups where

one member goofs off. Another member can get three extra marks by doing his/her questions.

One common mark will be assigned to coordination within the group. Do they use common

symbols? Do they hand the assignments in at the same time attached together? Do they refer to the

other questions where appropriate? Violation of any one of the above may cost each group member

his/her common mark.

All members of the group are responsible for knowing how to do each exercise.

 Related problems will appear on examinations.

The problems and labs have subtle, and also not so subtle, changes from last year. One way

to lose marks quickly is to submit answers taken from last year. The penalty will be zero for the

question(s) invoved and a 75% reduction in the mark of the whole group.

2.4  First Exercise: A Convolution Encoder.

1. Problem: Encoding a number

• Take the last 4 digits in your student (the least significant digits).

• Convert them to a hexadecimal number (Matlab has a function dec2hex).

• Convert the hexadecimal number to binary (12 to 16 bits).

• Use this as data for the encoder below. Feed in the least significant bit first. Also reset the

shift register to 00 before you start.
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Convolution Codes
• Calculate the output bits and states when one encodes these bits using a code rate
1/2, constraint length 3 encoder with generating vectors [111] and [101].

Tabulate how the state and output values change with each clock cycle.

2. Problem: Draw the circuit for an encoder which has:

a code rate =1/2,

constraint length of 4,

generating vectors Gz1=[1101] and Gz0[1111], where the

“0” means no connection to x(n-2).

3. Problem: Draw the state graph for the above constraint

length 4 encoder. Draw the first 3 time steps of the trellis di-

agram for the above constraint length 4 encoder.

2.5  First Lab: Design a Convolution Encoder in Verilog

The constraint-length 4 encoder circuit can be coded as a finite-state machine or as a shift

register.

reg  [2:0] state;  // (shift-reg length)=(constraint length -1)
always @(posedge clk ... ) begin

if(rst) ...
else ... state <=state >> 1; // Right shift 1 position
end

The test bench is not part of the circuit. It supplies the input sig-

nals and may compare output signals with those that are expected.

Test benches are easier to write and use if they are synchronous. This

means they always send out signals slightly after the clock (or at
least never at the same time as the clock). It also means a writing

style with few  #n delay.

 . . .

2.5.1 A Synchronous Test Bench

In a synchronous test bench, the test signals are timed by @(posedge clk) statements rather

than each having its own timing. There are only two delays here, one to set the clock period, and

the other to delay the input signal x so it’s changes are obviously past the clock edge.

Note there are things not included here, like reset.

module SyncTestBench;
reg [7:0] data;  //Fill this with the data stream to be encoded.

    // Note the first bit to go out is on the right

Clock cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

input bit

shift reg (state) 00

Output [z1,z0]

x(n-2)x(n) x(n-1) x(n-3)

Test Bench module

ConvEncode module

clk reset x z1 z0

FIGURE 6

initial begin
#11  x=1;

#10  x=0;

#10  x=1;

#20  x=0;
. . .
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Convolution Codes
reg x, clk;
integer I,Cntr;   // Use integers for test-bench counter indexes

initial
begin

     I=0;
     data=8'b10101101; // Underscore has no meaning except

 // to visually space the bits.
     clk=0;

forever  #5 clk=~clk; end
end

// send in a new value of x every clock cycle
always @(posedge clk)

begin
if (I==8) $finish; // Stop the simulation when one runs out of data.

// The #1 makes x change 1ns after the clock and never on the clock edge.
// The nonblocking symbol “<=” on I ensures that any other clocked module using
// I will grab the same I as this procedure, that is before I is updated to I+1.

x<= #1 data[I];
I<=I+1;

end
endmodule

For the constraint length 3 system, you must have the test bench automatically compare your

answer with the result you obtained from your student number.

1. Write a finite-state machine encoder for the constraint length 3 system.  Draw the simplified

circuit diagram of the FSM implementation.

always @( state or xreg)
case(state)
2’b00: nxtstate =...;
...
endcase

              always @(posedge clk or negedge rst)

   // Most library flip-flops are negedge
if(!rst) state <= 0;

...

state <=nxtstate;

2. Write a shift-register based encoder for the

constraint length 4 system (Sect 2.3 prob 2).

Generating vectors Gz1=[1101] and

Gz0=[1111]. Draw a simplified circuit dia-

gram for the shift-register based implementation. Note that even though the circuit performs

the same ultimate function, the diagrams questions 1 and 2 should look quite different.

always @(posedge clk or negedge reset)
· · ·

 state <=state>> 1; // right shift 1 position
 state[2] <= xreg;  // Overwrite  the zero shifted in on the previous line.

3. Write a synchronous test bench so the two encoder modules can be simulated.

Have the test bench automatically compare your answer with the desired result

a) Check the constraint-length 3 encoder using the data 00001101001011first-bit

b) Check the constraint-length 4 encoder with the same data.

state[1] state[0]

One should always

send an off-chip

signal through a register

to synchronize it with

the on-chip clock.

Remember the synchronizer

in the “Tug-of-War?”

Z1

Z0

x

xreg
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Ans: Constraint length 3 encoded data-

                11,01,01,00,10,11,11,10,00,01,01,11,00,00,00,00.

         Ans: Constraint length 4 encoded data-

               11,00,10,01,00,01,00,11,10,11,10,10,11,00,00,00,00,

You must run the test-bench against your encoders and include the self-checking log file and

waveform in the report.

4. When you design the decoder, you will probably find you need a clock six times faster than

that used for the encoder. In this situation, you should use enable signals that do not have the

critical timing needed for a second clock. Rewrite the constraint length 3 decoder to allow

shifting only when enabled.  Make the necessary changes to the simplified hardware dia-

gram.

always @(posedge clk or negedge reset)
· · ·
if(shift_en)

begin state <=state>> 1; // Right shift 1 position
   state[1] <= xreg;  // Overwrite  the zero shifted in on the previous line.

end

5. Generate a signal in the encoder module that pulses every 6 clock cycles to use as shift_en.

Draw the simplified logic diagram of this counter circuit which produces the shift_en.

assign shift_en = (cntr= =5);
assign (ctr==5) ? nxtcntr=0 : nxtcntr=cntr +1;

always @(posedge clk  . . .
· · ·

cntr <=nxtcntr;

Also fix your test bench so it now only changes x every 6 clock cycles. Have the test bench

drill down through the module hierarchy to get the  shift_en signal.

assign shift_enTB = TopModule.Encoder.shift_en;

This gets the signal, for simulation only, without adding an unwanted pin in TopMod.

The output of the encoder should be serial, if it is to be transmitted. Generate a mux and its
control signal, Z1select, that will send out Z1 for 3 clock cycles, half the length of the x input bit,
and Z0 for the next three clock cycles. This will allow two serial output bits for every input bit.

assign Z1select= (count= = 0 | count = = 1| count=2);
Authors Fred Ma, John Knight, Gord Allan September 9, 2004 7
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3.0 Convolution Decoder
The next part of the project will be to design a convolution decoder to retrieve the informa-

tion bits from the transmitted bits. It should succeed even in the presence of some errors in the

transmitted bits. The method we will use is called a Viterbi decoder.

3.1  Decoding Using the Trellis Diagram

Consider a decoder that receives the transmitted signal 11 01 01 00 10 11 going from t=0 to

t=6. Assume the trellis was reset to state S00 (00) at the start. Knowing that we started in S00, if we

receive 11 we know that a one was the original input and that we should now be in state S10. Sim-

ilarly, if a 0 was the original input, we should get a 00 from the channel and stay in state 00.  If

there was an error on the channel, we would get either 01 or 10.  In this case we aren’t sure yet

which state to go to, but we penalize each possibility and continue on our way.  After enough bits

are collected, we go back and look at the ‘most likely sequence’ of bits. This is how we get the er-

ror correction out of the circuit.  One goes through the trellis as in the encoder, only for decoding

the numbers written over the branches, the numbers are written as the decoder-input/decoded-out-

put. Thus the first input, 11, gives a decoded output of 1 and takes the machine to state S10.

At t=1 in state S10, the next input 01 causes a 1 output and a change to state S11.

clk

shift_en

z1select

FIGURE 7
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3.1.1  The Hamming Distance (Metric)

This distance is used to show how far apart two

binary numbers are. Compare the bits in the same po-

sitions in the two numbers. The number of positions

that are different is the Hamming distance (h).

Thus 11and 01 are distance 1 apart (h=1),

1001001 and 1001010 are distance 2 apart

(h=2).

Very shortly we will call this Hamming dis-

tance ‘h’, the Hamming branch metric or branch
metric.

Applying the Hamming Distance to Decoding

Suppose the first four received bits have an er-

ror so instead of 11 01, one receives  11 11, as in Fig. 8

For the first input 11, there are two choices leaving state S00, one for input 11 and the oth-

er for input 00 . The number in the box is the Hamming distance between the received input bits

and the bits required for the state transition. It is clear one should make the transition from

S00⇒ S10.

The next input has an error. Note there are no 11 or 00 paths leaving state S10. Both possible

paths, 10 or 01, are at Hamming distance 1. At this time either transition looks equally likely, but

wait!
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At t=2, if one starts from S11, then h=0 for the (red) path to state S01. However if one starts

from S01 one has h=1 for either the path to S00 or to S10.

Thus at t=1 the choice between the path S10⇒ S01 and S10⇒ S11 was not obvious. However at t=2,

the choice is clearer. We should chose a path through the trellis based on the path Hamming dis-
tance or path metric, which is the sum of the Hamming distances as one steps along a path through

the trellis.

 Figure 11 shows how the Hamming distances sum as one goes down various paths through

the trellis diagram.  At t=5, one path has a total distance of 1 from the input data. The others have

a distance of 3 or 4. Thus the most likely path is S00⇒ S10⇒ S11⇒ S01⇒ S10⇒ S01 with a path
distance of 1, and the corresponding output data is 11010 (Recall trellis edges represent a

receiver output of 0, and edges represent an output of 1).

3.1.2  Metrics

A metric is a measure of something. The more general name for what we called the Ham-
ming distance is branch metric, and for the path Hamming distance is path metric.  One does not

have to use the the Hamming distance as a measure. In decoders where the input is an analog sig-

nal, the distance between the actual and expected voltage may be measured, and the sum of the

squares of the errors might be used for the branch metric.
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4.0  The Viterbi Decoder
The decoding example shown above has to follow four paths through the trellis, and remem-

ber them for future decisions. For larger decoders, such the cell phone ones with constraint lengths

(shift-register lengths + 1) of 6 and 9, the number of paths can get quite large (32 and 256).

Viterbi developed an algorithm 1n 1967, which allows the many paths to be discarded with-

out tracking them to completion. He noticed that if two paths merge to one state, only the one with

the smaller path Hamming metric, “H,” need be remembered. The other one can never be part of

the most likely path.

This means that with the constraint length 3 (shift-register length 2) system in the previous

examples only have to remember 4 paths. In general a constraint length K system will have to re-

member 2K-1 paths. In theory, the path length should go for the length of the message in order to

get the true maximum likelihood path. However it turns out that path lengths of 4 to 5 times the

constraint length can almost always give the best path.

The next few figures show how the decoder picks the best path, even when there are errors.
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S01 State

4

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11
Authors Fred Ma, John Knight, Gord Allan September 9, 2004 11



Convolution Codes
11

00

t=2t=0

11

00
11
00

00
11

10
01

01
10

t=1 t=3

11 01input
Received

2

0

1

0

1

01 1 0
1

1

10

0

2 4

2

1 5

2

1

2
1 5

1

2

62

32

Going out to t=3
The paths temporarily double to 8

There are two paths to each node.
One has a larger path distance.

The larger “H” path can never be
the most likely path, hence we will

01→11

error

erase it.

S00

S10

S01

S11

S00

S10

S01

S11

FIGURE 13

S00

S10

S01

S11

S00

S10

S01

S11

t=2t=0 t=1 t=3

11 01Rec’d

2

0

1

1

4 5

2

1

25

2

6

3

t=2t=0 t=1 t=3

0

1

1

2

1

2

2

11 01

Here just the path Hamming distances
are shown so it is easy to see which paths
should be erased.

Here the unneeded paths are eliminated.
This is all important information up to
to  t=3.

01→11

error

01→11

error

FIGURE 14

2
S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

input
Rec’d

t=2t=0 t=1 t=3

0

1

1

2

1

2

2

11 01→11 01 00→01

11
00

00
1110

01

01

10

1

0

1

0

1 3

2

2

21
3

2

4

2

42

t=4

Entering t=4,

Again at each node, only the
lowest path Hamming-

most likely path so four of the eight

error 2nd error

distance path can be part of the

 Eight paths are created temporarily

paths will again be eliminated.

The second error has made
four paths, all with equal chances
of being the most-likely path.

But see what happens next.

A

S10

S01

S11

A

S10

S01

S11

A

S10

S01

S11

A

S10

S01

S11

A

S10

S01

S11

FIGURE 15

(four paths with 2 )

2

S00

S10

S01

S11
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input
Rec’d

t=2t=0 t=1 t=3

0

1

1

2

1

2

2

11 01

2

2

t=4

10

11
00

00
11

10
01

01
10

1

2

1

2

1 3

3

4

3
1 3

4

20

20

t=5

Eight new paths are
created, keep the four
lowest H ones enter-

2

2

00→01
2nd error

01→11

error

Entering t=5

There are two most likely paths

FIGURE 16

(with H=2). Down from four at t=4

ing each state

2

Since two paths
have the same H

Pick one randomly;

of choosing a
better path.

as they enter S10,
 we have no way

Here we choose
the one S00⇒ S10.

Note path dies out.

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

input
Rec’d

t=2t=0 t=1 t=3

0

1

1

2

1

2

11 01

t=4

3

2

t=5

Entering t=6

11
00

00
11

10
01

01
10

0

1

2

1

2 5

4

3

2
0 3

4

41

31

1100→01
2nd error

10

2

2

2

2

3

2

01→11

error

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

t=6

Note how the
correlation has
continued to act.
We are now down
to one most likely
path.

FIGURE 17

2

2

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

2

input
Rec’d

t=2t=0 t=1 t=3

0

1

1

2

1

2

11 01

S00

2

2

t=4

10

3

2

t=5

23

3

11

t=6

11
00

00
11

10
01

01
10

0

1

2

1

2 4

5

4

3
0 2

4

41

41

1100→01
2nd error

2

01→11

error

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

t=7

The most likely path ends at S10 and a close second at S00. The paths to S01 and S11 have H=
Entering t=7: The one best path is getting fairly clear.

2

2 3

FIGURE 18

4

2
3
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Convolution Codes
As illustrated above, the Viterbi decoder can decode a convolution code in the presence of

some errors.

If two branches entering a state have equal “H,” then the code is unable to tell if one path is

more likely than another. Pick one path at random.

4.1  Exercise 2: Add-Compare-Select Design

The circuit to add H+h, compare H+h on the two paths,

and select the smaller path metric, is called the add-compare-

select circuit.

Problem Prolog: Using the algorithm

A typical step in the trellis decoder is shown.

The path Hamming metrics H at each trellis step are

H00, H10, H01, and H11.

The branch Hamming metric h for each edge are given

subscripts matching the input which makes them 0.

Thus the edge from S00 to S00 , and S01 to S10 both use

the symbol h00exp, meaning 00 is expected from the

channel if this branch is taken.  If the input is 00,

h00exp=0, If the input is 10 or 01, h00exp=1, if the input is

11, h00exp=2.

Pseudocode
This is Verilog in which the syntax is not critical. For example begin, end and semicolons

may be omitted if the meaning is clear to the reader. In pseudocode the comments are often

more important than the code.

input
Rec’d

t=2t=0 t=1 t=3

0

11 01

S00

t=4

10

t=5

11

t=6

4

4

4

2

1000→01
2nd error

01→11

error

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

t=7

the probable original message as 11010010 (travelling t=0 to t=8).

Entering t=8: One can be fairly sure the best path at t=8 ends at state S01.

S00

S10

S01

S11

t=8

FIGURE 19

11

Retrieving the Original Message

Follow the path back from

No matter what state you start in at t=8, all paths come togethe when you get back to t=1.
From the solid  (for “0”)and dashed  (for 1) lines along the path one can decode

Common path

 Also follow the paths back from S00, S10 and S11.

S00<-S10<-S11.<-S01<-S10<-S01<-S00<-S10<-S01

S00

S10

S01

S11

1/11

0/00

1/00
0/

11

0/101/01

0/01

1/10

t=n+1

H11

S00

S10

S01

S11

S00

S10

S01

S11

h00exp

h11
exp

h10

h01exp

h10

h01
exp

h00exp

h1
1 ex

p

H01

H10

H00

H11

H01

H10

H00

t=n

FIGURE 20
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Convolution Codes
1. Problem

a) Starting at t=8 with an input of 00, as in Figure

21, calculate and fill in the values of hij and

hence the Hkfor t=9.

b) Write pseudocode to calculate the branch Ham-

ming metrics for each step.

Let the two input bits z1, z0.

Let the Hamming metrics associated with the

eight trellis edges for this step be h00exp, h01exp,

etc.

Calculate these metrics using a case statement:

case ({z1, z0})
2'b00 : begin h00exp=0;   ... h11exp=2; end
2'b01 : ...

2. Problem:

a)  Starting at t=9,  using the Hk from Prob 1,

step a) and input 10, calculate and fill in Fig-

ure 22.

b) Use Boolean algebra to calculate them as 2-

bit binary numbers. i.e 2=10, 1=01 and 0=00.

Use reg /*wire*/ [1:0] h00exp, h01exp, h10,

h11exp;

Example:

h00exp[1] = y&x ; h00exp[0] = y^x;

3. Problem

a) Start at t=10, with input 11 and use the

Hk from Prob. 2, step a). Let the new

Hk at t=11 be written with a prime i.e.

H00' H10' H01' and H11'. Fill in Figure 23

but put in an expression, as well as a

number, for each Hk
' . This has already

been done for H00
'.

Only the better path is written here.

b) Write pseudocode to update the Hk in

going from step t=n  to step t=n+1.

Use if statements to calculate the Hk' to

be associated with the four states at

t=n+1. Use H00nxt instead of H00'

since Verilog cannot handle primes.

if (H00+h00exp < H01+h11exp) begin H00nxt= H00+h00exp; end else ...

c) The flip-flop procedure.

Write a procedure to clock the flip-flops and replace the old Hs with the new ones.

Combinational logic in parts 2 and 3 calculated the D inputs for the flip-flops. For example:-

t=9

S00

S10

S01

S11

S00

S10

S01

S11

h00exp=

h11
exp=

h01
exp =

h00exp
=h1

1 ex
p=

H00=4

t=8

H10=4

H01=2

H11=4

h10=

h01exp
=

h10=

H00=

H10=

H01=

H11=

FIGURE 21
Input = 00

FIGURE 22

t=10

S10

S01

S11

S00

S10

S01

S11

H00=

t=9

H10=

H01=

H11=

H00=5

H10=

H01=

H11=

Input =10

S00

h10=

h00exp=

FIGURE 23

t=11

S10

S01

S11

S00

S10

S01

S11

H00=

t=10

H10=

H01=

H11=

H10=

H01=

H11=

Input =11

S00
'

'

'

'

H00= H01 + h11exp = 2

h01exp
=

h10=
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Convolution Codes
  always @(posedge clk

H00 <= H00nxt ....

Don’t put combinational logic in a flip-flop procedure, and don’t forget a reset.

4. Problem: When is the output correct?

Experience has shown that all backward paths converge into one if one traces them back 4 or

5 times the constraint length. Using the paths in Figure 19, you will find that if one traces

back far enough it does not matter which path one follows.

a) Take a copy of Figure 19. Start at t=8; start at each state in turn and colour backwards until

you reach t=0 or until you hit previous colouring. At what time (t=?) do the paths all con-

verge?

5. Problem: When is the output correct?

 Look at Figure 15 in which the ending time is t=4.

a) Using data available at t=4 could you say, with confi-

dence, what the original data bit was between t=0 and

t=1?  Why not?

b) Take a copy of Figure 18. Start at t=7; start at each

state in turn and colour backwards until you reach t=0

or until you hit previous colouring. At what time (t=?) do the paths all converge?

c) Follow the trellis backwards, and from the information in the trellis find the most probable

original data. Write out the message in the correct order with the earliest (t=0) bit on the

left.

6. Problem: Finding the original data from the state.

a) The states can be placed in two sets, depending on their most-significant bit.

If one is in a state with the most-significant bit=0 (S00 or S01), what was the original data in

the previous step?

If one is in a state with the most-significant bit=1 (S10 or S11), what was the original data in

the previous step?

Recall that the state of the decoder mirrors the state of the encoder, which is a shift-register.

Write pseudocode to send out the proper output bit based on the state during the trace back.

reg [1:0] state

if (state[1]) output= ...   // Make this more exact.

7. Problem: Use Figure 24 only.

a) If the decoder was in state S01 at t=3, what was the original data (before encoding) between

t=2 and t=3? (The obvious answer is right.)

If it was in state S00 at t=3, what was the original data between t=2 and t=3?

If it was in state S10 at t=3, what was the original data between t=2 and t=3?

If it was in state S11 at t=3, what was the original data between t=2 and t=3?
b)

8. Problem: How to backtrack.

Figure 25 is the same as Figure 19 except the numbers are all removed. It still contains

enough information to trace back from t=8.

decoderTest
Bench

encoder

original data bit
encoded, 2 bits for 1

decoded output, back to 1 bit.
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Convolution Codes

se
c
ti

o
n
 3
Figure 24 shows a trellis decoder only. It gives no information about the data. Figure 25

shows paths, but when you trace back to the area between t=2 and t=3 you cannot tell from

the figure what the data was. However the those who did questions Prob: 6 or 7 can tell you.

Figure 26 is the same as Figure 24 except some little parallelograms have been drawn asso-

ciated with each state in each time step.

Fill a minimum of information in each parallelogram. This information would allow your

lab partner two to back-trace knowing that H01 had the minimum path Hamming metric at

t=8. Thus by looking only at Figure 26 and starting at state S01 at time t=8, one should be

able to tell what the original bit was between t=2 and t=3. You may establish some conven-

tions like a 1 in the state S01 box means.... However they must be independent of the data.

a) Using Figure 26, fill in the boxes at t=3 if you have not done so already, so that one can de-

termine the original data bits between t=2 and t=3, and also between t=1 and t=2.

You should hand in the filled in Figure 25 and your list of conventions.

b) How many bits per step must be stored to allow for backtracking and extraction of the orig-

inal data?

9. Problem: In communications latency is the term for the time difference between the time

the input signal was received and the output signal is sent out. Throughput is the number of

input signals that can pe processed per second. The point of this problem is to show it does

not matter how long it takes to decode the data as long as you can keep up with the input.

S11

S01

S10

S00

S11

S01

S10

S00

t=4t=2

S11

S01

S10

S00

S11

S01

S10

S00

S11

S01

S10

S00

S11

S01

S10

S00

t=3 t=5 t=6 t=7

S11

S01

S10

S00

t=8

Trellis Diagram with no signal knowledge superimposed
FIGURE 24

?

is 0

is 1

orig. data

t=2t=0 t=1 t=3

S00

t=4 t=5 t=6

4

4

4

2

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

t=7

S00

S10

S01

S11

t=8

Retrieving the Original Message FIGURE 25
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Convolution Codes
c) If a decoder had to wait until all paths converged before it had confidence it could send out a

correct output, what would the latency be in clock cycles?

There are two answers for c):

(i) What latency would one get based only on what was needed for the data stream as shown

in Figure 19 and 17?

(ii) What was the latency, mentioned earlier in these notes, that experience has shown gives

the most likely bit for almost all cases?

d) If the decoder delays the signal by 20 clock cycles, latency, would anyone care assuming:1

• The signal was a digitized phone conversation? (i) clock =1MHz,  (ii) clock = 100Hz.

People get annoyed if the round trip delay in a telephone is over 250 ms.

• The signal was a www page?

• The signal was a digital TV signal?

e) If the decoder could not take in the next input until it had spent 12 or 15 clock cycles

processing the previous data, would this affect the throughput? Would this matter for the ap-

plications in d)?

5.0  Extracting The Original Data.
Consider Figure 27. The path with the lowest path Hamming metric , starts at state S01 at

t=8 with H=2. Backing up would take the path to S10 at t=7. The edge is a solid line which seems

to say the original data was 0. Unfortunately we can’t be sure of this. Because of the convolution

code, this path’s H of 2 could increase in the next few cycles and another path might get the lowest

H.

However if one goes back to t=2 and travels ahead in time, only paths that start at S11 or S01

make it all the way to t=8. The others die out. Only the path from S11 has H=2 at t=8, thus we are

fairly sure the edge from S11 at t=2 to S01 at t=3 is on the most likely path and the original data be-

tween these two clock edges was 0 (a solid line is 0, a broken line is 1).

This illustrates why we waited six cycles here before sending out the output. At time t=8, we

can be somewhat confident that the “0” data at t=2 is the most likely. In general one would wait

twice that time to be very sure.

1. People get annoyed if the round trip delay in a telephone is over 250 ms.

S11

S01

S10

S00

S11

S01

S10

S00

t=4t=2

S11

S01

S10

S00

S11

S01

S10

S00

S11

S01

S10

S00

S11

S01

S10

S00

t=3 t=5 t=6 t=7

S11

S01

t=8

Trellis Diagram on which you will superimpose signal knowledge
FIGURE 26

?

S00

S10

H
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Convolution Codes
5.1  Trace Back In More Detail
Tracing back is a long process if the full trace is done every data cycle. The back trace can be

done only if the clock runs several times faster than the data rate. To trace back 15 cycles to find

each output bit, means that the input data rate must be no more than clock/16. One input cycle, fol-

lowed by fifteen trace-back cycles. It turns out one can increase the data rate up as high as clk/2,

but that will come later.

 Figure 28 shows the trellis after decoding a 11,10,00,01,01,00,00 input stream.

Figure 29 shows how storing one bit, which shows whether to take the upper or the lower

path during backtrace, will allow one to reconstruct the trellis.

Figure 30 shows all the surviving paths. If one traces any path back from t=7, one will reach

S10 at t=2. Since all the back traces converge, one has confidence that the value of the data origi-

nally generated between t1 and t2, was one (dashed lines represent a one). This example converged

quickly, other examples may take longer.

Also note from Figure 29, or from Problem: 6 or Problem: 7 that states with 1 as the most-

significant bit (MSB) have only dashed lines (ones) entering them, and states with 0 as the MSB

solid lines (zeros) entering them. This means that at the end of the traceback, the data was ”0” if

the MSB of the state is 0, and “1” if the MSB of the state is a 1.

input
rec’d

t=2t=0 t=1 t=3

0

1

1

2

1

2

11 01

S00

2

2

t=4

10

3

2

t=5

23

3

11

t=6

11
00

10
012

1 4
1 4

4

20

1000→01
2nd error

2

01→11

error

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

S00

S10

S01

S11

t=7

One may not be sure which data bit is best at t=2. However if one traces the paths forward

2

2 3

S00

S10

S01

S11

32

4

4

t=8

FIGURE 27

11

On best path

from t=2, only two paths survives to t=8, and one has a much smaller H.

2

2

3
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0
2

1

2 2

2

1

00

0

1

11

1

1
1

input
Rec’d

t=0 t=1 t=2

11 00

t=3

01

t=4

01

t=5

0010

t=6

with heavy lines. The paths that die out have light lines. The results for t=7 were left as an
Trellis path for a pre-encoding data stream of 1011011... The surviving paths are shown

FIGURE 28
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4
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0
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0
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4

0

2

S00
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S01
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0
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22
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1

1
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1 1

2

3

21

1

2

00

1
2
0

S00

S10

S01

S11

S00

S10

S01

S11

exercise.

00

01

t=7

3

3

0

2

S00

S10

S01

S11

0
0

1

1

input
Rec’d

t=0 t=1

11 00

t=3

01

t=4 t=5

10

t=6

A data bit is stored at each trellis state to show which path to take during a backwards trace.

FIGURE 29
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↑

↑

↑

↑

↑
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5.1.1  The Trellis Butterfly.

For all rate 1/2 trellises, one can find a small picture

which describes the trellis completely. The picture looks

something like a butterfly.

Though it isn’t really neccessary, some like to have a

formula to express how bits of the state change with differ-

ent transitions. Note that you if you think of the state as the

contents of a shift register, the formula isn’t really very im-

formative - it just formalizes how the bits flip.

Then going from J to J/2 represents a right shift, and shifting in an x of 0. Going J to J/2 +

2k-2 represents a right shift, but shifting x=1 into the flip flops.

 For a constraint length k=3, 2k-2=2.

 Figure 32shows how to travel backwards

through the trellis using the bits stored dur-

ing each time step to determine whether to

take the upward or downward path. Here we

start at state J=0. Knowing that one is in

state J allows the two paths to be calculated

on the fly.

5.1.2  Timing for the simple decoder

The simplest decoder will have the data input at 1/17th of the clock rate. It will do an add-

compare-select on that data and store the “camefrom” bits in memory 1 out of 16 cycles. The rest

of the time it is doing the backtrace. That is it will write 1 bit, and then back trace 15 bits to be sure

it has found the correct path. Then it will backtrace 1 more bit which it will use as output, before it

processes the next data input.

 One will need control signals as shown.

This will be slow because the throughput will be 1/17 of the input symbol rate (a symbol

here is two-bits).

t+1t

00

10

01

11

00

10

01

11

J

J+1

J/2

J/2 + 2k-2
Butterfly

FIGURE 31 Trellis made of butterflys
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5.2  Summary of the Design

Figure 33 shows one way to do the Verilog design. The top modules only collect signals and

pass them on to the lower level modules. When an ASIC is built the arguments for the top module

are the pins of the ASIC.   If this circuity was to all be built on one chip, one would put on a top-

top or wrapper module where the shaded box is to define the pins.

The error generator is used for testing. To test the circuit, connect the encoder to the decoder

through the error generator, and see if the dataOut equals the dataIn. Under normal (not test) oper-

ation, the encoder would need an output lead to the outside world and the decoder would need an

input lead from outside.

5.3  Second Lab: Start of Convolution Decoder in Verilog

Now we will consider the overall project. You should be able to design each block in the

block diagram except the Survivor Memory block which will not be done until Exercise/Lab 3. For

the initial circuit, you do not need to do a trace back. Just send out as correct, the data from the

state with the lowest H. Of course this will not have any error correction.

You should consider these concepts:

a) We will run the encoder and decoder from a common clock. However the decoder will need

to run faster that the encoder shift register, likely by six times.

In that case you should generate a pulse which comes every six clock cycles which shifts the

encoder register.

b) Your design will be a rate=1/2, constraint length=3; Gz1=[111],Gz0=[101] decoder.

c) To make your code more reusable you may want to parameterize your design. One can do

this easily in Verilog for some values. For others it may be too much trouble.

• For example, at this time, you do not know the register lengths needed in the Add-Com-

pare-Select unit. Parameterizing them makes it easy to adjust their length later.

Signal Source

Test Bench

Comparison
with original

signal

Top module

dataIn
reset

dataOut
Decoder

Top module
Encoder

Add-Compare-Select Module

output dataOut;

input clk, reset, convSig[1:0];
output came_from[3:0];

Encoder

Error generator

convSig[1:0]

Serial-to
Parallel

serial_in_err
(loopback)

input clk, reset, came_from[3:0];
Survivor Memory Module

//maybe input H00,H10,H01,H11;

serial_in_err

serial_in

FIGURE 33

ExtDecodeIn

ExtEncodeOut
÷6

dataIn

serial_in

reset

clk
clk
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•  One can use parameter which must be defined inside the module. This is good for local

parameters.

module decode

 parameter size=9;

. . .

reg ACS[size-1, 0];

•  One could use macros where the definition needs only to be compiled before it is used.

This is good for global definitions.

`define  size  9;

     module decode

. . .

reg ACS[`size -1,0];

d) Considerable emphasis will be given to testing. One simple test is a loopback test where the

decoded output is sent to the test bench where it is compared with the original input.

e) The Error Generator block is necessary if you want to simulate to the error correction prop-

erties. First errors will be generated part of test bench so it is only useful during simulation.

Later you might consider making it part of the loopback test so it can be used for testing in

the field.

What to do for the lab

1. Draw a block diagram somewhat like that of Figure 33. 2However make it bigger and show

the arguments passed to all modules. If a module will be longer than a page of code, try to

divide it.

2. Write Verilog for the Decoder Top Module and Encoder Top Module (already done?) Draw a

simplified hardware diagram for these modules.

3. Recall that the encoder uses a counter and decode its output to shift the register and multi-

plex the output according to the following enable/control signals.

•  It provides a pulse every six clock cycles to enable the shift register.

• It provides a divide by three signal to change the output data bit every 3 clock cy-

cles.

Considering the sequence of the input stream, design a serial to parallel module

which will capture z1 and z0 at an appropriate time and present them to the decoder

as a group, convsig[1:0], ready for decoding.  Draw a waveform diagram for the

2.  We like originality in block diagrams as long as you can give a reason for changes.

clk
shift_en

z1select

FIGURE 34
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control signals that you will generate and when things move around in the serial-to-

parallel register.

4.   Write the Verilog code for the serial to parallel module.

Draw a simplified hardware diagram for the circuit.

5. Write the Add-Compare-Select module. (See Exercise 2.)Draw a simplified hardware dia-

gram for the circuit.

6.  Modify the Test Bench to handle the decoder

and the encoder. This should include a loop-

back test which compares the dataIn (x on the

right) with dataOut.
You will have a delay (latency) between dataIn
and dataOut. At the start dataOut will be the bit

corresponding to the present lowest H (path

Hamming metric) so the latency will be only

that of the serial-to-parallel converter. Later you

will want to add a latency of 4 to 5 times the

constraint length. Include the resultant simulation log and waveform.

7. Add to Add_Compare_Select mod-

ule to generate a four 1-bit signal

called came_from. These signals in-

dicate whether the trellis lines lead-

ing back from the next states to the

present-time-step states, came from a

higher state or a lower state.

 Thus it would show whether the

next state S00 came from the present

S00 (up) or S01 (down). Figure 37

shows these bits and their meaning.

These four came_from signals will

be sent to the survivor-path memory-

module which will be written later.

Add this logic to the simplified diagram from question 6.

8. Consider the Error Generator. For this question treat it

like a test bench so you can use nonsynthesizable con-

structs like $random. This gives a new random integer

every time it is called. Randy will be this random inte-

ger truncated to 5 bits.  A competely random 5-bit

number will, on average,  be 01110 (or any single val-

ue) one time out of 32. However once in a while it

might be 01110 twice in a row. Write a random number

clk
shift_en

z1select

FIGURE 35z1 z0 z1channel

// send in a new x every clock cycle

always @(posedge clk)

begin
   if (I==9) $finish;

x<= #1 data[I];

if(I>latncy)   y<=#1 data[I-latncy];

 I<=I+1;

end
assign err=(y!=dataOut) FIGURE 36
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FIGURE 37

reg [4:0] randy;

always @(posedge clk) begin

randy <= $random;

if (randy = = 4’b01110)

FIGURE 38

//randy gets the 5 lsb of $random

serial_in_err<= ~serial_in;
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generator such as in Figure 38 to produce an error, on average, every 8 data bits across the

channel.  Be carefull, this does NOT mean every 8 clock cycles.  You will need to advance

the random number generator in a similar way as the shift-register in the encoder. Keep a

count of every time you generate an error in the channel.

9. Write a pseudorandom generator as was used in 97.350 to replace $random in question 8.

There is a lot about pseudorandom generators in the notes. If you use such a generator, you

must make its period much longer than 31 or your errors will be periodic. Supposedly ran-

dom errors that come every 31 bits are not a good test. There was a question about this cir-

cuit on the Winter 2001 final which is available on the web. Include a counter in the random

error generator to count the number of errors introduced into the channel. Again, make sure

you advance the error generator only as appropraite, not every clock cycle.
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