
Linear Feedback Shift Registers (LFSR)

© John Knight

Dig Cir p. 217 Revised; November 18, 2003

Linear Feedback Shift Registers (LFSR)
A type of circuit made from XOR and D ff which give repeatable “random” numbers.

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 1 0 1
1 0 1 0

CLK
1D

X4X3X2X1

C1

0 1 0 1

1D

C1

1D

C1

1D

C1

1 1 1 0
0 1 1 1
1 1 1 1
1 0 1 1
1 0 0 1

8
4

2
1

10
6

3
13

12
5

14
7

15
11

9
0 0 0 00

1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1
1 1 0 0
0 1 1 0
1 0 1 1
0 1 0 1
1 0 1 0

CLK
1D

X0X1X2X3

C1

1 1 0 1

1D

C1

1D

C1

1D

C1

1 1 1 0
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

8
4

2
9

12
6

11
5

10
13

14
15

7
3

1
0 0 0 00

c
lo

c
k

c
y

c
le

s

Internal circuit, XORs inside shift reg. External circuit, XORs outside shift reg.

1 + X + X4

1 X X4 1XX4

X4+ X +1

Slide 109

Carleton University © John Knight Vitesse

Digital Circuits p. 218 Revised; November 18, 2003

Linear Feedback Shift Registers (LFSR) Linear Feedback Shift Registers

Linear Feedback Shift Registers
Properties

Names

Linear-Feedback Shift-Register (LFSR), Autonomous LFSR, Pseudo-Random-Number Generators,
Polynomial Sequence Generators, Pseudo-Random-Pattern generators, etc.

Math

The connections to the feedback loop are given placeholder names which are powers of X.
One end is always X0=1, the other is always Xn. The others are Xk if there is an XOR connection at k.

The powers of X define a polynomial.
If the polynomial is what we call primitive, the circuit will sequence through 2N-1 numbers for N flip-flops.
Else it will have several shorter sequences and will not be much use.

Circuits

There are four circuits with the same polynomial and close to the same properties:
An internal circuit.
An external circuit.
An internal circuit with the connections and labelling reversed
An external circuit with the connections and lab

The polynomials are the same. If one is primitive they both are.
However the sequencing of the numbers will be different.

Primitive Polynomials

They are listed in many books.1

1. V.N. Yarmolik, and I.V Kachan, Self Testing VLSI Design, Elsevier 1993. It goes up to 300 flip-flops.

1 X3X1

1X3 X1

Comment on Slide 109

Linear Feedback Shift Registers

© John Knight

Dig Cir p. 219 Revised; November 18, 2003

Linear Feedback Shift Registers
Properties of LFSR

Names
• Linear-Feedback Shift-Register (LFSR), Pseudo-Random-Number Generators,

Polynomial Sequence Generators etc., etc.

• Individual circuits have polynomial names related to their connections; i.e. 1 + X + X4

• Can deduce the properties of the circuit from its polynomial. (and a math degree)

• Use certain polynomials called primitive.

Circuit

• Uses only a few (1 to 3) XOR gates, and D flip-flops.

• Internal circuit is very fast. Max delay = (1 XOR delay) + (1 D ff delay).

• Primitive polynomials have 2N-1 sequential states.

• The all zero state is always isolated.
If you reset a LFSR at the start, it locks up in the all zero state.

Randomness (primitive polynomials)
• It obeys 15 of 25 standard statistical tests

• Consecutive numbers have a shift register relation (particularly external).
Columns are identical but displaced (see background shading).

• No number is repeated until the complete sequence is done.

• Mean = -1/(2N -1)� slight dc bias
There is one more 1 than there are 0s in any column.

Slide 110

Carleton University © John Knight Vitesse

Digital Circuits p. 220 Revised; November 18, 2003

Linear Feedback Shift Registers Linear-Feedback Shift-Registers (cont.)

Comment on Slide 110

Linear-Feedback Shift-Registers (cont.)
Properties

Size

A LFSR takes less area than any other common counter except a ripple counter.

The ripple counter is not synchronous and much harder to interface reliably.

Speed

A LFSR is faster than any other common counters except the Mobius counter.

Counting

It does not count in binary. It counts modulo 2N-1, a binary counter counts modulo 2N.

Applications

Where one needs to count a fixed time, but do not need to need arithmetic compatible intermediate values.
Time out counts; shut off the screen if no one touched the keyboard for 2N-1 seconds.

Send an input to the control computer every 100ms, reboot if no response.

Cycling through addresses for refreshing DRAM. T he order of
refresh does not matter. Not going through address 0000 might matter.

1.• PROBLEM

In any LFSR, insert the following circuit between two adjacent flip-
flops which were not previously connected through an XOR. The
previous state graph will have looked like that of the "Linear-Feedback
Shift-Registers (cont.)," p. 220.
(a) What will the new state graph look like?
(b) What will happen if you start by resetting all the flip-flops? CLK

All flip-flops except Qx

Qx

RRRR

Linear Feedback Shift Registers

© John Knight

Dig Cir p. 221 Revised; November 18, 2003

Linear-Feedback Shift-Registers (cont.)

Example of a Nonprimitive Polynomial

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 1
1 0 1 1
0 1 1 0
0 0 1 1
1 1 0 0

CLK
1D

X4X3X2X1

C1

0 1 0 1

1D

C1

1D

C1

1D

C1

1 0 1 0
1 1 1 1
0 1 1 1
1 1 1 0
1 0 0 1

8
4

2
1

13
11

6
3

12
5

10
15

7
14

9
0 0 0 00

CLK
1D

X0X1X2X3

C1

1D

C1

1D

C1

1D

C1

c
lo

c
k

c
y

c
le

s
Internal circuit, XORs inside shift reg. External circuit, XORs outside shift reg.

1 + X + X3 + X4

1 X X4 1XX4

X4 + X3+ X +1

1 0 0 0
1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1
0 0 0 1
1 1 0 1
0 1 1 0
1 0 1 1
0 0 1 1
1 0 0 1
0 1 0 0
0 1 0 1
1 0 1 0
1 1 1 1

8
12

14
7

3
1

13
6

11
2

9
4

5
10

15
0 0 0 00

Slide 111

Carleton University © John Knight Vitesse

Digital Circuits p. 222 Revised; November 18, 2003

Linear Feedback Shift Registers Linear-Feedback Shift-Registers (cont.)

Comment on Slide 111

Minimal Hardware, Primitive Polynomials
• 1+ x + x2 1+ x + x3 1+ x + x4 1+ x2 + x5 1+ x + x6 1+ x + x7

1+ x + x5+ x6 + x8 1+ x4 + x9 1+ x3+ x10 1+ x2+ x11 1+ x3 +x4+x7+x12

1+ x + x3+ x4 + x13 1+ x+ x15 1+x2+x3+x5+x16 1+ x3+ x17 1+ x7+ x18 1+ x3+ x20

1+ x2+ x21 1+ x+ x22 1+x5+x23 1+x+x3+x4+x24 1+x3+x25 1+x+x7+x8+x26

• For N flip-flops, one seems to only need 3 or fewer XOR gates.

Starting

• All LFSR lockup in the all zero state. A very reliable circuit would check if the flip-flops are all zero
and inject a one. Less reliable circuits will initialize some of the flip-flops to one.

Randomness
• The numbers as integers look random. The numbers as bit patterns show the shifting strongly.

• Some applications, like testing with random numbers, scramble the leads going to the various flip-
flops. This gives a better test for multipliers or barrel shifters.

Bias
• Some communication circuits do not like inputs that have a dc bias.

To make a random generator that has no bias, and includes zero,
Take the output of the most significant bit of the generator though an
inverter. This will change 100...0, the most negative 2’s complement
number, into 000...0, and balance the plus and minus numbers

2.• PROBLEM

Modify the Verilog code for the shift register to make a LFSR for 7 flip-
flops (1+ x + x7).

011
010
001

111
110
101
100

011
010
001
000
111
110
101
100

111
110
101
000
011
010
001

3
2
1
0

-1
-2
-3
-4

dec
2’s

LFSR
(no zero)

compl

LFSR
with
inverter

Linear Feedback Shift Registers

© John Knight

Dig Cir p. 223 Revised; November 18, 2003

Verilog LFSR
• One can specify a subset of bits like Reg[4:2].

• One must not reset a LFSR to 0.

Nonblocking Assignment
The <= assignment in procedures is called nonblocking.

The variables on the right of <= are captured in parallel on the @ trigger.

The variables on the left are always calculated from these initial values.

• It is a master-slave like operation.

• If one uses nonblocking anywhere in a procedure one must use it everywhere.

module LFSR2(Reg, clk, reset);
parameter n=4 // Change more than n to change LFSR length.
output[n:1]Reg;
reg [n:1]Reg; //All procedure outputs must be registered
input clk reset;

always @(posedge clk
or posedge reset)

if
(reset) Reg <=1;
else
Reg <= {Reg[n-1:2], Reg[n]^Reg[1], Reg[n]};

endmodule //LFSR2

X2

X4+ X +1
1XX4 X3

Slide 112

Carleton University © John Knight Vitesse

Digital Circuits p. 224 Revised; November 18, 2003

Linear Feedback Shift Registers Verilog LFSR

Comment on Slide 112

Verilog LFSR
Reset To Zero

One must never clear a LFSR. If the flip-flops have a set, use it. If not
place inverters before and after the flip-flop to fake a set.

Parameters

Parameters are very handy. I would recommend using them frequently.
Here changing n will not be enough to change the LFSR. One must check that the XOR is in the right place for the larger
size. However it saves having to change output, reg and other statements.

always @(posedge clk or posedge reset)

The @ is the edge triggered signal. Most counters, registers, flip-flops should start with this way.

Blocking and Nonblocking

Normal blocking assignment in procedures is via the “=.” Such variables behave like a normal program. Thus:
R[1]= R[n];

will replace R[1]. Then:
R[2] = R[n]^R[1];

will use the revised R[1] in the calculation. This is not what is wanted!

Nonblocking assignment uses the “<=” symbol. Nonblocking assignment is more like a register of D flip-flops. The
inputs are transfered across the “<=” at once in the same way that all flip-flops are clocked at once.

Use Nonblocking <= for Flip-flops, Counters and Shift Registers

Your reflex action should be to use “<=” for all procedures containing flip-flops.

RESET R R R R

Linear Feedback Shift Registers

© John Knight

Dig Cir p. 225 Revised; November 18, 2003

Application of the LFBSR:

The Circular Queue (FIFO)
Locating Queue Empty and Queue Full require comparing present and previous pointers
A shift-register can remember its previous state using 1 extra ff.
LFSR is smaller and faster than a binary counter.
The strange counting order of the LFSR does not matter.

1110
1101

1111

1100

1010
1001
1000

1011

0111
0110
0101
0100
0011
0010
0001
0000

1110
1101

1111

1100

1010
1001
1000

1011

0111
0110
0101
0100
0011
0010
0001
0000

+1

4

4
+1

4

4

Prev_RPtr

RPtr

Prev_WPtr

WPtr

Empty= ((RPTR==Prev_WPtr)&Read);

Full = ((WPTR==Prev_RPtr)&Write); 1D
C1

EMPTY

1D
C1

FULL

0111
1111

0011

1110

1010
0101
1011

1101

0110
1100
1001
0010
0100
1000
0001
0000

RPtr

Prev_WPtr

WPtr
4 4

4-to-16
Decode

4-to-16
Decode

Queue

Prev_RPtr

4

0111
1111

0011

1110

1010
0101
1011

1101

0110
1100
1001
0010
0100
1000
0001
0000

Using N-bit Binary Counters Using LFSR
Use 4N ff
Incrementer hardware x2

Use 2N+2 ff
2 XOR gates

Counter carry-chain delay (next p.) 1 XOR gate delay

Empty= ((RPTR==Prev_WPtr)&Read);

Full = ((WPTR==Prev_RPtr)&Write); 1D
C1

EMPTY

1D
C1

FULL

2N+4 for 2N queue
6 for a 2 a N queue
3 for a 2N queue

Slide 113

Carleton University © John Knight Vitesse

Digital Circuits p. 226 Revised; November 18, 2003

Linear Feedback Shift Registers Verilog LFSR

Comment on Slide 113

Applications of LFSR

Circular Queue or First-In-First-Out Register

Queue full and queue
empty both have:-

Wptr = RPtr
To tell full from empty
compare the pointers. If

WPtr =RPtr -1
and one is writing, that
write will fill the queue
and should set a full flag.

Similarly if
RPtr =WPtr -1 i.e. RPtr = Previous WPtr

and one is reading, then that read will empty the
queue. One should set an empty flag and allow no
more reads until after a write.

3.• PROBLEM

Implement the queue with 2*2N bit shift registers.

1
2
1

3
4
5
6
7

9
2

8

READ
POINTER

WRITE
POINTER

QUEUE
EMPTY

R Ptr=W Ptr

Write 1
WPtr=R Ptr + 1 WPtr=RPtr + 1

Write 2QUEUE
FULL

WPtr=RPtr

WPtr
WPtr

WPtr
RPtr RPtr

RPtr
2

Read 1

WPtr
RPtr

WPtr=RPtr + 2

2
3
4
5

WPtr=RPtr + 5

Write 3,4,5,6

WPtr

RPtr

6

Two pointers move up the register bank in response to reads and writes.

RPtr WPtr

EMPTY
RPtr=WPtr

QUEUE

3
4
5
6
7

9
2

8

QUEUE
FULL

RPtr=WPtr

WPtrRPtr
2
3
4
5

WPtr=RPtr - 1

ALMOST

WPtr
RPtr

6
7
8

2

ALMOST

RPtr=WPtr - 1

WPtr
RPtr

EMPTY FULL

FULLEMPTY

READ

WRITE

RPtr

Prev RPtr

WPtr

Prev WPtr

1D
C1

1D
C1

FULL
No more Writes until Read

EMPTY
No more Reads until Write

EQUALS

Write

EQUALS

Read

Binary Counters

© John Knight

Dig Cir p. 227 Revised; November 18, 2003

Binary Counters

Binary Up-Counter

Simplest Circuit Uses T Flip-Flops
(Simplest for People)

The T table shows where bits toggle going between
the present state and the next state.

The circles show how the toggle signals are
defined by ANDs:

T1 = Q0
T2 = Q1Q0
T3 = Q2Q1Q0
TC = Q3Q2Q1Q0

Propagation Delay
Notice the ripple carry. All binary counter have
this speed limiting carry.

c

Present State Next State What to Toggle
Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0 T3 T2 T1 T0

0 0 0 0 0 0 0 1 T

0 0 0 1 0 0 1 0 T T

0 0 1 0 0 0 1 1 T

0 0 1 1 0 1 0 0 T T T

0 1 0 0 0 1 0 1 T

0 1 0 1 0 1 1 0 T T

0 1 1 0 0 1 1 1 T

0 1 1 1 1 0 0 0 T T T T

1 0 0 0 1 0 0 1 T

1 0 0 1 1 0 1 0 T T

1 0 1 0 1 0 1 1 T

1 0 1 1 1 1 0 0 T T T

1 1 0 0 1 1 0 1 T

1 1 0 1 1 1 1 1 T T

1 1 0 0 1 1 1 1 T

1 1 1 1 0 0 0 0 T T T T

1T

C1

CLK

1T

C1

1T

C1

1T

C1

Q0Q1Q2Q3

A 4-bit binary counter

T3 T2 T1

C

T0

Slide 114

Carleton University © John Knight Vitesse

Digital Circuits p. 228 Revised; November 18, 2003

Binary Counters Binary Up-Counter

Comment on Slide 114

Binary Up-Counter
Design of the Counter

The Karnaugh maps for the toggle inputs are given below. Many people are more used to them, and they are much less
error prone than picking bits off the state tables.

Simplicity

This counter looks much simpler than most textbook counters. However if one implements it with D flip-flops,
converting to enabled toggle flip-flop requires an XOR for each flip-flop. Thus it is simple for the designer, but it is only
apparent simplicity.

Speed

The binary counter is one form of binary adder. The slow carry chain is present. For long counts the carry chain and
counter will be quite slow

To get around this one could use a LFSR. It will count quickly, but one cannot do arithmetic on its result. One cannot
easily tell if the signal is greater than some reference. One can only tell equality easily.

Map for T3 Map for T2 Map for T1 Map for T0

00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
00 0 0 0 0 00 0 0 1 0 00 0 1 1 0 00 1 1 1 1
01 0 0 1 0 01 0 0 1 0 01 0 1 1 0 01 1 1 1 1
11 0 0 1 0 11 0 0 1 0 11 0 1 1 0 11 1 1 1 1
10 0 0 0 0 10 0 0 1 0 10 0 1 1 0 10 1 1 1 1

Q3Q2

Q1Q0
Q3Q2

Q1Q0
Q3Q2

Q1Q0
Q3Q2

Q1Q0

Binary Counters

© John Knight

Dig Cir p. 229 Revised; November 18, 2003

Binary Down-Counter

T Flip-Flops Circuit
(Simplest for People)

The T table shows where the bits toggle in going
to the next state.

The circles show how the toggle signals are
defined by zeros:

T(L) means a “0” togles the flip-flop.

c

Present State Next State What to Toggle
Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0 T3 T2 T1 T0

0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 0 T

1 1 1 0 1 1 0 1 T T

1 1 0 1 1 1 0 0 T

1 1 0 0 1 0 1 1 T T T

1 0 1 1 1 0 1 0 T

1 0 1 0 1 0 0 1 T T

1 0 0 1 1 0 0 0 T

1 0 0 0 0 0 0 0 T T T T

0 1 1 1 0 1 1 0 T

0 1 1 0 0 1 0 1 T T

0 1 0 1 0 1 0 0 T

0 1 0 0 0 0 1 1 T T T

0 0 1 1 0 0 1 0 T

0 0 1 0 0 0 0 1 T T

0 0 0 1 0 0 0 0 T

1T

C1

CLK

1T

C1

1T

C1

1T

C1

Q0
Q1Q2Q3

A 4-bit binary down counter

T3(L) T2(L) T1(L)

C

T0

T1(L) = Q0 =Q0
T2(L) = Q1Q0 =Q1+Q0
T3(L) = Q2Q1Q0 =Q2+Q1+Q0
TC(L) = Q3Q2Q1Q0 =Q3+Q2+Q1+Q0

Slide 115

Carleton University © John Knight Vitesse

Digital Circuits p. 230 Revised; November 18, 2003

Binary Counters Binary Down-Counter

Comment on Slide 115

Binary Down-Counter
Design of the Counter

This counter is very much like the up-counter. The difference is the toggle signals are generated by checking for groups
of zero flip-flop outputs, such as Q2Q1Q0. Using DeMorgan’s theorem changes these terms to a chain of OR gates
instead of AND gates.

Up-Down Counters

A controllable up-down counter is made by switching between the up and down circuits.

T3= (up_dwn) ? Cup : (~Cdwn);

Cup = Q_1&Cup_1

Cdwn = Q_1&Cdwn_1

1T

C1

CLK

Q0
T0T3 T2

1T

C1

Q1
T1

1

G1
1

MUX

1

G1
1

MUX
1

G1
1

MUX

T3
1T

C1

Q21

G1
1

MUX

1T

C1

Q3

UP_DWN

TC

UP_DWN

Cdwn

Cup

Cdwn_1

Cup_1

Binary Counters

© John Knight

Dig Cir p. 231 Revised; November 18, 2003

Preloadable Counters
Constructed from the Basic Counter Module

TK
QK

1T

C1

1T

C1

1D 1T

C1

1D
2

G2
2

MUX

3,1D

M3
1T

C1

1D
2

G2
2

MUX

3,1D

M3

QK

CLK

PR

COUT
CIN

QK TK

(A) Basic module (bit-slice)
for a binary counter
using a T flip-flop

(B) The T flip-flop made from a
D flip-flop

(C) Specialized flip-flop for
preloadable counter module

(D) Basic module for a preloadable
counter

TK
QK 3,1T

C1

3,1D

M3 PR
CLK

CINCOUT
XK

XK

(C) The T flip-flop made
preloadable

TK

XK

Mode 3 selects the input.

Slide 116

Carleton University © John Knight Vitesse

Digital Circuits p. 232 Revised; November 18, 2003

Binary Counters Preloadable Counters

Comment on Slide 116

Preloadable Counters
Hiearchy

The preloadable counter is a hierarchy of modules starting with a D flip-flop.

a. D flip-flop

b. Preloadable D flip-flop

c. Preloadable T flip-flop

d. The Counter Module With AND Gate.

e. The Preloadable Up-Counter

IEEE Symbols

The PR input changes the mode. The number 3 was picked for the mode. In mode 3, the circuit (C) and (D) do a preload
on the clock edge. The “3,1D” says that in mode 3 and (comma and) on the “1” signal edge this is a D input.

The control number in the MUX was changed to 2 because, in this symbol, 1 was already used by the clock.

Any numbers can show a connection between a control an what it controls. However the number must be the same at
both sides. Thus 2 controls 2.

Binary Counters

© John Knight

Dig Cir p. 233 Revised; November 18, 2003

Preloadable Counters (cont.)
Counters That Count to Something Besides 2N

(B) Specialized flip-flop for
preloadable counter module

TK
QK3,1T

C1

3,1D

M3

CIN

COUT

XK

C1/3+

3,1D

3,1D

3,1D

3,1D

3,1D

M3

CLK

PR

Q0

Q1

Q2
Q3

Q4

(A) Preloadable Counter

Mode 3: Binary Up-Counter “3+”

CTR5

Mode 3: Synchronous (Clocked) load

X0

X1

X2

X3

X4

Need both mode 3 and clock
edge “3,1D” to load.

C1/3+

3,1D

3,1D

3,1D

3,1D

3,1D

M3
CLK

PR

Q0

Q1

Q2
Q3

Q4

CTR5
Common clock
and mode control

(C) Mod 22 counter.
Counts 0 to 21 (5'b10101;) and repeats.

5 counter modules

PR
CLK

C1/3-

3,1D

3,1D

3,1D

3,1D

3,1D

M3
CLK

PR

Q0

Q1

Q2
Q3

Q4

CTR5

(D) Mod 22 down counter.
Counts 21 to 0 and repeats.

Slide 117

Carleton University © John Knight Vitesse

Digital Circuits p. 234 Revised; November 18, 2003

Binary Counters Preloadable Counters (cont.)

Preloadable Counters (cont.)

IEEE Counter Symbol

The symbol is divided into 5 special modules and a common T shaped control block.

• The control block contains the letters CTR5 to show the circuit is basically a 5 bit counter.

• The common mode control “M3” for preloading.

• The common clock input “C1/3+.” The “+” says the counting is binary and upwards unless one is in
mode 3. The C1 says it functions as a clock independent of mode.

• “+” after the clock input is an up counter. “-” after the clock input is a down counter.

Counting to M≠2N

Decode Terminal Count

Decode, with the equivalent of a many input AND gate, the final count. Use that to activate the preload and load zero.
This allows the counting to go upwards.

Preload the Maximum Count and Count Down

At the start of counting, loading the maximum count and count down.
Alternately load the two’s complement of the maximum count, and count up.

This is a better method if the desired count keeps changing. One does not need a different AND gate for each count.

Comment on Slide 117n

Binary Counters

© John Knight

Dig Cir p. 235 Revised; November 18, 2003

A Verilog Preloadable Up/Down Counter
module UpDwn(Q, updwn, X, pr, clk, reset);

parameter n=4;
input [n-1:0] X; // The number to preload into counter
input pr, updwn, // preset control, up(H)/down(L)

clk, rst; // clock, asynchronous reset

output[n-1:0] Q;
wire [n-1:1] Cup, Cdwn; // The carries for up and down counting.

pr_T_ff ff0(Q[0],X[0], 1, pr, clk, rst);
cntr cir1(Q[1], Cup[1],Cdwn[1], Q[0], Q[0], updwn, X[1], pr, clk, rst);

cntr cir2(Q[2], Cup[2], Cdwn[2], Cup[1], Cdwn[1], updwn, X[2], pr, clk, rst);

cntr cir3(Q[3], Cup[3],Cdwn[3], Cup[2], Cdwn[2], updwn, X[3], pr, clk, rst);

endmodule UpDwn

updwn
reset

Q[2]

1
1

1T
3,1D

M3

R

X[2]Q[3]

1
1

1T
3,1D

M3

R

X[3]

Cup[2]

Cdwn[2]

rst

Q[1]

1
1

1T
3,1D

M3

R

X[1]

Cup[1]

Cdwn[1]

1T

C1

3,1D

M3

R

clk

X[0]Q[0]

clkclkclk

ff0cir1cir2cir3

Slide 118

Carleton University © John Knight Vitesse

Digital Circuits p. 236 Revised; November 18, 2003

Binary Counters Named Module Connections (Named

A Verilog Preloadable Up/Down Counter (cont)

A Counter Module
The four components on the diagram are easily spotted in the code.

• The flip-flop is the module call.
pr_T_ff ff1(Qi, Xi,Ti, pr, clk, reset);

• The & gate
Cup = Cup_1 & Qi,

• The OR “|” gate.
Cdwn= Cdwn_1 | Qi,

• The MUX
Ti=(updwn) ? Cup_1 : ~Cdwn_1;

This Module is Structual

The connections are described. Not the operation.

Named Module Connections (Named Ports)
The connections between a module definition and its instantiation have been made by position.
The shaded box shows how to make the connections by using the module port name.
<port name used in the original definition>.(<wire/reg name connecting this particular instantiation>)

.T(Ti)

For small modules position is simpler.
For large modules name is better. Errors in position are easy to make with 20 or more variables.

Note this has nothing to do with call by name/call by value described in programming courses.

Comment on Slide 118

Binary Counters

© John Knight

Dig Cir p. 237 Revised; November 18, 2003

A Verilog Preloadable Up/Down Counter
module cntr(Qi,Cup, Cdwn, Cup_1, Cdwn_1, updwn, Xi, pr, clk, rst);

input Cup_1, Cdwn_1, updwn, Xi, pr, clk, rst;
output Qi, Cup, Cdwn;
wire Ti;

assign
Cup = Cup_1 & Qi,
Cdwn = Cdwn_1 | Qi,
Ti = (updwn) ? Cup_1 : ~Cdwn_1;
pr_T_ff ffByPos(Qi, X, Ti, pr, clk, rst);

// Alternate connection of module ports (arguments) by name.
// The position of the argument is no longer important.
// pr_T_ff ff ByName(.X(Xi), .T(Ti), .Q(Qi), .RST(rst), .CLK(clk), .PR(pr);

endmodule // cntr

Ti 1

G1
1

MUX

Qi

Cdwn

Cup Cup_1

Cdwn_1

updwn

rst

Xi bit to preload

clk

T
1T

C1

3,1D

M3R

CLK

Q

pr_T_ff

PR

RST

T1T

C1

3,1D

M3R

CLK

Q

PR

RST

X X

pr

wireport name

port names

Slide 119

Carleton University © John Knight Vitesse

Digital Circuits p. 238 Revised; November 18, 2003

Binary Counters A Verilog Preloadable Up/Down Counter

A Verilog Preloadable Up/Down Counter (cont)

The Flip-Flop Module
This module follows the classic flip-flop standard:

• All outputs, or variables on the right-hand-side of a procedure must be of type reg.
reg Qi;

• The flip-flop is edge triggered, @, and has an asynchronous reset.
always @(posedge clk or posedge reset)
The asynchronous reset allows the system to be placed in a known state during start-up. Synchronous
reset requires the co-operation of the clock. A system with clock and clock/2 for example, has to be
carefully planned to reset properly using synchronous reset.

• The nonblocking assignment “<=” is used.
Qi <= (pr) ? Xi : Qi^Ti;
Thus flip-flop outputs, fed back into flip-flop inputs, always use the previous values for inputs.
For example Q[2]<=Q[1]; Q[1]<=Q[2]; always exchanges Q[1] and Q[2].

The Interaction of XOR and Toggle

The logic for Qi^Ti requires a little thought:

Qi is the fed back flip-flop output.
Ti is the toggle enable.

• When Ti=1, the flip-flop toggles i.e. ~Qi is fed back.

• When Ti=0, the flip-flop holds is old value, i.e. Qi is fed-back.

This reduces to Qi <= Qi^Ti.

Comment on Slide 119

Binary Counters

© John Knight

Dig Cir p. 239 Revised; November 18, 2003

A Verilog Preloadable Up/Down Counter (cont)

module pr_T_ff(Q, X, T, PR, CLK, RST);
input X, T, PR, CLK, RST;
output Q; reg Q;

always @(posedge CLK or posedge RST)
begin

if (RST)
Q <= 0;

else
Q <= (PR) ? X : Q^T; // It is ~((~Q)^T))

end // always
endmodule // pr_T_ff

1T

C1

1D
2

G2
2

MUX

3,1D

M3

T

Q
X

PR

CLK

RST

pr_T_ff

Slide 120

Carleton University © John Knight Vitesse

Digital Circuits p. 240 Revised; November 18, 2003

Binary Counters Glitches in Counters

Glitches in Counters
All binary counters are glitchy

Binary is a glitchy way to count. Every second increment changes several bits at once.
If several variables change at once, one must really change first. until the second one changes, there is a glitch.

Synchronous Circuits and Glitches

Counter glitches come after the clock edge. There is a short delay for the clock to propagate to the output of the flip-
flops. Then the glitches come.

However the glitches do no real damage unless:
They are fed to some high speed output which can respond to glitches.
They are captured by some flip-flop.

In normal synchronous circuits, all flip-flops are driven by the same clock. Glitches come to late to be captured by one
clock edge, and too early to be captured by the next edge. Thus counter glitches are not problem in synchronous design.

Glitches can be Latched With Asynchronous Clocks

With two clocks running asynchronously, the second clock may come at any time with respect to the first. The register
may clock just as the counter is sending out glitches. Then the glitches become a permanent erroneous signal in the
system.

Comment on Slide 120

Binary Counters

© John Knight

Dig Cir p. 241 Revised; November 18, 2003

Glitches In Binary Counters

Binary Counters are Intrinsically Glitchy

CLK + CLK

3 6 4

0 1 2 3 4 5 6 7 8

CTR4

CLKAnywhere two outputs change at once
there is glitch potential.
1→2, 3→4, 5→6, 7→8

Does it matter?
If it feeds flip-flops which are not
clocked until the next cycle, OK!

If it feeds flip-flops on another clock;
If it feeds high-speed displays. Bad!

C1

1D
1D
1D
1D

Register

CLK

+
CTR4

CLK1 CLK2
C1

1D
1D
1D
1D

Register

+
CTR4

Slide 121

Carleton University © John Knight Vitesse

Digital Circuits p. 242 Revised; November 18, 2003

Binary Counters The Ripple Counter

The Ripple Counter
The Glitchiest of the Glitchy Counters

Because each clock pulse must ripple through the flip-flops, the flip-flops never switch at the same time. In the binary
counter one could, with well balanced flip-flops, have all the bits change at once.

The Bad Ripple Counter
• The counter is not synchronous. It has N different clocks.

If one puts gates between the flip-flops to make an up-down or preloadable counter, any glitches on
those gates may clock part of the counter.

• The ripple time through the N flip-flops is very long. It may take a long time for the final reading to
settle after a clock pulse.

• The counter gives out many transient wrong counts before it reaches the final count.

• Testing people, who use scan testing, cannot tolerate anything except a true clock going to a flip-flop
clock input.

The Good Ripple Counter
• Very small area.

• Very fast toggle rate. As long as the first flip-flop has flipped, one can change the clock again. The rest
of the count will ripple down the counter, One can have several counts rippling down.

• Very low power. Power is used only when a flip-flop flips. Further they only flip if they are going to
change and they flip only once per increment.

• If (i) the clock flips the first flip-flop, (ii) the counter finishes before the next clock edge, (iii) testing
can be performed, then the counter can be contained within a synchronous circuit.

Application

Every digital watch has a long ripple-counter chain.

Comment on Slide 121

The Ripple Counter

© John Knight

Dig Cir p. 243 Revised; November 18, 2003

The Ripple Counter

Glitches Galore

The Ripple Up Counter

In Praise of Ripple Counters

• They are the simplest, smallest counter.

• They are slow to complete the count,
but the input (clk) can run at the flip-flop toggle rate.

• They have very low power consumption.

1T

C1

CLK

Q0
T0

1T

C1

Q11T

C1

Q21T

C1

Q3

CLK

Q0

Q1

Q2

Q3

• The counter is not synchronous
All flip-flops are not run from one clock.

• The counter gives many, wide glitches
on half the counts.

• The carry chain is very slow.

0 1 0 2 3 20 4 5 4 6 7 640 8

They are one of the slowest counters.

Slide 122

Carleton University © John Knight Vitesse

Digital Circuits p. 244 Revised; November 18, 2003

The Ripple Counter Verilog Ripple Counter

Verilog Ripple Counter1

Triggering on nonclocks

The “@” statement

The @ is a “wait at this point” in the procedure until the trigger is satisfied.

One might think
always @(negedge clk)

@(negedge a[0])
@(negedge a[1] . . .

would properly ripple through the counter. It will not!

The counter does not ripple the full length every time. When it only goes part way, it will ripple only until it hits the first
a[i] that does not change. Then it will sit there forever waiting for the trigger.

The name change Q[i] to qi

Synthesizers usually do not like bits of an array as a clock veriable.

Parallel Constructs

The counter is coded with “parallel” always blocks. They are triggered independently.
The clk will trigger the first block. If a[0] rises that will trigger the next block.
If a[0] does not rise, nothing will happen until the clock rises again.

Delays

The delays, #0.5 delays the output of the statement by 0.5 time units. This makes it appear as though each flip-flop has
a 0.5 unit propagation delay. The delays have no meaning for synthesis.

Reset

Reset is put in as a trigger. Any reset will immediately take effect on all flip-flops.

1. See also Verilog3Gotchas.fm5 cira p.108

Comment on Slide 122

The Ripple Counter

© John Knight

Dig Cir p. 245 Revised; November 18, 2003

A Verilog Ripple Counter
module rip(Q, clk, reset);

output[n:0] Q; reg [n:0] Q;
input clk, reset;
wire q0, q1, q2;

Fig. Com 0-1

always @(negedge clk or posedge reset) // negedge for up counter
if (reset) Q[0]=0; // posedge for down counter

else begin
#0.5 Q[0] = ~Q[0]; // Delay will not synthesize but makes simulation clearer.
end

assign q0 = Q[0]; // Subscripted variables cannot be put in trigger lists as clocks.

always @(negedge q0 or posedge reset)
if (reset) Q[0]=0;
else begin

#0.5 Q[1] = (~Q[1]);
end

assign q1 = Q[1];

always @(negedge q1 or posedge reset)
if (reset) Q[2]=0;
else begin
#0.5 Q[2] = (~Q[2]);
end

assign q2 = Q[2];
. . .

endmodule // rip

Slide 123

Carleton University © John Knight Vitesse

Digital Circuits p. 246 Revised; November 18, 2003

The Ripple Counter Gray Codes

Gray Codes
Glitch-Free Counting

Because they change only one bit at a time, Gray code counters are inherently glitch free. This only applies if one
increments by 1. Counting with increments of 2 or more will give glitches.

Types of Gray Codes

Here we define a Gray code as any code that increments with one bit-change at a time. There are thousands of Gray
codes. Tracing through the Karnaugh map will show many. A Johnson Counter gives a Gray code.

The reflected Gray code is the most commonly used Gray code

a. Take the Gray code shown and drop the most significant bit temporarily.

b. Draw a line half way up the list.

c. Think of the line as a mirror. Then the numbers below the line are the reflection of those above.

Wrap-Around Gray Codes

Some Gray codes may not wrap around.

Comment on Slide 123

Gray Code Counters

© John Knight

Dig Cir p. 247 Revised; November 18, 2003

Gray Code Counters

Single Bit-Change Counters
• Gray codes are binary encodings of numbers which change only one bit at a time.

• There are many of them.

• Gray codes can be read off a Karnaugh map
.

Follow a trace through the Karnaugh map.
Write down the squares in the order you pass through
them.
The common reflected Gray code shown(right).

Another Gray code which starts at 0100 and ends at 1111.
Follow the map trace and equate these with binary codes.
This one is not a Gray code on overflow.

00 01 11 10
00

AB
CD

01

11

10

0 ≈ 0000
1 ≈ 0001
2 ≈ 0011
3 ≈ 0010
4 ≈ 0110
5 ≈ 0111
6 ≈ 0101
7 ≈ 0100
8 ≈ 1100
9 ≈ 1101

10 ≈ 1111
11 ≈ 1110
12 ≈ 1010
13 ≈ 1011
14 ≈ 1001
15 ≈ 100000 01 11 10

00

AB
CD

01

11

10

0 ≈ 0100
1 ≈ 0000
2 ≈ 0001
3 ≈ 0011
4 ≈ 0010
5 ≈ 0110
6 ≈ 0111
7 ≈ 0101

8 ≈ 1101
9 ≈ 1100

10 ≈ 1000
11 ≈ 1001
12 ≈ 1011
13 ≈ 1010
14 ≈ 1110
15 ≈ 1111

Slide 124

Carleton University © John Knight Vitesse

Digital Circuits p. 248 Revised; November 18, 2003

Gray Code Counters Uses Of Gray Code Counters

Uses Of Gray Code Counters
An External Counter Feeding A Synchronous Machine

Overspeed Detector

This detector is reset every second.
Starting from zero it counts the number of slots that go by the toothed wheel.
If the number of slots goes above the setpoint, the motor is shut down.

It must be manually restarted.

Reliability

Depending on the way the counter glitches, this may erroneously shut down the motor.

For the counter in "Binary Counters are Intrinsically Glitchy," p. 241, a set count of 6 could stop the motor when the real
count was only 4.

This would not happen too often. The clock would have to rise as the counter was glitching.1

1. The ripple counter would not cause a problem here. It can never glitch to a higher number than the actual count.

Comment on Slide 124

Gray Code Counters

© John Knight

Dig Cir p. 249 Revised; November 18, 2003

Uses Of Gray Code Counters

Inputs to Synchronous Systems

Motor Overspeed Control.
The binary counter counts sensor pulses for 1 second.
The count is compared with the setpoint register. Set a MAX(pulses/sec)
If ω > s a STOP signal is sent out.

The motor stops when there is no overspeed.

Suggest some problems and their cures.

Counter
Binary Set point

Register

Write

Digital Compare
ω>s

ω s
10

R

stop
Count is maximum

10

clk

C1

Next clock cycle
clear binary
counter

at the end of each

Synchronous
Controller

R

RESET

1D
C1

second.

OVERSPEED

Slide 125

Carleton University © John Knight Vitesse

Digital Circuits p. 250 Revised; November 18, 2003

Gray Code Counters A Brute-Force Gray-Code Counter

A Brute-Force Gray-Code Counter
Coding By Next-State

A Finite-state Machine As a Case Statement

a. Enter the present state as the test in a case statement

b. Enter the next state as the result.

A Finite-state Machine As an Excessive Case Statement

A 10 bit counter will have 1024 entries; a 20 bit counter will have 104857 entries. Too much!

5 or 6 flip-flops appear to be a practical limit.

The Alternative To Brute Force; Finite-State Machine (FSM) Coding
State Table For Gray Code.

T

State Nxt St D Inputs T Inputs State Nxt St D Inputs T Inputs
Q3Q2Q1Q0 Q3

+Q2
+Q1

+Q0 D3D2D1D0 T3T2T1T0 Q3Q2Q1Q0 Q3
+Q2

+Q1
+Q0 D3D2D1D0 T3T2T1T0

0000 0001 0001 - - - t 1100 1101 0001 - - - t

0001 0011 0011 - - t - 1101 1111 0011 - - t -

0011 0010 0010 - - - t 1111 1110 0010 - - - t

0010 0110 0110 - t - - 1110 1010 0110 - t - -

0110 0111 0111 - - - t 1010 1001 0111 - - - t

0111 0101 0101 - - t - 1001 1001 0101 - - t -

0101 0100 0100 - - - t 1001 1000 0100 - - - t

0100 1100 1100 t - - - 1000 0000 1100 t - - -

Comment on Slide 125

Gray Code Counters

© John Knight

Dig Cir p. 251 Revised; November 18, 2003

Gray Code Counter

always @(posedge reset or posedge clock)
if (reset) Q <= 0;
else

case (Q)
3'b000: Q <= 3'b001;
3'b001: Q <= 3'b011;
3'b011: Q <= 3'b010;
3'b010: Q <= 3'b110;
3'b110: Q <= 3'b111;
3'b111: Q <= 3'b101;
3'b101: Q <= 3'b100;
3'b100: Q <= 3'b000;
default: Q <= 3'bx;

endcase

An O(2N) Description
The size of this table goes up with the square of the number N of flip-flops.

• The synthesizer may increase the circuit as O(2N).

• Certainly the work to enter will increase as O(2N).

Avoid such descriptions if possible.

Step after Reset

(in binary) Gray Code

000 000

001 001

010 011

011 010

100 110

101 111

110 101

111 100

Slide 126

Carleton University © John Knight Vitesse

Digital Circuits p. 252 Revised; November 18, 2003

Gray Code Counters Finite-State Machine (FSM) Coding for

Finite-State Machine (FSM) Coding for Gray-Code Counters
Maps for D, T and enabled D flip-flops

D3=Q2 En3=Q1Q0 D2=Q3 En2=Q1Q0 D1=(Q3⊕Q2) En1=Q0 D0=(~(Q3⊕Q2⊕Q1)) En0=1

Map of D3 for flip-flop 3 Map of D2 for flip-flop 2 Map of D1 for flip-flop 1 Map of D0 for flip-flop 0

Q3Q2\
Q1Q0

00 01 11 10
Q3Q2\

Q1Q0

00 01 11 10
Q3Q2\

Q1Q0

00 01 11 10
Q3Q2\

Q1Q0

00 01 11 10
00 0 0 0 0 00 0 0 0 1 00 0 1 1 1 00 1 1 0 0
01 1 0 0 0 01 1 1 1 1 01 0 0 0 1 01 0 0 1 1
11 1 1 1 1 11 1 1 1 0 11 0 1 1 1 11 1 1 0 0
10 0 1 1 1 10 0 0 0 0 10 0 0 0 1 10 0 0 1 1

D3=Q2Q1Q0+(Q1+Q0)Q3 D2=Q3Q1Q0+(Q1+Q0)Q2 D1=(~(Q3⊕Q2))Q0+Q1Q0 D0=(~(Q3⊕Q2⊕Q1))

Map of T3 for flip-flop 3 Map of T2 for flip-flop 2 Map of T1 for flip-flop 1 Map of T0 for flip-flop 0

Q3Q2\
Q1Q0

00 01 11 10
Q3Q2\

Q1Q0

00 01 11 10
Q3Q2\

Q1Q0

00 01 11 10
Q3Q2\

Q1Q0

00 01 11 10
00 0 0 0 0 00 0 0 0 t 00 0 t 0 0 00 t 0 t 0
01 t 0 0 0 01 0 0 0 0 01 0 0 t 0 01 0 t 0 t
11 0 0 0 0 11 0 0 0 t 11 0 t 0 0 11 t 0 t 0
10 t 0 0 0 10 0 0 0 0 10 0 0 t 0 10 0 t 0 t

T3=(Q3⊕Q2)Q1Q0 T2=(~(Q3⊕Q2))Q1Q0 T1=(~(Q3⊕Q2⊕Q1)Q0) T0=(~(Q3⊕Q2⊕Q1⊕Q0))

Map of D3 and En 3 Map of D2 and En 2 Map of D1 and En 1 Map of D0 and En 0

Q3Q2\
Q1Q0

00 01 11 10
Q3Q2\

Q1Q0

00 01 11 10
Q3Q2\

Q1Q0

00 01 11 10
Q3Q2\

Q1Q0

00 01 11 10
00 0 d d d 00 d d d 1 00 d 1 1 d 00 1 1 0 0
01 1 d d d 01 d d d 1 01 d 0 0 d 01 0 0 1 1
11 1 d d d 11 d d d 0 11 d 1 1 d 11 1 1 0 0
10 0 d d d 10 d d d 0 10 d 0 0 d 10 0 0 1 1

Comment on Slide 126

Gray Code Counters

© John Knight

Dig Cir p. 253 Revised; November 18, 2003

Design Methods for Gray Code Counters

Five Design Methods
1. Lookup Table

2. D Flip-Flops
D3=Q2Q1Q0+(Q1+Q0)Q3 D2=Q3Q1Q0+(Q1+Q0)Q2 D1=(~(Q3⊕Q2))Q0+Q1Q0 D0=(~(Q3⊕Q2⊕Q1))

3. Toggle Flip-Flops
T3=(Q3⊕Q2)Q1Q0 T2=(~(Q3⊕Q2))Q1Q0 T1=(~(Q3⊕Q2⊕Q1)Q0) T0=(~(Q3⊕Q2⊕Q1⊕Q0))

4. Enabled-D
D3=Q2 En3=Q1Q0 D2=Q3 En2=Q1Q0 D1=(Q3⊕Q2) En1=Q0 D0=(~(Q3⊕Q2⊕Q1)) En0=1

5. Extra Dummmy FF
T3=Q1Q0QD T2=Q1Q0QD T1=(Q0QD) T0=QD)) TD=1

1D

C1 CLK
1D

C1

1D

C1

1D

C1

1D

C1 CLK
1T

C1

1T

C1

1T

C1

1D

C1 CLK
1D

C1

1D

C1

1D

C1
EN EN ENEN

1T

C1 CLK
1T

C1

1T

C1

1T

C1

1T

C1

Slide 127

Carleton University © John Knight Vitesse

Digital Circuits p. 254 Revised; November 18, 2003

Gray Code Counters Gray Code Counter (cont.)

Gray Code Counter (cont.)

The Gray-Code Equations for Enabled Toggle FF

The cases follow a pattern. The 1st case is simpler if one uses a D, not a toggle, flip-flop.

Q1=(~(Q6 ⊕ Q5 ⊕ Q4 ⊕ Q3 ⊕ Q2⊕ Q1)) Use a D flip-flop here and get (~(Q6 ⊕ Q5 ⊕ Q4 ⊕ Q3 ⊕ Q2))

Q2=(~(Q6 ⊕ Q5 ⊕ Q4 ⊕ Q3⊕ Q2))· Q1

Q3=(~(Q6 ⊕ Q5 ⊕ Q4 ⊕ Q3))·Q2·Q1

Q4=(~(Q6 ⊕ Q5 ⊕ Q4))Q3·Q2·Q1

Q5=(~(Q6 ⊕ Q5))·Q4·Q3·Q2·Q1

Q6=(Q6 ⊕ Q5)·Q4·Q3·Q2·Q1

Comment on Slide 127

Gray Code Counters

© John Knight

Dig Cir p. 255 Revised; November 18, 2003

Complicated Gray

module Gray(Q, clk, reset);
parameter n=6; / / Number of T flip-flops

output[n:1]Q; reg [n:1]Q; / / Register all procedure outputs.
input clk, reset;

always @(posedge clk or posedge reset)
if (reset) Q<=0;

else begin

/ / Q[1] <= (Q 6⊕Q5⊕Q4⊕Q3⊕Q2); / / ←This one is a D -FF.
Q[1] <= (~(^Q[n:2]));

/ / Toggle FF statements

/ / Q2 <= IF ((Q6⊕Q5⊕Q4⊕Q 3⊕Q2)& Q1) THEN Q2 : ELSE Q2;
Q[2] <= (~(^Q[n:2])&Q[1]) ? ~Q[2] : Q[2];

/ / Q3 <= IF (Q6⊕Q5⊕Q4⊕Q 3)&Q 2&(~ Q1)) THEN Q3 : ELSE Q3;
Q[3] <= (~(̂ Q[n:3]))&Q[2]&(~|Q[1]) ? ~Q[3] : Q[3];

/ / Q4 <= IF(Q6⊕Q5⊕Q4)&Q3&Q2&Q1) THEN Q4 : ELSE Q4;
Q[4] <= (~(̂ Q[n:4]))&Q[n-3]&(~|Q[n-4:1]) ? ~Q[4] : Q[4];

/ / Q5 <= IF((Q6⊕Q5)&Q4&Q3 &Q2& Q1) THEN Q5 : ELSE Q5;
Q[5] <= (~(̂ Q[n:5]))&Q[n-2]&(~|Q[n-3:1]) ? ~Q[5] : Q[5];

/ / Q6 <=IF (Q6⊕Q5)& Q4& Q3&Q 2&Q1) THEN Q6 : ELSE Q6;
Q[6] <= (̂ Q[n:5])&(~|Q[n-2:1]) ? ~Q[6] : Q[6];

end / / else
endmodule / / Gray

Slide 128

Carleton University © John Knight Vitesse

Digital Circuits p. 256 Revised; November 18, 2003

Gray Code Counters The Gray-Code With Dummy Toggle FF

The Gray-Code With Dummy Toggle FF
The logic can be greatly simplified by adding a dummy flip-flop, QD, which toggles every cycle.

Since Q0 toggles every 2nd cycle, its toggle can be controlled directly from QD.

The controls for the other bit simplify as shown below..

Reference:Altera Application Brief 135, Ripple-Carry Gray-Code Counters, Altera Corp, May 1994.

T

State Dum T Inputs Toggle to State Dum T Inputs Toggle to
Q3Q2Q1Q0 QD T3T2T1T0 give next state Q3Q2Q1Q0 QD T3T2T1T0 give next state

0 0 0 0 0 - - - t T0=QD 1 1 0 0 0 - - - t T0=QD

0 0 0 1 1 - - t - T1=Q0QD 1 1 0 1 1 - - t - T1=Q1QD

0 0 1 1 0 - - - t T0=QD 1 1 1 1 0 - - - t T0=QD

0 0 1 0 1 - t - - T2=Q1Q0QD 1 1 1 0 1 - t - - T2=Q2Q1QD

0 1 1 0 0 - - - t T0=QD 1 0 1 0 0 - - - t T0=QD

0 1 1 1 1 - - t - T1=Q0QD 1 0 1 1 1 - - t - T1=Q1QD

0 1 0 1 0 - - - t T0=QD 1 0 0 1 0 - - - t T0=QD

0 1 0 0 1 t - - - T3=Q1Q0QD 1 0 0 0 1 t - - - T3=Q1Q0QD

Comment on Slide 128

Gray Code Counters

© John Knight

Dig Cir p. 257 Revised; November 18, 2003

Extra FF Gray Code counter

T Flip-Flops Circuit
(Simplest for People)

The T table shows where the bits
toggle between the present state
and the next state.

The circles show how the toggle
signals are defined by zeros:

c

Present State Next State What to Toggle
Q3 Q2 Q1 Q0 Qd Q3 Q2 Q1 Q0 Qd T3 T2 T1 T0 Td

0 0 0 0 0 0 0 0 1 1 T T

0 0 0 1 1 0 0 1 1 0 T T

0 0 1 1 0 0 0 1 0 1 T T

0 0 1 0 1 0 1 1 0 0 T T

0 1 1 0 0 0 1 1 1 1 T T

0 1 1 1 1 0 1 0 1 0 T T

0 1 0 1 0 0 1 0 0 1 T T

0 1 0 0 1 1 1 0 0 0 T T

1 1 0 0 0 1 1 0 1 1 T T

1 1 0 1 1 1 1 1 1 0 T T

1 1 1 1 0 1 1 1 0 1 T T

1 1 1 0 1 1 0 1 0 0 T T

1 0 1 0 0 1 0 1 1 1 T T

1 0 1 1 1 1 0 0 1 0 T T

1 0 0 1 0 1 0 0 0 1 T T

1 0 0 0 1 0 0 0 0 0 T T

0 0 0 0 0 0 0 0 1 1 T T

0 0 0 1 0 0 0 0 T T

Td = 1
T0 = Qd
T1 = Q0Qd
T2 = Q1Q0Qd
T3 = Q1Q0Qd

Slide 129

Carleton University © John Knight Vitesse

Digital Circuits p. 258 Revised; November 18, 2003

Gray Code Counters The Gray-Code With Dummy Toggle FF

The Most-Significant Bit
In Gray codes the most significant bit is not symmetric with the others.
This is why the expression for Q3 on “Extra FF Gray Code counter” on page 257 does not match "Verilog Extra Flip-
Flop Gray-Code Counter," p. 259

Fake Gray Code
A Binary counter can be converted to output Gray code by placing an XOR between each pair of its bits:
... G2=B3⊕B2, G1=B2⊕B1, G0=B1⊕B0.

Unfortunately the glitches in the original binary counter will come through and give a “glitchy Gray Code” output.

Comment on Slide 129

Gray Code Counters

© John Knight

Dig Cir p. 259 Revised; November 18, 2003

Verilog Extra Flip-Flop Gray-Code Counter

module SimplGray(Q, clk, reset);
parameter n=6; // Number of T flip-flops

output[n:1]Q; reg [n:1]Q; // Register all procedure outputs.
input clk, reset;

reg Qd;

always @(posedge clk or posedge reset)
begin
if (reset) Begin Q<=0; Qd<0; end

else begin

// Toggle FF statements
Qd <= ~Qd;

Q[0] <= (~Qd) ? ~Q[0] : Q[0];

Q[1] <= ({Q[0],Qd}= =2’b11) ? ~Q[1] : Q[1];
Q[2] <= ({Q[1:0],Qd}= =3’b101) ? ~Q[2] : Q[2];

Q[3] <= ({Q[1:0],Qd}= =4’b1001) ? ~Q[3] : Q[3];

Q[4] <= ({Q[3:0],Qd}= =5’b10001) ? ~Q[4] : Q[4];

Q[5] <= ({Q[4:0],Qd}= =6’b100001) ? ~Q[5] : Q[5]; WRONG FOR END

end // else

end //begin for always
endmodule //SimplGray

Slide 130

Carleton University © John Knight Vitesse

Digital Circuits p. 260 Revised; November 18, 2003

Gray Code Counters The Gray-Code With Dummy Toggle FF

The Bit-Serial Adder
• This adder adds one bit per clock cycle.

It adds strings of bits coming in serially and sends out the result as a serial stream.

• An 8-bit ripple-carry adder takes 8 carry propagation delays to add.

• An 8-bit serial adder need only wait for
max(carry output, sum output)

in each clock cycle.
However it takes eight clock cycles.

• The 8-bit, bit-serial adder is slower than an 8-bit parallel adder, but not 8 times slower since (or if) the
clock can be made faster.

Comment on Slide 130

The Bit-Serial Adder

© John Knight

Dig Cir p. 261 Revised; November 18, 2003

The Bit-Serial Adder

The Smallest, Lowest-Power, And Slowest Adder

Words a[7:0] and b[7:0] come in serially. S[7:0] feeds out serially.
The initial carry-in C0=0.
Subsequent carry-ins are the carry-out from the last cycle.

It takes 8 clock cycles to add 8 bits.
However the clock can run much faster than it can for a parallel adder.

The circuit is very small.

The power used is small.
The sum bits do not reverse as carries propagate through.

a

b
S

Cn+1

1D
C1

1D
C1

1D
C1

“0”

Cn+1

S

b0

a1
a2a3a4

a5a6
a7

a0

b1
b2b3b4b5

b6b7 s0s1
s2s3s4

s5s6s7

c0c1
c2c3c4c5

c7 c6

+

Cn

1D C
1

Slide 131

Carleton University © John Knight Vitesse

Digital Circuits p. 262 Revised; November 18, 2003

The Bit-Serial Adder The Gray-Code With Dummy Toggle FF

Comment on Slide 131

