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( L ogarithmic Circuits )

Binary Up Counter

o e 4-bit binary counter
>Cl

Toagle Flip Flop
@(posedge clk)

If T=1, toggle output Q

If T=0, hold old Q

The circles show how
the toggle signals are
defined by ANDs:

T1=Qq
T2=0Q:Qq
T3 =Q2Q1Q0

TC =Q3Q2Q:Q¢
TC = Teminal Count

Propagation Delay
Notice the ripple carry. This limits the speed of the counter.
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Logarithmic Circuitss Binary Counters

Binary Counters

The simplest counters use toggle flip-flops. These are made from D flip-flops T
1D

as shown. Lot

Thisiswhy many circuits of counters show an XOR gate and an AND gate for T=0=D=Qqq4
each flip-flop. T=1= D=-Qoiq

The AND gates, drawn on top of the waveforms, show how the flip-flops toggle whenever all the preceding
flip-flops are one.

Counter Speed

Note that for long counters the chain of AND gateswill get very long and will limit the speed of the counter. For

a 32 hit counter, the clock speed must allow propagation through 31 AND gates plus the clock-to-output and
setup times of aflip-flop.
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Logarithmic Carry in a Binary Counter
Ripple Carry Circuit Using T Flip-Flops

8-bit binary counter using aripple carry

Delay is N-1 (7), AND gate delays
Logarithmic Carry Circuit Using T Flip-Flops
8-bit binary counter using logarithmic carry
Delay is log,(N) = 3, AND gate delays

but watch
the fanout

© John Knight
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Logarithmic Circuitss Logarithmic Ripple-Carry Counter

Logarithmic Ripple-Carry Counter
By placing a buffer as shown, the end-to-end carry need only pass through 2log,(N) gates.

Counter Speed
Intheripple-carry circuit.
The time between a clock edge and a stable outbut from TC is:
Tchov for Qo+ (Tpd for 7 AND gates).
Ignoring the flip-flop delay, thisis a delay proportional to N-1, for N flip-flops.
The fanout also effects the delay. Here all fanouts are 2.
In thelogarithmic carry circuit.
The dowest carry, TC, must go from:
a. Theclock input to QO
b. QO through a 1st level AND (green witha“1” in side).
c. through a 2nd level AND gate (red with a“2” inside).
d. through a 3rd level AND gate (bluewith a“3" inside).
For N flip-flops this delay is proportional to log,(N).
However the fanouts increase the delay. The largest fanout isN/2 + 1, (five for N=8).

| Carleton University © John Knight
Digital Circuits p. 92 Revised; November 18, 2003 Comment on Slide 51




= Logarithmic Circuits s

Logarithmic Carry for TC for a 16-Bit Counter

C
DEPTH=3

C,%=Tg

o
DEPTH=4

Ci50=Tyg TC
Cy,® .
j/—lj Terminal

Count

e

Ripple Counter Showing Depth of Final Carry
Depth =log,(Number of bits)

] Carleton © John Knight
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Logarithmic Circuitss Logarithmic Ripple-Carry Counter

Mor e Organized Picture of TheLogarithmic Carry
This shows how the earlier ANDs are donein parallel so any signal used in calculating TC only has to pass
through 4 AND gates.
The symbol Cqm is used to show what signals are ANDed together to make up a component of the carry. Thus
the symbol C;* means Q;-Qg-Qs5-Q4.

This only shows the gates needed to calculate TC. The next page shows the gates needed to calculate the
intermediate carries.

The next page also gives a rough approximation of the delay. It only hints at delay optimization from transistor
sizing and adding buffers. Both of these will reduce delay at the expense of power and area.
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(

Showing extra hardware for intermediate carrys
The depth is still 4 or less. The amount of hardware has doubled (16 gates).

.’ Gates From New Gates
o:>jj ) Prev. Picture -For Intermediate Carrys
1
I

Lo
o« EDe T
5 i 2 DEPTH=3 8
3 3

4 5 4 L3 @ I
6 5 A0 s 6t 6 _
7 6 3 @ 0 DEPTH=4 _
01 8
’ T LT
8 s 1 L 1 0
9339 o8 9Ty
8 1 0
9 8 9 8 8 @ 10—T
10 10 10@11— 10:@10 [ 10 =T
11 11 11 1 0
- 18 1n—T12
11 1
12 1 8 o T
12 ° | 12 13
12 8 @ 8_:@13—1'14
H11 8 12 13
o D0 v e
L 12 12 & 14—T15
. p— o
15— T16

Approximate summary: delay under half, area more than double.
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Logarithmic Circuitss Logarithmic Ripple-Carry Counter

If the delay of atwo-input AND equalsits fanout, then the delays are shown in ovals.

Gates From ; New Gates
@ "0 Prev. Picture - For Intrm. Carrys

1 @ L 0 0
: 50 Ts
2 :\,D ) 2@30 8 > 2 DEPTH=3 .
o 80—
0 DEPTH=2 4 ! Ts
4 -
2 0t 8 - 34@507 Ts

| ——
L 0
5 4 3 A
5 4 @e —_ 4@6
@ 50 7y 3 0 6 6 DEPTH=4
7 5 N T
9 o L7 o .8
v T .00
e E] d °
8 1 0
2isoes i
S5 g Lo B0 7
T b, = P 5. u
" T
8 11
1) 1 0
R 5| [T
@1 12 | o
R — s WIS =Y
Q14 e B 12 12:@ 15 13
15 Qe L 12 @ 8_—_@140— Tis
gD
15— T16

Without the buffers shown, the total delay, Qg to Tqg,is 1+3+5+9+1=19. Ingeneral N-1+ logy(N).
The buffer requires a more complex calculation but it will decrease the 9 substantially.

Compare with the serial carry whichis1 +15-2 = 31. Ingenera 2:N -1
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Addition

The 1-Bit Full Adder
CARRY

* Generate C; from inputs A,B

C,=1if A=1,B=1 (AB) Alternate Definition

«X=1if all 3inputs are 1, (ABCg)

» Propagate previous Cy — C;

if A=1orB=1 (A+B)Cy *Orifonly oneof A,BorCyis 1

ie any inputs =1, but not two

C;= AB + (A+B)Cy ie any inputs =1, but no carry out
—_ Y —
G P (A+B+C0)Cl
= G + PCO

Compact Circuit But No Separate P and' G Signals

Ad CQO{ Eﬁ
A

Logical C; using G and P

S B AL

(A+B)C+A-B = C,

A{ CH . 41{
B{ B{ A{ B A#
. LA e

1] © John Knight
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The 1-Bit Full Adder

The 1-Bit Full Adder
It adds 3 bits, A + B +C

The Karnaugh mapsfor thefull adder.

Maps showing ~ = Co® (A® B X
P 9 0®( ) Con 0 0 1 1 COABOO 01 11 10
0j0j01 1
Diagonal 1s on map indicate xor 0joj1joj1
AB tj1j1/0]0 1101 0
Cp\ 00 01 11 10 BCO 1 CcXo 1 AB.00 11 01 10 R e e
ojoj1 01 0 ol1 0 o] 1 B ieE ——
b 0 A®B AoB AGB  AGB
il1]o|1 0 1 1|0 1 1|0
Map of Co®x

Same map with
The map for & X=A®B Map of Co®x with x expanded columns arranged in

soonecanseeA,B K-map order, showing

Co®x=Co® (A ® B)
Maps showing carry out,Cy= A-B + Cy(B + A)
Boo 01 11 10

c(f‘Boo 01 11 10
0o/0/1 o0

o

C, oj0|o0 ?E 0/c,=AB+B-C+CyA = (A@B)®Cy
1 —_ —
Oj1jr]2 1O BA JACI -AB+Cy(B +A) Y =(A®B)C, + (A ®B)Cq
Map for C;. Circle map.

TheCMOScarry circuit

The PMOS part of the circuit does not implement C, = (A+B)- (B+Cy)- (A+C,) asgood CMOSis supposed(?) to do.
1. PROBLEM
a. Find the expression it does implement.
b. Show that it really is C;.
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The 4-Bit Adder

Ripple-Carry Adder
{3, B3

Basic Adder Blocks
T =(A®B)®Cy

C=G+PCO

Generate carry; G A

A x> G
m C—GJ p Propagate carry; P 5
Co

4 Car]eton © John Knight
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Addition = The 1-Bit Full Adder
2. PROBLEM

Show that the PMOS part of the full adder on Slide 54, implements the complement of the NMOS part.
Hint: plot the PM OS function on a Karnaugh map. Then invert each square on the map to get the complement of
The PMOS function, and check that it matches the NM OS map.

3.« PROBLEM

Some books define P=A®B. Show what this does to the C, and % functions.
What advantage does it have, i.e. smaller, faster, less power.

Solution:

The alternate P is generated for free because it is needed in the sum, thus saving an OR gate in each block.
However the XOR takes more time to calculate, so the Pswill be delayed.

Some circuits,. like the carry-bypass adder, demand that P=XOR.

Carleton University
Digital Circuits p. 100
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Derivation of Carry Look-Ahead Blocks
Serial Carry Using P and G (repeated)

A3z B3

Convert Serial Carry to Parallel Circuits
C4 =Gy + Py( Gz + P3(Gy + Py(Gy + P1Cy)))
C3=Gg+P3( Gy + Py(Gy + P1Co))

+V
— C,= G, +Py(Gy +P,C
o w 2 2+ Py(Gy +P1Cp)
P1 =
L 5 co _
G%A P3 GL P1 o
c 31 5, G
4‘—6‘5# c s
3
P4
Pﬂse“ N
P2 G2 :‘i G2
P1 Gl P1 G1
co | co
Cal'letOIl © John Knight
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Carry Look-Ahead Adder

Carry Look-Ahead Adder
Eliminating The L ong Path-Delay For The Carry
Deep Gates Instead of L ong Paths?

The long carry chain makes the add slow. One can factor the carry propagation eguation to make each C; one
complex gate. However for Cy, this complex gate will have 5 series transistors (one would not go to C5). To
compensate for the five channel resistances, the transistors in the C, gate would be made 2.5 times wider than
thosein the C; NAND-OR gate. This greatly increases the adder area and power consumption.

The large capacitance seen by Cy especially at the wide gates of the left most circuits, causes some delay.
However, the propagation time from C, to C, is still about half that of the serial carry using P and G.

PMOSand NMOS are Almost Symmetric

The PMOS logic here is not that found by applying DeMorgan directly to the NMOS logic.
Neither isit derived directly from the corresponding NM OS equation. For example:

C3=G3 +P3(Gy + Py(Gy + P1Cy))
using the methods in “ Using the Sum of Products (X of IT) for the PMOS function” on page 28

Remember that G;.; = A;B;, and P;1=A, + B;, hence one will

never get the case G;,,P;s1 =1,0. G.P, 2 op, P
The outputs for these inputs become don’t cares on the map, for the ©:Fy o 01 111 1‘(’1 Gl%) b0 o1 ZTll 1&
C, equation and the equation for the PMOS circuit can be derived. o1 110 d o iTd
4. PROBLEM G{” 1/1]d }Pl {11 1[1]d }F’l
Derive the equation for the PMOS circuits for C,, fqdidid[d] Ciod|d[d[d
C; will have asimilar but longer derivation. Co ©2 Co ©2

| Carleton University
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( The 4-Bit Carry Look-Ahead Adder

Carry Lookahead Using P and G

Pl CO

Note no carry signal propagates through the X blocks. C;is not connected to P;,; or Gj,;

Look-Ahead Carry Blocks

Blocks Connected By Ripple Carry

Carleton © John Knight
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Addition = Carry Look-Ahead Adder

L ook-Ahead

Carry look-ahead depends on single gates, abeit with large fan-in, being faster than a chain of gates. Thisis
true up to 3 or 4 full-adders (4 or 5 seriestransistorsin the final carry block).

The areaused increases significantly with carry look-ahead because the gates are larger, and to maintain speed,
the transistors in the series chains of large gates must be larger.

Grouping Blocks
Since only four adders can be put in ablock, larger adders must have chains of blocks. The longest delay isthe
delay for Cy to reach Cg above, or Cy,, for n blocks.
If al gates had the same delay T, the adder delay would be 4tn for theripple-carry and tn for the carry look-
ahead.

Unfortunately the large gates provide alarge capacitive load to their source gates and slow down the look-ahead
carry signal, C4y, toroughly 2tn. This calculation isfairly complex and involves placing buffer inverters after
C4 Cyq ...

5. PROBLEM
Take the NMOS part of the carry circuit for C, on Slide 56. If the Gy transistor has awidth of 1 unitin order to
pull down at a certain speed, then the P, and Cg transistors must have a width of 2 unitsto pull that path down at
the same speed. This assumes channel resistance is proportional; to width which is close to true. Show that in
the NMOS circuit for C,, the G4 transistor need only have a width of 1 to maintain speed but some other
transistors need a width of 5 units.

6. PROBLEM
There are five outputsin the compromise adder on Slide 58, X,, X,. 3, £, and Cy.
Rate each output as being slower, the same, or faster than the 4-bit carry ook-ahead adder.

S, isabout the same, although the load on Cy will slow itsrise time. S, S; are slower because their signal goes through the same
number of gates, but the P and G inputs are more highly loaded. S, is faster because of fast path to the complex gate.

| Carleton University © John Knight
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Compromise Carry Look-Ahead Adder.
vy vy L] vy
. z — Z — z B Y o
4 C3 G c
s 2 G Ci G
Ca Py 123 Py "% 2 p, 5 AT ! "%
-~ r 73 . y (P2 P
—L@ i iR
—\627
G
. Gq Po
Co
Properties Delay Cy->Cy Area
Ripple P&G 2 1
Full parallel 1.1 3.5
Compromise 1 25
Description
By not using parallel look-ahead on Cg3, C,, and C,
C3 will have 50% more delay than Cy,
but C3is not passed on to later stages.
Cp->C,4 is slightly faster because of reduced loading on Cg.
\_

4] Calnleton © John Knight
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Addition = Compromise Carry Look-Ahead Adder

Compromise Carry Look-Ahead Adder

For morethan 4-bits, thisisthefastest adder shown so far.

| In amulti-block adder, one might want to make the final block or the last two blocks fully carry look-ahead so
that the sum bits would not be delayed more than the final carry.

Later we will show how gradually increasing the length of the blocks will reduce the number of blocks.
For long adders, the delay will increase with sgrt(n) rather than linearly with n (2tn) asit does here.

The next carry look-ahead adder will have adelay which increases with log,(n).

| Carleton University © John Knight
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( The Brent-Kung Carry-Lookahead Adder

Generalized propagate and generate

Generalized Propagate Pmk

Cy

P/ ﬁ
Propagated Carry

A _propagate through a block of adders
If P;*=1 then:
Cj can propagate thru adders X5 to Xg
and come out as C;

Generalized Generate Gmk

A generate within a block of adders
that can also propagate thru the block internaly

If G;*=1 then:
A carry was generated on G4, G5 Gg and/or Gy o S—
. G
it was able to propagate to the output G74. gz : ;‘ Generated Carry

And come out on C;

| ]

e
>3

Vv y
¥
H
0
r

Carleton © John Knight
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Addition = Compromise Carry Look-Ahead Adder
Generalized generate and propaqgate. c
k-1
G
a1 » z 5 Kk
PmK isa propagate between adder m and adder k bk'l’ . Gk
If Pyk=1 then: N Cm
Cy.1 can propagate thru the adders ,—» pmk
that produce Gy, Gy1 ... G and Py, Pyyq ... Py ES ‘ﬁ
(adders Zyq, o, Zrnop) E‘m-1: 26 P Propagated Carry
m-1
It comesout on Cp,,
Gmk isagenerate for adders m thru k that reaches m.
IfG mkzl then:
acarry was generated inside the block of adders Ciag
that produce Gy, Gy41 - Gy and Py, Py - Py At o Gk
and propagated inside the block to the outpuit. bk_la K ] Generated Carry
D
— [
)] I
Am-1 »
b1 26 Pm
| Carleton University © John Knight
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Generalized generate and propagate

br-18m-1
P _composite propagate. G
For the adder’s inputs a,.; and by, 1
Pmm =Ppn= am—l+bm—l, Po=1 Pm

From other G and P signals
— _pip .k
Pmk - Pum—lk - PmJ Pj—l

Exan;ples: o Gs b3
P5 = P5P4P3P2 Pm = Pum—le—Z----PO P55 /) 5

Ps® = Pg5p,3 P53 = Pg4P,3
Pm_lk Gm-1
N
GnX composite generate | | Gp*
A carry is generated between m and k, and reaches m. Gn™ ‘ Pk
For the adder inputs a,,.; and by, ,,'—D/

Gm™ =G = am-1bm-1, Go=Cp whichisoften0

From other G and P signals
Gmk =Gy + PmG‘m—lk = ij + ij Gj—lk

Carleton © John Knight
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The Brent-Kung Carry-L ookahead Adder

Brent and Kung introduced a generalized generate and propagate. Thus Pmk represents a composite propagate
from adder m down to adder k.

For the adder’s initial inputs a,, and b,:-
Pmm =Pm= am—l+bm—l, Po=1
After theinitial inputs:-
Pmk = Pum—lk = ij Pj—lk

bm—lalm—l

Examples:
Ps? = PsP,P3P, P2 = PrPr1Pm-2---Po
| Ps = PP, P53 = P5*P53 ©
Also Gmk represents acomposite generate between adders m thru k. Ps@is
For theinitial adder inputs a,, and by,:-
Gm™=Gm = am-1bm-1, Go=Cp whichisoften0

After theinitial inputs:-
Gmk =Gy + Pme—lk = ij + ij Gj—lk

Examples:
| Gn’=Cn
Gs®= Gs + PsG,> (@
= Gs + P5(Gy+ P4G3) (b)
= (G5 + P5Gg) + PsP4G3
| = Gs' + Ps'Gy (c)
| Carleton University © John Knight
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Generalized generate and propagate.

Cs
Pn< isa propagate between adder m and adder k  a; , <
k_ . b3’ a
If P,*=1 then: GA
Cy.1 can propagate thru the adders 1% L ¢,

that produce Gy, Gyg41 ... Gy and Py, Pgyq ... Py 4
- P.
(adders Xy 4, .., Zip-1) ,?. L ‘ﬁ
It comes out on C ag 4| I Propagated Carr
m bg’,% pag y
Example
If P;4=1 then:
C; can propagate thru adders X5 to Xg
and come out as Cy

Gmk is a generate for adders m thru k that reaches m.
If G mkzl then:
a carry was generated inside the block of adders | S—
that produce Gy, Gy4q ... Gy and Py, Pyyq ... Py ag G,
and propagated inside the block to the output. [ 23 |P, Generated Carry
4
Example : G DC7_
If G*=1 then: S pAl f
acarry was generated on G4, Gs Gg and/or Gy *@
it was able to propagate to the output G,*, 3 '-
bg~ =6 "7
and come out on C;

Carleton © John Knight
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Addition = The Brent-Kung Carry-Lookahead Adder

| Add without an initial carry in C,

Larger Example '/Glzelozcl since Cy=0
G1°= C;= G+ P;Cy=G; + 0 ag Gy 6.0
G’ 2 )] Ga’=C
| =2 @
G0= C,=G, + P,C; =G, + P,G,° Al ol

0
3 G, P2 G, P4%=p4p3p2P1Po
G,°=G4+PyG; o

g |

P, P,
o= G2 + PGy . © o
_ L]
=(G4+PyG3) + (P4P3) (G2 + P,Gy) P, . Here Cy is taken as 0
Since Cy =0, we do not have to “waste” an | 23/ | Gyl 4 so this adds 4 bit numbers
input, and the block can add 4-bit numbers. hgip n

| Carleton University © John Knight
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The Generalized Carry Operator
Takes in two adjacent G and P pairs
Puts out a merged G and P pair
In General Example
ok
Gj—l G K Glo
p. K m 0 G37=Cs
i~ b P o
]
Pm p.2
What to Remember
The General Formula for Gj_lk K
combining carrys k [ K Gm
N/ K Pj1 —
- — K
The J/1/’/ are absorbed o | m Gy Pm
Py
\_
¢ Carleton © John Knight
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The Brent-Kung Carry-Lookahead Adder

Combining P,,¥ and G, beds bsas
U, 5[ T
Gp* =Gpl + PmJGj—l
G° = G7* + P7%GS° 0 G4 |PA
Gy = =
—p ip .k
Pmk = PmJ Pj—l ‘ G30
0
P,0 = P,4p,0 Pv_rgi\ PO
Carry structure
m _—
Pm" =Pn adder inside thi7 block
Gy™ =Gy, inputs
0 Cinl_ Co o—c, Gi° 0 2
Gn’=Cn G1=Cy — G3=Csg
) Py [21D [ i
B G /}@ P62 [\ P
bg ><:‘F< Py P32
Carry in, Cy uses the al-=— ¢ , 2
first adder position. ——2— ) %3
This block can only b, P, [FLO b2
add two 3-bit numbers. a, z_d4 G {}-@ 3
I Vay
If Co=0, always, then two b, % P3
4-bit numbers can be added. J
] Carleton © John Knight ‘
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Addition =
| 7. PROBLEM:
Assume the implied interconnections to the | eft of the dividing line.
Sketch the circuit with interconnections to calculate carrys Cg through Cy 5
Do not increase the depth more than necessary.
"B o 3
q "
“Ppl: SPplo
*H e 7 =Cg
4:DD54 = =—cC
57 9
&DD76 s Ppl4 LByl o | —Cyp
7 A Al
DD 8 =—C11
7} =
160p| 10 Op)] s ] =Cw
m gt et 8 C
1150 =Cy3
12:1312 12 15{£
134 125 15 Z
1] 131— B, 12 3 =—Cy4
1514 15 4 2
153 =Cys5
8. PROBLEM

Following the example of the compromise adder, Slide 58, show how to reduce the size of afew of the
intermediate carrysin the Brent-K ung adder without reducing speed.One can only do the ones for the first n/2

bits. Thereis not as much saving here as in the compromise adder.

© John Knight
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0

Co G6y%=¢, G G3%=C,4

Py b0 p,°

e, P G P30

P, P42 DEPTH=3

Gz Gs® G

3 0—
P, P PSOD G;=Cy
3 il

Gz G P

P3 P,

GA M G74

Py P4 Ps 4

Gs 3 G,° P/

Ps P8

Ge G,®

Ps p,6

Gy DEPTH=4

P

’ 8 Gu%=Cyy

Gsg G G Gy 8 P7°j:/>_D7
Py o8 P® || ; Gy® Py’
Gy 2 Gy ™ Py P8

P9 P10
Gio G, %0
Zw Py, 10 Brent-Kung Adder Showing Depth of Final Carry

11 .
P Depth =log,(Number of bits)

11

] Carleton © John Knight
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A 12 Bit Brent-Krung Adder
There were 11 of the three-gate blocks when only afast C,, was needed.

None of this extracircuitry was needed for aripple-carry adder using P and G. The gatesto generate the initial P
and G are needed but not shown in the above diagram.

To get the other carries one must add another 9 three-gates pairs for atotal of 20. Thisis shown on the next
slide.

| Carleton University © John Knight
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Brent-Kung Adder
Showing extra hardware for intermediate carrys
The depth is still 4 or less
The amount of hardware has nearly doubled.
Gates From | New Gates
o:DD 0 Prev. Picture - For Intrnal Carrys
i 1 i Cy
= D U— o)
7 - 2
“Bp > 10@ 0 ? DEPTH=3 c
= 2 3 — 3
3 DEPTH=2 =045
o = Cy
4:DDS“ I :3°:DD50_ c
55 [ L \ | N 5
=Bp. =P
i 6—L_ 4. = c
“® 54@ 4 30 oy SHLI =4 DEPTH=4 _ °
7 7 7
= D e A —70:DD .
4 8= 08
83 D)
Bp— —
7
Eat Dg I|_ 98: 9_ Co
8 0
9901 8 O o
By 0 B . 04 0 e
112 Dll 1110: Dll:H
L 0J
779D o
L C
118: 11 11
J
Carleton © John Knight
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Addition = Brent-Kung Adder Summary

Brent-Kung Adder Summary

« The depth of the carry chain increases by 1 when the number of bits doubles.
A depth of 4 would allow 9 to 16 bit words.

one bit position unlessit is always zero.

« Itisahbig power-hungry adder, but fast.

L The ceiling is the smallest integer larger than a number

« Alternately the depth is the ceiling(log,(n)) where n isthe number of bits.! Remember that Co takesup

« The delay goes up more quickly because of the large fanout as nincreases. On Slide 62, one
generalized gate fans out to 5 gates. An n bit adder will have one gate that fans out to about n/2 gates.

«  The number of generalized carry blocks is, for a (n/2)log,(n), when n is apower of 2.

« For 32 bits or more, this adder has the maximum hardware of all the carry-lookahead adders.
Its area is proportional to nlog2(n). The area of the other carry look-ahead adders is proportional to n.
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« Addition =

(
Summary Of Adders Types (Previously Covered)
_ A3 B3 P2 B2 o Bo
(1) Ripple-Carry Cy Cs Cy Co
slow; delay = O(n)
small; area = 0(n)
23 22 z“l 20
3 B3 2
(2) Carry Look-Ahead
faster; delay = O(n)
0.5x(ripple delay) C; G,
large; area = 0(n)
2x(ripple area)
N\
Po
Co
(3) Brent-Kung
fastest O(log,(n)) Go
largest O(nlog,(n)) go 10 Cy
11
area passes compromise P1 —Illo B o ) C,
carry look-ahead about n=10  ° @32 24 D 3 4°—C4
L] 4
L—0
o o
o5 Bst 3 245 -
e 7
.
2 Carleton © John Knight
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Properties of look-ahead adders
To thefina
carry out.
Some sum bits
- takealittle longer.
o >
= )
< @
a
1 P&O
\N\X‘ﬂ
R’\pp\e
32 64
Number of bits (n) Number of bits (n)

O(n) notation
Thenotation delay=0(n), meansthat the delay increasesin proportion to n for large n.
Thus delay=13nis O(n), but so isdelay = 26 + 13n because the 26 is negligible when nislarge

More generally if some property = a+ bn + cn? + dn®
the property is said to be O(n3) because it increases proportional to nS for largen.

For n=4 or 8, small details in implementation, like buffer sizing, may make the |ook-ahead faster than Brent-
Kung, but when n>32, it is clear that Brent-Kung will beat the pants off the others.
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Summary Of Adders Types : (About to be covered)
Four New Adder Types

5) Carry Ski

Speeds up slowest

CO0->C4 path
with little
extra area.

Does not help
other paths.

6) Carry Select

When P3;P,P,Py=1, does not wait for the ripple carry.

STAGE 2 AZ STAGE 1

UNIVERSITY

Addition =

Doubles area '/;"V/Q'J'l'ﬂ'%/ A];l /%/ [/:/ 7// 1
\c/efféa“ path )' F 35 I B4 33 éAoO co
o // %%///// C, Z'//,/,,, /',;,7//
Still
delay = O(n)
Calculate answers for both
Co=1 and for Cy=0
Select the correct one
Carleton © John Knight
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Properties of these new adders

Properties of these new adders

Carry-Bypass (Carry-Skip)
This is much like the compromise look-ahead adder.:
« Thelogicisalittle smaller because the gate to calculate C4 is smaller.
«  The smaller gate will make the Cy-> C, path slightly faster.
+ The path A;,B; -> C, will be slower.

Carry-Select

Calculate 4-bit sums with Cin=0 and Cin=1. Use Cin to select the correct one.
- Doublethe size of the base adder.
« The path Cy->C4->Cgis very fast.
The delay is mainly in the 4-bit adder block.
« For cascade blocks, the adds are all donein parallel.
Cy beats the mux inputs at the C, mux,
but the data is waiting at the Cg mux when the C, control signal gets there.
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« Addition =

Types of Adders Summary: (About to be covered, cont)

(7) Conditional Sum Adder
Combination of 38 25 L5 08
carry-select

_ski —
carry-skip 5
| Co
COUI
Sig .
(8) Carry Save Adder Adds i
) o i o oo s nine
Used for multiple adds 7-(‘3 20 27‘-0 7-‘0 (7:-‘02‘7-0 7.0 (7:"02‘7'0 8-bit numbers
L1810 PoBo Do Adding three 81 \7:0 81170 7.0
3 2-bit numbers
v v
1% ﬂ Zo Final Carry and Sum seperate
3 L inal answer
Zthz*Zl Carry not propagated
cy I until the last adder.
3
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Properties of these new adders

Conditional Sum Adder
This is much like the compromise look-ahead adder.
« It calculates both sums and selects the correct one, like the carry-select adder.
It calculates C, much like the carry-bypass adder.
« Itisprobably the fastest adder after the Brent-Kung.

Carry-Save Adder
An adder for adifferent purpose.
« Itisgood for adding several numbers, such asin multipliers.
« Itusesthe carry inputs in its adders to add a third number.
«  Three numbers go in and two (a vector of carry bits and a vector of sum bits) come out.

« At the end one must add the two vectors together with a normal adder which propagates the carries.
However it saves propagating carries during each two-number add.

| Carleton University © John Knight
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« The Carry-Bypass Adder).

The Carry-Bypass Adder)
Generate and Propagate Revisited By 1 I
Redefine P=A®B Ao ° G
0|Cn  Cour 4/ P=A®B _ Cin
« Then when P=1, Cqoyt =C\\ - | A
Extend thi 4 bit gl oP+C
xten is across 4 bits
Cout L
< When P3P2P1P0:1, C4 = CO
The Carry-Bypass Adder
AsBs
When P4P3;P,P,=1, do not wait for the ripple carry.
Switch the MUX and get C,=C directly.
« CO0->C4 has two paths, one fast and one slow.
- Thered (slow path) cannot actually happen and is called a false path.
/

¢ Carleton © John Knight
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The Carry-Bypass Adder

The Carry-Bypass Adder

This circuit allows the carry to bypass certain adder sections where the propagate signals are all asserted.

It speeds up the longest path where a carry propagates all the way from Cqto Cy
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« False Paths s
N

False Paths

An continuous path through combinational gates that:

1) cannot be sensitized, or

2) always has a faster sensitized parallel path.
2

)

A path that can be made to propagate a signal change.
J
2 Carleton © John Knight ‘
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False Pathss The Carry-Bypass Adder

False Paths
A false path is a connection through gates from the start to the end of the path which will never propagate a

signal change (be sensitized) under proper operation.

False path when the complete path cannot be sensitized. The carry-bypass adder has that type of path.

= false path y redundant

F=CB +CA+AB

@ > |0
\/

O

ﬁ

&

8

g

=y

False path due to redundant circuitry.

Theterm AB is redundant. Any
signal change through the inverter in ..

the B path, will get to F faster through CB.

| Carleton University © John Knight
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« False Paths s

( False Paths

Pathsthat will never propagate a signal change
Long unused paths cause two problems, timing and testing

Timing problems

- Static timing verification checks the delay of the e [T 7 w .
longest combinational paths in a circuit. >C1 . -
- Path delay -inputreg to output register - must be D H . —
under a clock cycle. Lt 1D
+ Here timing verification will say the clock period L o
should be at least 70 ns. i — 40ns o L
C1 HD
If the 70 ns path is a false path, — i
and the next longest real path is 40 ns. T
- The verifier will state the clock period > 80ns. L
- You will likely believe it! CLK CLK
,\40 ns PATH
Testing Problems GOODCIRCUIT [ —
i ] 70 ns PATH
Suppose t.he MUXiin the.carry-bypas.s adder was stuck FALSE PATH ONLY]|(IDEAL) ’ﬁ
up. The circuit would still work albeit more slowly.
. One needs atest in which the 80ns path output is FALSE PATH ONLFM‘TH GL'TCHE’i
definitely wrong for the 60 ns or so.
- Generating this glitch free test is very difficult. LLESTER CHECKS
. ; HERE
- Also testing usually not done at maximum speed.
Carleton © John Knight ‘
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False Pathsin the Carry-Bypass Adder
Timing Problems.

Synchronouslogic
« In synchronous logic the input flip-flop outputs change just after the active clock edge.

« These changes propagate through the combinational logic (gates only, no flip-flops). The outputs of the
gates change.They may go up and down several times.

« Eventually the changes will die out and the logic levels will stabilize.
- After that anew active clock edge may come and store these stable valuesin the output flip-flops.
«  One must have:

(The clock period) > (longest delay through the combinational logic).

False Paths

« A false path is one which can never propagate a level change to an output.

« A common reason is the false path has a redundant parallel path. The output gets the correct answer
from another path in less time than the propagation delay through the false path.

« Another reason is that the gates in the false path cannot all turn on at once.

Static Timing Verification = false path

« After acircuit is designed and converted to a silicon layout, the delays in each gate can be cal culated.
- A timing verifier is a program which goes through alogic circuit after al the gate delays have been
estimated, and cal culates that if all signalswill be stable before the next clock edge.
« Unfortunately many of these programs only check the propagation delay along a path.
They do not know if the output will be stabilized sooner by another parallel path.
They do not know if the all the gates in the path can be turned on at once.
«  Thusthey will suggest making the clock slower than is actually needed.
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The Redundant Carry-Bypass Adder (Carry-Skip)

Case |. The Redundant Path
Separate into
- MUX up path
- MUX down path

Map for
MUX UP, P,P; =0

AB
AOEE %)0 01 11 10

(P2P1)E7 o &5 66

C2= o1 Ep E,
11| By Ep| Ep| Ez

10, Ep E,

E2=G,+P,G1+P,P1Cy
E, = G,+P,(G,+P;Cp) e
2= (P2P1)E;

=Gy + PGy + PoP1Cy

Map for

Recall we redefined P
MUX DOWN, P,P; =1

as P=A@B <
o 10C 1 ABy
MUX Control = P,P, AoBp o o011 1w
00
« Variable entered maps: o1 Co Co
When P,P,=0, map value = Ez////> 11
When P,P,=1, map value = Cy 10 < Co
¢ Shaded squares selected by MUX.
> squares are don't care squares, and never selected. C, = (P,P1)Cq
» Calnleton © John Knight
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False Pathsin the Carry-Bypass Adder (cont.)

Testing Problems

The tester would:

load the flip-flops with atest input,

trigger aclock edge,

wait for aclock period,

and then trigger another clock edge and read the outputs as captured by the flip-flops.
If the outputs are stable, it is easy to compare expected and actual signals. If the output is still active when the
clock comesit s, difficult to predict what the actual signal will do. One needs to be sure the flip-flop will
capture awrong valueif thefaster path is defective. Designing such atest isdifficult even for asingle false path.
Such tests cannot be done by normal test generation programs.
Most modern tests do not test at the full clock speed. Scan tests, to be discussed later, do not run at full speed.

Faster Circuits Do Not Have To Have False Paths

False paths are not necessary. It was proven in1991* that any redundant path, put in strictly to improve speed,
could be replaced by a nonredundant circuit with no speed penalty.

False paths are not necessary

LK, Keutzer, S. Malik and A. Saldanha, “Is Redundancy Necessary to Reduce Delay?”, IEEE Trans, on CAD, April 1991, pp 427-435.
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The Redundant Carry-Bypass Adder (Carry-Skip)

Case |. The Redundant Path (cont.)

Show E, is more complex
than needed

¥A1YB;

A
120180 MUX UP, P,P; =0

A.B
%JO 01 11 10
— AoBY
(P2P1)E; NY= o o0 00 |g,|0
C,= e Co o1/ 0 G,
1
7 0 |P,G
100 O G,
AB —_—
ABy, M £281 01 10N Co= (P2PDE,
0o o | WPo= A18B, E,=G,+P,G,+P,P;Cq
01 o
<|'|: — <.f:3 Redundant
1 1 P,G P,G
o P 2051 pail
10 & " ;
ap o =
Map of GZ; L, Mapof PaGy” \uy Control=p,Py 'MUX DOWN, P,P; =1

E; = Go+PyG, + P,P1Co)
NEA A

* False Path, never selected hc:r\ej

Data travels over path selected here - Q

Xldon't care squares.

\<131
AoBp 00 01 11 10

AB, P%l
01 10 00
01 Co Co
2P1 PoP 11
‘ ‘ ‘ 10 Co Co

&3 Carleton
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The Redundant Carry-Bypass Adder

The Redundant Carry-Bypass Adder
TheMapsfor E,, the Upper MUX Input

«  Threemaps, G,, P,G, and P,P,, derive the expression for E,. The left map encirclesthe G, term. These

squares will be“1"s of E,.

« The centre map encircles the two columns of P, and the row of G;. Theterm is P,-G; so the

intersection of the circles will be “1”s of E,.

« Thelower centre map shows P,-P; as the four squares at the intersections of the columns, P,, and the

rows, P;.

« The OR of the three mapsis E, and is shown in the *“MUX UP” map.
« The MUX DOWN map shows P,-P;-Cq. Thevalue Cy is placed in those 4 squares. This avoids making

a 5-variable map.

Don't Care Conditions Caused By Multiple Equations.

The four XJ squaresinthe“MUX UP” map are don't care because the mux is always down (P,P;=1) for those
four squares. For the function E,, those squares contain the value of Cg, but who cares, they never transfer this

value to the output C,.

The twelve X squaresin the “MUX DOWN” map are don’t care because the mux is down (P1P,=1) for only
four squares. The map is actually filled with the value of Cy), but only the four useful ones are shown.
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The Redundant Carry-Bypass Adder (Carry-Skip)

Case ll. A Nonredundant Path (cont.)

E, is reduced to H,
Redundant path removed

YA1yB; vA0yBy

MUX UP, P,P1 =0

ABy
0 01 11 10

ST AoBo
(P2P1)H3 0 oo 010|g,|0
C,= o1 O G,
10 G,
AB —_—
AoBy Co= (P2P)H;
00
S H2=G,+P,G,
1
° N <.f:3 No false path
1 1 ( P,G P,G
o o) e 26y 201
o Map of
MUX DOWN, P,P; =1
Map of Gy, P Map of PG~ Mux Control=P,P; ‘ 2t

B
Hp = (3!2+P2G1 +’PM AB, P2= A1©B; AO\B%1 b0 o1 11 10
\—5 AgBY Ozm\m 00
« False Path, removed . o 01, Co Co

Data travels over path selected here - Q AP P,P.

11

L L1 | sofwecolss] &

Xldon't care squares.

1 Carleton © John Knight
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A Nonredundant Carry-Bypass Adder

TheUpper MUX Input
« Inthe previous slide
Bz = Gy + PGy + PP, Co
The P,P,C, term was redundant because it was never “1” when the mux was in its upper position.
Thisterm is only used in the lower mux position.
« Inthisslide wedrop P,P,Cqfrom E, leaving
Ex =Gy + PGy
« Thisremoves the fal se path.
CO0 no longer appears to have a path through the upper position in the mux.
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( Case lll. The Simpler Nonredundant Path
Faster than the previous one! LAQBl AoLBO
) 2 |C _
F2 = GatP2A0 0 MUX UP, P,P; =0
D P G Yy A.B
(PaP1)F, o4F Py <0 Co AgB b 01 11 10
C,= 71 Ty - o 0106, |0
.t o1 015 65| 5
P2P1Co P, )
1 1] 0 AgP4 Gy |AgP,
ap. MapofG; ap.  Mapof AP, 10 0 RoF} G, | Ack
151 1B1 _
AoBo U AoBo e R 10 F2=GatPoAq
> 2 P2= A1®B | Co= (P2P1)F2
01, <
1 (I_rl‘,“ | Ag—wl PoP2|  [PoPg
10 NP oP 'MUX DOWN, P,P, =1
AB
! %JO 01 11 10
Map of Mux Control=P,P, AgBy
00
{181 01 10 C C
AoBo 01 0 0
Po= Al@Bl\»’%f\“ T(\ 11
C@ipzpl 10 Co Co
S
2@ PoPy)
J

&3 Carleton
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The Carry-Bypass Adder, Nonredundant

The Carry-Bypass Adder, Nonredundant Circuit
Here the P,P,Cg term isreplaced by A,
The new output F, is the same as the previous E, except for the four “don’t care” X squares.
Compare E2 and F2 equations and maps.

E; = Gyt PGy + P,P1Cp)

Summary

Fa = GtP2Ag
« TheP,P,Cq term only appeared in the don’'t care squares. |t was removed.

- The P,G;only appeared in two squares. It was replaced by a P,A, that made those two squares correct
but changed the don’t care squares.

« Thedon't care terms were caused by partitioning the logic into several functions.
« Thedon't care terms were utilized to remove redundant logic and fal se a path.

« Now both the static-timing verifier and the test engineer are happy.

9. PROBLEM

Recdll that here P, = A;®B; Theterm P,A; ison thetime-critical path, and can be replaced by a slightly
faster term. However it will cost afew extratransistors because one will not be able to utilize the adders XOR

gate. Find this revised circuit.
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The Carry Select Adder 4
Trade silicon for speed. ( A - l - Aco'l
o2 prtlel s :
oemetncre 1, //{/////////I/////////{///////%
ey (SNSRI S
e, oyl T e
The carries ripple through 7 o

the stages with one MUX
delay per stage.

3-stage time delay = time for 4-bit add + 3*(delay thru MUX)

Az z x
s € llees Cen
HB11}HB10 1B _1B7 11B6 1B5 11B4 B3 fB2 B3 B0 €O
MES YW )

2 Carleton
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The Carry-Select Adder

The Carry-Select Adder

A Fast, But Large, Adder

This adder consists of two normal adders in parallel. They might be ripple-carry or carry look-ahead, or any
other type. They would usually be 4-bits adders or more.
One adder adds as if Cy=0, the other asif Cy=1. The real C, selects the correct answer withaMUX.

Speed

The 4-bit single MUX carry-select adder saves only one or two gate delays in the right-hand section. Probably
about the same as the extra delay added by the MUX.

The carry-select adder is best for long word lengths broken into sections. For example 32 bits made of 8
sections of 4 bits each.

All the adds are done at the same time, so thereisan initia delay for them to finish. Then the sums and carry
outputs are available, but no one knows which to use.

Then the carry must propagate serially through the chain of MUXs, each carry switching a MUX which selects
acarry, which in turn is used as the control for the next MUX.

This delay increases linearly with the number of MUXs. However it is faster than most other systems which
increase linearly with the number of full adders.

10. PROBLEM
Does the carry-select adder contain redundant paths?
HINTS

Arethere two apparent pathsfor the carry? Check the paths, is one ever turned off so a change cannot propagate
through it, while the other is turned on? Alternately do two paths give the same answer but one path clearly
always faster than the other.
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The Carry-Select Adder (Cont.)

The two adders can share some circuitry

4
( l Co=1 Z = P&Cprey
A A
[ 23 R}
Cy '/CPREV

Zy GJ [Py  Gilp; >

v A3 vA2 P
z

Py P3
22 G4 GA3 | |

$B3 1By
P G4 |Py G3 |P3 G

C, =
“ : Co=0 common|
- [N [ V2 1 Zo j{
4 J
- Thecommon blocks contain G=AB; P=A®B.
- Thedistinct (striped) block contain S=P®Cprgy; C=G+PCg p for each bit
- About 60% more area than a single adder.
M Calnleton © John Knight ‘
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The Carry-Select Adder (Cont.)

Sharing Circuitry
The propagate and generate circuits are common to the upper and lower adders because they do not use the carry.
The other circuitsinvolve carries and must be separate.
11. PROBLEM
Since the ¢y input is known to be 1 or O, redesign the first full-adders in each 4-bit chain to utilize this fact.

| Carleton University © John Knight
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Conditional Sum Adder

AyBy A3Bj A, By A1Bq
Yy Vv A ] A2 ]

=3

Co
Carleton © John Knight
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The Conditional-Sum Adder

At one time considered to be the fastest adder theoretically.
It combines features of the carry look-ahead, the carry-select, and the carry-bypass adders.

Each adder block calculates:
P = carry out if thereisacarry in, Cout(Cy=1).
G= carry out if it isindependent of acarry in, Cout(Cy=0).
X=sumoutif carry inis0, X(C;,=0).
Y =sumoutif carry inis1, Z(Cj,=1).

Select theright carry and theright sum outside the adder block
Outside the adder block the previous P and G lines along with CO are used to select the proper sum.
The proper carry out is G if CO=1 and Pif CO=0
However the proper oneis not selected immediately. Both are passed on to the next adder block.
The next block upgrades P and G and passes them on.

The carry out from ablock of (usually four) adders is selected from the previous P and G by C.

| Carleton University © John Knight
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Calculate in the adder box
Calculate both sum and carry values
1 = Aga®By g

i = G, if C,_,=0 3 -

Sum Xy = { z i1 C=0 Carry out Cy :{ S s Ziq = Ag1®By 1 @1
T if C =1 Py if Cyq=1 Gy = A1Broy
Py = Ak1tBya
Select the correct sum to send out A3Bj
Select the right carry to send on. —_| r
G+, = carry out from the kth adder 15
Gy.q' = carry out from the kth adder
ignoring Cq. (C(=0) G
Gy.12 = carry out from the kth adder 1Py Gzl = G3 + P3Gyt
ignoring G4,P,, and Cq (G,=0=Cy)
Pt = Pnfn-l PPy G4l =Gy + P4Gst Pal = PoP,t
If (P, ==1), then ar= —
a bit can propagate Cq= Cgy =
Co
1_ 1
Gp™ =Gy +PpGng P41 = P4P31
Pn1 = PnPn»l1
=PpPpg-rPoPy v
Cout =Gy
_ L'jZS
1 Carleton © John Knight ‘
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Carry Calculations!
Theinitial carry Cq bypasses all inter mediate carry calculations

Two carries are cal culated:
One G isvalue of the carry if C4=0
The other Pisthevalueif Cp=1.

Coisnot used to tell which carry is correct until the final output carry.
Notice that the propagation delay for Pis exactly that of the carry-bypass adder, the delay of 4 ANDs and 2 ORs.

Also note that the next block takesin C4 and sends out Cg.
Thesignals Pand G are calculated in parallel with those in the first block, so Cg does not have to wait extratime

foritsPand G. Thedelay for Cgisthat of 5 ANDsand 3 Ors

Calculated in parallel

L A. Bellaouar and M Elmasary, Low-powered Digital VLS Design Circuits and Systems, Kluwer 1995, p.424 has a good summary
of thecsa.
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Conditional Sum Adder

Carry Calculations
G,° = carry out from the 4th adder = Cq
G,4! = carry out from the 4th adder with Cy =0
P4t = P4P3P,P;
If (P41 =1) if a carry would propagate through all 4 adders
i.e Cu=1=Cqy, =1

A3B AzB> A.B AoB
v3 *3 vy Vlvl VO VO
Gy | _
=z T Gy [IZ T T (= T
L l l i : l l ; { {
C, if Cyis ignored Pa P3 Gy'=Gy+PyGy | |P, P,

Czif Cpis ignored

1_ 1
C,4if Cyis ignored Gs™ = Gg + P3G,

N
G4t =G, + PGt Pt =P,Py &
é g iO
2 1
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Conditional Sum Adder = The Conditional-Sum Adder

Carry Calculations
The G chain
Thisisthe same as the carry chain in the P and G ripple adder except it does not contain Cy.
It calculates C1, C2, C3 and C4, ignoring CO.
TheP chain
Thisisthe same asthe P chain in the carry-bypass adder, except, as shown on the next page, it hastapsto select
the correct sum for individual full adders.
Comparison with other schemes
Combination of carry-select and carry-bypass adders
Like the carry-select adder, it calculates both £(Cy=0) and X(Cy=1).
It sends Cy -> Cout directly if al propagate signals are true, like the carry-bypass adder. Thus the propagate

time, if Co goesto Cout is amost the same as for the carry-bypass adder. The extra P line loading will slow it a
little.

Note also this carry bypassis donefor all the adders, for example ¥, is controlled by P;P,P;C. This meansthe
individual sum termswill be faster than in the carry look ahead adder which uses  G3+P3(Gy+P,(G1+P1Cy)))
to propagate Cg into adder 4.

It uses the generalized generate signal Gnk which signalsif acarry comes from circuitry between adders n and
k. Thisislikethe Brent-Kung adder, except here it uses only Gnl

It does not use the logarithmic carry propagation so, for long word lengths, it will be slower than Brent-Kung.
| Thereis an dternate implementation of the carry-select adder which uses transmission gatesl

1. See Jan M. Rabaey, Digital Integrated Circuits, Prentice Hall, 1996, Chapt. 7, Prob. 8, pp. 429-30.

| Carleton University © John Knight
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« Conditional Sum Adder «

Conditional Sum Adder
Selecting the sum terms

5 3 . Lo
/SUm if carry in |iss 1 /carry in=G.=G.!+ Pklco
I‘*‘l_ /

Sum if carry in

7(;[’””” B
- A3Bg A,B A1B AoB
— 3 2P2
=Co X vy vy vy vy
== D3 b} Nz T
GP
CN'oo 01 11 10 6, P Gy |p, N
o |Z| Z| X
1
P,1=P,P
2 21 Co
Bl 1
Y Y Y %
3 2 1 0
2 Carleton © John Knight
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Conditional Sum Adder =

Conditional Sum Adder

| Conditional Sum Adder

| Carleton University
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« Conditional Sum Adder «

Reducing Delay By Gradually Increasing Stage Length

The stages calculate in parallel
- Their outputs reach the carry muxs at the same time (with equal lengths).
. delay increases by a mux delay at each stage.

If (mux delay) = (G P delay), can do one more add in each successive stage.

Carry-Select

STAGE 3 STAGE 1

Inputs 5to 8
Co

Delay now increases as sqrt(n), O(¥n), instead of linearly with n, O(n).

Carry-Bypass

STAGE3  path 3 STAGE 2 STAGE1 path 1
I

Inputs 5to 8 Inputs 2 to 4
S5 4 bits S, 3bits s; "Bl oo
Cs 4 @ Corf T
- E L] [ | =l [ [ ] i \
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Conditional Sum Adder = Increasing Stage Length

| Increasing Stage L ength
Renumber the carrys by stage by making the output carry of stage k be S, In the picture S;=C,, S,=C,, ...

Balance delays so path 0 and path k are equal. Path k is the longest path from some stage k input to S.
Ty isits path delay. Path 3 is shown.

In thefirst stage, signal Cy will reach S, before the signal on path 1, sothedelay to S, is T

After that, aslong as path k can reach mux k before the signal along path 0, then
(delay along path O up to carry S;) = Tgy = T, +K*Tmux

Theincrease in delay between To, and To-+1) iS0ne mux delay as long as path k+1 can reach the mux k before
the signal along path 0.

Thus we can increase the delay aong each path k by one mux delay for each stage.

Thus Toy, the total carry-out delay for m stages, is T+m* T«

The number of full adders, n=2+3+4+5+.. .+ m= m(m+1)/2- 1. (Sum of arithmetic series)
Solve the quadratic equation to find m =-0.5+(2.25 + n)

For n>>225  Togm= TN

Balancing thewhole sum

eorns R e A M

The circuits above have the delay to

thefina carry faster than to some of

the high order bits of the sum. Then one of the critical pathsis shown on the right. Here the stage length is
| decreased symmetrically on both ends to equalize the delay to the final sum bit in each stage.

Carry-Select
Here the final sumisselected in paralel by the carry. Shortening the most-significant end is not necessary.

| Carleton University © John Knight
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« Conditional Sum Adder «

\_

Comparison of Adders?

<

\j}Bypass
\/}Select

Look Anead

Delay
Area

8 32
Number of bits (n)

Number of bits (n)

Adapted from Rabaey.
The carry select adder area and speed depends on the stage “your favourite” adder type.

Details will change relative properties, particularly for low n.

LJan M. Rabaey, Digital Integrated Circuits, Prentice Hall, 1995. pp. 399, 403, 424.

© John Knight
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Conditional Sum Adder = Summary of Adders

Summary of Adders
Ripple-carry adder isthe smallest and the lowest power consumption, and for short words it may be fastest.
The bit-serial version is very small and very slow. It takesin and gives out bit streams. See
Leaand Jackson, Digital Filters and Sgnal Processing, Kluwer 1989, pp 343-345.

The Brent-Kung adder is by far the fastest, but it gets very large.
The conditional-sum adder is the second choice for speed, and has much less area.

Experience with Small Adders
For small adders, O(n) approximations may be misleading.
For 4to 7 bit adds, using library Desi gnware®, a Carleton graduate student, Youxing Zhao found:

The conditional sum adder (csa) was the fastest.
Theripple carry adder (rpl) was second and significantly slower.

The fast carry look-ahead (clf) was third.
The Brent-Kung (bk) and the carry look-ahead adder (cla) were last and about the same.

© John Knight
Revised; November 18, 2003
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Verilog Adders

Ripple-Carry Adder

module ripple add8(cout,s,a,b,cin);
input [7:0] a, b, input ©cin;
output [7:0] s; reg [7:0] s;
output cout; reg cout;
integer i;
wire cy;

always @(a or b or cin)

begin
cy=cin
for (i=0; i<=7; i=i+1)
begin
{cy, s[il) = alil +bl[i] +cy;
end
cout=cy;
end

endmodule // ripple adds8

a[7] [ b[7] a[3] | b[3] a[0] | b[0]

cout o 00 c4 < cin
s[7] s[3] s[0]
1 Carleton © John Knight ‘
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Verilog Adderss Verilog Adders

Verilog Adders
Ripple-Carry Adder

Connections
« Theinput and output ports, a, b, cin, cout and s, do not have to be declared again.
The internal connection, e¢1, ¢2, .. ., normally would be declared. However:

«  Wires do not have to be declared explicitly if they serve as wiring between arguments of module
instantiations. For example ¢1, c2, ....
Module Definitions

+ Wedefineamodule ripple add8 and amodule fulladder. Ripple add8 calls
fulladder eight times.

«  The definition of amodule must be completely outside the definition of any other module. Note the
endmodule statement for ripple add8 came before module fulladder started
Behavioural M odel for Adder

The full adder was defined by logic equations rather than gates. This allows alogic synthesizer to choose how
the gates are to be put together. For example it might factor the carry into:
alb +c) + bc.

Normally the synthesizer will do a much better job than the designer. Two exceptions are:
1. when custom cells avail able that are not in the synthesizer library.

2. When thelogic istoo much for the minimizer. Carry-select adders are probably too much.

| Carleton University © John Knight
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= Verilog Adders s

( Carry Lookahead Adder

module lookahead add8(cout,s,a,b,cin);

input [7:0] a, b; input cin; ca cin
output [7:0] s; output cout; CHOUI LA4 b 4_‘ -
wire ca; - ‘ shsa

lookahead 4 LA4_a(ca, s[3:0],al3:0],b[3:0]1,cin],
LA4 b(cout, s([7:4]1,al7:4]1,b[7:4]1,cal;
endmodule //lookahead_add8

module lookahead 4 (cout,s,a,b,cin);
input [3:0] a, b, cin;
output [3:0] s; output cout;
wires [3:0] ¢, p, g;

/I Connect the carry, cin, and carry lookahead c[i].

assign c[0] = cin,
cl[1l] = gl[0] | pl0l&c[oO]l,
cl[2] = gl1] | pl[ll&gl0]l | plll&pl[0l&c[O],
cl[3] = gl2] | pl2l&gll] | pl2]l&pl[ll&glo]

| pl2l&plllapl0l&clo],
cout = g[3] | p[3l&gl2] | pl3l&pl2]&gll]
| pI3lap[2]l&p[1l]l&g[0] | pl3l&pl2]l&p[1ll&pl[0]l&c[0];

/I Connect propagate and generate signals; connect the sum.

assign p = a”b,
g = a&b,
s = plc;

end module //lookahead 4

] Carleton © John Knight
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Verilog Adderss Carry Lookahead Adder

Carry Lookahead Adder

Connections

The input and output ports, a, b, cin, cout and s, do not have to be declared again.
The internal connection, ca, was declared. However in this case it was optional (see below).

«  Wires do not have to be declared explicitly if they serve as wiring between arguments of module
instantiations. For example declaration of ca inLA4 a and LA4 b, isoptional.

Nonprocedural Verilog Isa Circuit

Note again that Verilog statements, except in procedures, are definitions of connections. The order of
the statements does not matter any more than it matters which gate is put at the top of awiring diagram.
« The two 4-hbit sections are coupled by aripple carry

TheCarry L ookahead Code

« the equations were written to follow my guess at the fastest implementation. A good synthesizer may
change the gate connections considerably.

| Carleton University © John Knight
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= Verilog Adders s

(

Carry-Select Adder

module select_add8(cout,s,a,b,cin);

input [7:0] a, b; input cin; COUtHADm_le‘;al ADD4_a1}—-|V
output [7:0] s; output cout; cout ¢

wire [7:0] sO, s1; wire ca;
parameter zero=0, one=l; outqAPD4_b0 3 ADD4_a0

add4 ADD4 al(ca0l, s[3:0],al[3:0],b[3:0],zero), = =
ADD4_al(cal, s[3:0],a[3:0],b[3:0], one),
ADD4 b0 (cout0, s[7:4]1,al[7:4]1,b[7:4],zero),
ADD4 bl(coutl, s[7:4]1,al[7:4]1,b[7:4],0mne);

/I The MUXs
assign ca = (cin) ? cal : ca0,
cout = (ca) ? coutl : coutO,
s[3:0] = (cin) ? s1[3:0] : s0[3:0]1, // Notshown on diagram
s[7:4] = (ca) ? s1[7:4] : s0[7:4]1;

endmodule //select_add8

module add4 (cout,s,a,b,cin);
input [3:0] a, b, input cin;
output [3:0] s; output cout;

/I The 4-bit behavioural adder. Let the synthesizer decide.
assign {cout,s} = a + b + cin;
endmodule // add4

] Carleton © John Knight
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Verilog Adderss The Carry-Select Adder

The Carry-Select Adder

Wire Declarations
« | tend to declare wires even when the default do not require it. It helps:
a. to keep one from using the same symbol for two wires.
b. to keep one confusing vectors and scalers, for example cinand ¢ [0].

Parameters

parameter zero=0, one=l;
This defines constants 0 and 1 at the start rather than deep inside the module. Then if one wants to change
them, say the input should be asserted low logic, it is easy to do.

Concatenation L eft of the" ="

Concatenation on the left side of an equal sign is handy:
assign {cout,s} = a + b + cin;

Carleton University © John Knight
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« Precoded Verilog Adders s

Precoded Verilog Adders

Libraries

Most sites have access to precoded operators.
In Synopsys a library is called Designware.

In dc one can see it by

> report lib standard.sldb

In PKS one can see what is in the library using
> report_lib

The libaries will usually have:-

add, subtract,

various compares (signed, unsigned) >, <, <=, ==, ...
multiply

Adders, for example are differentiated according to:

- bit lengths of both operands

- two’s compliment or unsigned (for overflow checking)
- carry propagation mechanism.

M Calnleton © John Knight
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Precoded Verilog Adderss Module Generatorsand Libraries

Module Generatorsand Libraries

Thefast way to get circuits

Most logic synthesizers have several types of adders already created.
These may be Verilog descriptions coded as macros.
They may be already laid out.

Use a Behavioural Description with Libraries

Thelibrary or generator usually wants the simplest high-level description of the function:
{cout,s}= a + b;

Putitin amodule like adds.

Tell the synthesizer you want the module implemented by a macro or cell.

| Carleton University © John Knight
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Incrementers

Compare incrementers and Adders

Full Adder
Add Y=a®b®Cin Cout =g + p-Cin =a-b + b-Cin +a-.Cin
Half Adder
Increment b=0 Y=a®0eCin Cout =g + p-Cin =a-0 + 0-Cin +a-Cin
2 =a®Cin Cout =0+ a-Cin = a-Cin
Eirst input Cy=1 x=a Ci=ag
4-Bit incrementer
a
|23 132 ag L 0

C

Ty, 'y, vy, V3,

Carry Lookahead
C4 = agaxa g

Carleton © John Knight
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Incrementerss Incrementer/Decrementer

Incrementer/Decrementer

AddersWith One Input Fixed at One.

An adder can be used as an incrementer.
If aunit is to do nothing but increment, use a much ssimpler circuit.

« Adders are made of full adders. Incrementers are made of half adders.
Verilog and Incrementers

How smart isyour sythesizer?

assign s = a +1; I/I'lf the synthesizer knows about incrementers this should generate one.

parameter one = 1;
assign s = a +one; //Maybe, butlikely you will get an adder.

assign cin = 1,
s = a +cin; /I Unlikely
12. PROBLEM

Design a carry-select incrementer.
Hint: It isjust arearrangement of the AND gates.

| Carleton University © John Knight
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= Negative Numbers

Negative Numbers 2's complement
+3 011
Two’s Complement +2 010
The numbers +1 001
- Positive numbers start with 0. 10 101010
- Negative numbers start with 1. b -2 110
The first bit tells the sign. 2 -3 101
; z
-lis always 1111... a -4 100
- They use a normal positive-number adder.  — Cn
Overflow
- Test for overflow is _
Overflow = Cn @ Cn-1 C3®/C2' 1 Cs® Co=0
+  Maximum positive becomes maximum negative. 1, 1,
011 + 001 = 100 3+1=-4 +3 onln +3 omln
+1 001 -1 111
Example, accumulating adder v.s. integrator: -4 100 +2 010

=
\_b 1
>~ .
1 aturating overflow

Two’s complement overflow

Carleton © John Knight
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Negative Numberss Subtraction

| Subtraction

Common representations for signed numbers

1. Two's compliment

Uses anormal adder.
2. One's complement

Uses anormal adder except carry wraps around, Can double add times. Has two values representing zero.
3. Sign magnitude

Cumbersome to implement.

Normal output format for some A to Ds and some additive encoding compression schemes.

Overflow test for 2's Complement
Adding numbers of opposite sign can never overflow. AnBn
Since a[n] andb[n] arethesignof aandb, alnl=b[n] Cn 00 01 11 10
isthe only potential overflow. 0{00|01 |10 01
Case (i) Numbers have same sign ie. a [n] =b [n] 110110 ﬁl 10
If alnl=blnl, then c[n] = Z[nl, (seemapof X, on right). Overflow |
= c[n] istheapparent sign of the number just asX [n] is.
Thesum X [n] must have the common sign of a [n]and b [n] or thereis overflow.
But thesign X [n]=c [n]
Further ¢ [n+1] =1 if a[n]l=1=b[n], c[n+1l]=0 if a[n]l=0=b[n]
Deducethat ¢ [n+1] #c[n] = signof X isoppositethecommonsignof a and b = overflow.
Thatis ¢ [n+1] ® c[n]l=1 = overflow.

Case (ii) a [n]#b [n]
If alnl#b[n]l, then c[n+1l] =c[n] and c[n+l] ® c[n]=0. Thisagreeswith no overflow.

Cn+lzr1

| Carleton University © John Knight
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= Negative Numbers

Two’'s Complement (cont.)

Negating Numbers
. +3 011 -1 111
a. Invert each bit. YYY Y YY
b. Addl. ~+#+3) 100 ~-1) 000
+ 1 + 1
c. lgnore any off-end carry. .3 101 +1 001
In Verilog

wire [7:0] minus a, a;
minus_a = (~a)+1

When Two's Complement Overflow Can Be Ignored

a. Do n-bit arithmetic on a signal
b. Allowed operations are +, -, and multiply by an integer ‘ x*17 OK T ‘

c. If the correct output would not overflow n-bits,
then internal overflows do not cause an error!

Example, accumulating adder

Ul

CLK Overflow here,
b L i will not affect
) the accuracy
! here
1+ noise— Cn

|
b 1

Register J!‘,‘wv\ I
I
] Carleton © John Knight ‘
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_Two’'s Complement

Over flow
Two's complement overflow can be very bad because it goes from maximum positive to maximum negative.
On the other hand one can often recover from the overflow.

Recovery from overflow

Let x be alarge number such that adding 3+x overflows.
Now immediately add -4 to the result. Thiswill do a negative overflow and take the result back to x-1.
Thisis exactly the result if their had been no overflow.

Intermediate results which overflow cause no error if the correct final answer lieswithin range.

This applies only to addition and subtraction.
Multiplication by an integer is all right because that is equivalent to adding many times.
Multiplication by afractionis not al right. There is an element of division destroys the overflow recovery.

| Carleton University © John Knight
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= Negative Numbers

Coding An Add/Subtract Unit

Coding for Synthesis
The Poor Way

Depending on the value of cntr, s is assigned to either a - b or a + b.

module adder(s, cntr, a, b);

output [7:0] s;
input cntr;
input [7:0] a , b;

assign s = (cntr) ? (a+b) : (a-b);

Unless the synthesis tool is very smart. it will generate:

- amux from the conditional statement 5 <2
- separate arithmetic units;
one which adds, and one which subtracts. o]
S —
Dif -
b
| p—
M Calnleton © John Knight
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Negative Numberss

Subtraction

Subtraction
Making a subtractor from an adder

Converting Add to Subtract
Toconvert A+ Binto A - B:
1. Individualy invert al the bits of B to ~B.
2. Apply ~B to the adder input. Remember we also had to add 1.

3. DotheaddsA-B=A+(~B+1)=A+(~B)+1.
Do the +1 by sending 1 into CO (Carry in)

Verilog Add/Subtract Circuit.

module add_subtract(overflw, cout, s, a b, plus_minus_n)
/' plus_ minus_ n=1 isadd; plus_minus n=0 issubtract.
input [7:0] a,b; input plus_minus;
output [7:0] s; output overflw, cout;
wire [7:0] tildaB;
assign tildaB = (plus_minus) ? b : ~b,
{cout,s} =a+tildaB + (~plus_minus),
overflw = cout*((a[7]=tildaB[7])& S[7]);

endmodule

I/l or plus_minus” b

13. PROBLEM

Estimate the area generated for this circuit vs the one on the next slide using XORs as a controlled inverter.

Carleton University © John Knight
Digital Circuits p. 172 Revised; November 18, 2003

|  Commenton Slide 91




= Negative Numbers

( Coding for Synthesis

Smaller Faster Circuit
a - b canbeperformed by inverting b and adding "1".
-b = ~b +1

Rewrite the code using ecntr to:
- form aconditional "add 1" (add the value of cntr)
- conditionally invert b by using XOR gates.

module adder (s, cntr, a, b);

output [7:0] s;
input cntr;
input [7:0] a , b;

assign s = cntr + a +({8{cntr}} " b);

@

cntr

The XOR inverts b when cntr =1.
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Negative Numberss Subtraction

Coding For Synthesis

Having a reasonable concept of what the synthesizer will do will make smaller faster circuits.
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= Negative Numbers

( Negating Two’s Complement Numbers )
I e e
| I Starting at the least sig bit, x[0]. Pass it directly through to y

I As long as x[i] is 0, don’t invert it.
1 After reaching the first x[i]=1, do not invert that x[i].

| 1 But do invert all bits after the first x[i]=1.
I
| wire [N-1:0lcry, x, y:
always @(x)
begin
//cry[0] = 0; Tells whether to invert the next bit
y[0] = x[0]; //y[0] = x[0] ~0;

cry[1]1=x[0];

yI[1] = x[1]1%cry[1] ;
cryl[2]=x[1] | crylll;
y[2] = x[2]1%cry[2] ;
cry[31=x[2] | cryl2];

end
. V,
2 Carleton © John Knight
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Negating Two’'s Complement Numbers
The algorithm shown is fast and simple.

Examples
001010 = 10d

Start on theright, travel left.
Aslong as the bits are 0 leave them unchanged.

On thefirst 1 leave that unchanged,
but invert al bits from then on.
The colon shows the break between inversion and noninversion.

1101:10 =-10d
110100 =-12d
001:100 =-12d
000101 =5d
11101:1 =-5d

| Carleton University © John Knight
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= Negative Numbers

Circuit to find 2’s Complememnt

reg [N-1:0] y; // minusx
wire [N-1:0] x;

| wire cry;
integer i;

always @(x)

begin
cry=0; /I Becomes 1 after the first 1 in x.|
| for (i=0; i<N; i=i+1) /I Start at least sig bit, move left.
begin
| ylil= xI[il] Acry; /I Invert x next i after the first 1in x is reached.
cry = x[i] | cry: /I cry will remember when the first 1 was reached.
end
end
iteration i=3 X3 iteration i=2 i X2 iteration i=1 y*1 iteration i=0 LXO
cry
0
——K_8 @ =K @ =K d = -
*Y3 ' Y2 ' Y1 ' Yo
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Finding the Two’s Complement
Thisisagood circuit to use if you are not going to do an addition on the number after conversion.

If you are going to add the number immediately afterward, just invert each bit and make the carry-in for the
adder equal 1.
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