
Logarithmic Circuits

© John Knight

Dig Cir p. 89 Revised; November 18, 2003

Logarithmic Circuits
Binary Up Counter

W HA t

1T

C

“Q”

1

CLK

“T”

Q0

Q1

Q2

Q3

1T

C1

CLK

1T

C1

1T

C1

1T

C1

Q0Q1Q2Q3

4-bit binary counter

T3 T2 T1

TC=T4

T0

The circles show how

defined by ANDs:
T1 = Q0
T2 = Q1Q0
T3 = Q2Q1Q0
TC = Q3Q2Q1Q0

the toggle signals are

Toggle Flip Flop

If T=1, toggle output Q
If T=0, hold old Q

@(posedge clk)

Simplest Counter Circuit Uses T Flip-Flops

0 1

0

0

0

0

0

0

0

0

1

1

0

0

1

0

0

1

0

1

0

1

0

0

0

1

1

1

0

1

0

1

0

0

1

1

0

0

0

0

0

1

0

Notice the ripple carry. This limits the speed of the counter.

Propagation Delay

1

TC = Teminal Count

Slide 50

Carleton University © John Knight
Digital Circuits p. 90 Revised; November 18, 2003

Logarithmic Circuits Binary Counters

Binary Counters
The simplest counters use toggle flip-flops. These are made from D flip-flops
as shown.

This is why many circuits of counters show an XOR gate and an AND gate for
each flip-flop.

The AND gates, drawn on top of the waveforms, show how the flip-flops toggle whenever all the preceding
flip-flops are one.

Counter Speed

Note that for long counters the chain of AND gates will get very long and will limit the speed of the counter. For
a 32 bit counter, the clock speed must allow propagation through 31 AND gates plus the clock-to-output and
setup times of a flip-flop.

1D

C1

D QT

T=0 � D=Qold
T=1 � D=~Qold

Comment on Slide 50

Logarithmic Circuits

© John Knight

Dig Cir p. 91 Revised; November 18, 2003

Logarithmic Carry in a Binary Counter

Ripple Carry Circuit Using T Flip-Flops

Logarithmic Carry Circuit Using T Flip-Flops

1T

C1

1T

C1

1T

C1

1T

C1

Q4Q5Q6Q7

8-bit binary counter using a ripple carry

T7 T6 T5

T8

T4
1T

C1

CLK

1T

C1

1T

C1

1T

C1

Q0Q1Q2Q3
T3 T2 T1 T0

012456 37

Delay is N-1 (7), AND gate delays

1T

C1

1T

C1

1T

C1

1T

C1

Q4Q5Q6Q7

8-bit binary counter using logarithmic carry

T7 T6 T5

T8

T4
1T

C1
CLK

1T

C1

1T

C1

1T

C1
Q0

Q1Q2Q3
T3 T2 T1 T0

1111 2

2

2

2

3

333

Delay is log2(N) = 3, AND gate delays
but watch
the fanout

Level number

Slide 51

Carleton University © John Knight
Digital Circuits p. 92 Revised; November 18, 2003

Logarithmic Circuits Logarithmic Ripple-Carry Counter

Comment on Slide 51

Logarithmic Ripple-Carry Counter
By placing a buffer as shown, the end-to-end carry need only pass through 2log2(N) gates.

Counter Speed
In the ripple-carry circuit.

The time between a clock edge and a stable outbut from TC is:
TCHQV for Q0 + (Tpd for 7 AND gates).

Ignoring the flip-flop delay, this is a delay proportional to N-1, for N flip-flops.

The fanout also effects the delay. Here all fanouts are 2.

In the logarithmic carry circuit.

The slowest carry, TC, must go from:

a. The clock input to Q0

b. Q0 through a 1st level AND (green with a “1” in side).

c. through a 2nd level AND gate (red with a “2” inside).

d. through a 3rd level AND gate (blue with a “3” inside).

For N flip-flops this delay is proportional to log2(N).

However the fanouts increase the delay. The largest fanout is N/2 + 1, (five for N=8).

Logarithmic Circuits

© John Knight

Dig Cir p. 93 Revised; November 18, 2003

Logarithmic Carry for TC for a 16-Bit Counter

C0

C1

C1
0=T2

C2

C3

C3
2

C1
0

C3
2

C3
0=T4

C4

C5

C5
4

C6

C7

C7
6

C5
4

C7
6

C7
4

C8

C9

C9
8

C10

C11

C15
14

C13
12

C15
12

C9
8

C3
0

C7
4

C7
0=T8

C7
0

C11
8

C15
0=T16

Ripple Counter Showing Depth of Final Carry
Depth = log2(Number of bits)

DEPTH=4

DEPTH=3

C13

C12

C15

C14

C11
10

C11
10

C13
12

C15
14

C11
8

1TC
1

1TC
1

1TC
1

1TC
1

1TC
1

1TC
1

1TC
1

1TC
1

1TC
1

1TC
1

1TC
1

1TC
1

1TC
1

1TC
1

1TC
1

1TC
1

C1
0=T2

TC
Terminal

Count

Slide 52

Carleton University © John Knight
Digital Circuits p. 94 Revised; November 18, 2003

Logarithmic Circuits Logarithmic Ripple-Carry Counter

Comment on Slide 52

More Organized Picture of The Logarithmic Carry
This shows how the earlier ANDs are done in parallel so any signal used in calculating TC only has to pass
through 4 AND gates.

The symbol Cn
m is used to show what signals are ANDed together to make up a component of the carry. Thus

the symbol C7
4 means Q7·Q6·Q5·Q4.

This only shows the gates needed to calculate TC. The next page shows the gates needed to calculate the
intermediate carries.

The next page also gives a rough approximation of the delay. It only hints at delay optimization from transistor
sizing and adding buffers. Both of these will reduce delay at the expense of power and area.

Logarithmic Circuits

© John Knight

Dig Cir p. 95 Revised; November 18, 2003

Showing extra hardware for intermediate carrys
The depth is still 4 or less. The amount of hardware has doubled (16 gates).

Approximate summary: delay under half, area more than double.

1
1

00

3
3

22

5
5

44

7
7

66

9 9
88

11
11

1010

3
01

0

3
2

7
45

4

7
6

11
89

8

11
10

7
03

0

7
4

11
0

11
8

2
01

0

2

4
03

0

4

5
03

0

5
4

6
6

4 6
03

0

6
4

5
4

8
07

0

8

9
0

9
8

10 10
8 10

0

10
89

8

T2

T3

T4

T5

T6

T7

T8
T9

T10

T11

T12

Gates From
Prev. Picture

New Gates
For Intermediate Carrys

DEPTH=4

DEPTH=3

DEPTH=2

13
13

1212

15
15

1414
15

14
13

12

15
12 15

811
8

15
12

12
811

8

12

13
8

13
12

14
8

14 14
1213

12

12
0 T13

13
0 T14

14
0 T15

15
0 T16

C1
0

C3
0

Slide 53

Carleton University © John Knight
Digital Circuits p. 96 Revised; November 18, 2003

Logarithmic Circuits Logarithmic Ripple-Carry Counter

Comment on Slide 53

If the delay of a two-input AND equals its fanout, then the delays are shown in ovals.

Without the buffers shown, the total delay, Q0 to T16, is 1+3+5+9+1 = 19. In general N-1 + log2(N).
The buffer requires a more complex calculation but it will decrease the 9 substantially.

Compare with the serial carry which is 1 + 15·2 = 31. In general 2·N -1

1
1

00

3
3

22

5
5

44

7
7

66

9 9
88

11
11

1010

3
01

0

3
2

7
45

4

7
6

11
89

8

11
10

7
03

0

7
4

11
0

11
8

2
01

0

2

4
03

0

4

5
03

0

5
4

6
6

4 6
03

0

6
4

5
4

8
07

0

8

9
0

9
8

10 10
8 10

0

10
89

8

T2

T3

T4

T5

T6

T7

T8
T9

T10

T11

T12

Gates From
Prev. Picture

New Gates
For Intrm. Carrys

DEPTH=4

DEPTH=3

DEPTH=2

13
13

1212

15
15

1414

15
14

13
12

15
12 15

811
8

15
12

12
811

8

12

13
8

13
12

14
8

14 14
1213

12

12
0 T13

13
0 T14

14
0 T15

15
0 T16

3

5

3

1

1
1

9

3

3

5

1

2

2

2

2

1
1

1

2

1

1

2
1

1

2
1

1

Addition

© John Knight

Dig Cir p. 97 Revised; November 18, 2003

Addition
The 1-Bit Full Adder

C1 = AB +
PG

�

C0C1

BA

�

= G + PC0

C1 =1 if A=1,B=1 (AB)

A

B
C0

C1

G

P

CARRY

ABB

C0A

(A+B)C+A·B = C1

+V

ABB

C0A

A

C0
B

�

(A + B)C0

• Generate C1 from inputs A,B

• Propagate previous C0 → C1
if A=1 or B=1 (A + B)C0

SUM

• Σ=1 if all 3 inputs are 1, (ABC0)

• Or if only one of A, B or C0 is 1
ie any inputs =1, but not two

(A+B+C0)C1

AB

C0

C0

A

B

C1

AB

C0

C0

A

B

C1

A

+V
Compact Circuit But No Separate P and G Signals

ie any inputs =1, but no carry out

(A+B+C0)C1 + ABC0 = Σ

Alternate Definition

Logical C1 using G and P

Slide 54

Carleton University © John Knight
Digital Circuits p. 98 Revised; November 18, 2003

Addition The 1-Bit Full Adder

Comment on Slide 54

The 1-Bit Full Adder
It adds 3 bits, A + B +C0

The Karnaugh maps for the full adder.

The CMOS carry circuit

The PMOS part of the circuit does not implement C1 = (A+B)· (B+C0)· (A+C0) as good CMOS is supposed(?) to do.

1. PROBLEM

a. Find the expression it does implement.

b. Show that it really is C1.

110

1

00 01 11 10

0

1

AB

0

AC

00

0 BC

00 01 11 10

0

1

AB

A
B

0

1 00
�

C1 = A·B + B·C + C0·A

= A·B + C0(B + A)

Maps showing carry out, C1= A·B + C0(B + A)

Circle map.

000

0

00 01 11 10

0

1

AB

1

1 11
C1

Diagonal 1s on map indicate xor

� = (A ⊕ B)CI + (A ⊕ B)C0

= (A ⊕ B) ⊕ C0

BA
0

1

0 1
0

0

1

1

C0

C0
C0

C0
x
0

1

0 1
0

0

1

1

100

1

0 0 1 1

0

1

x

1

0 01

C0

A⊕BA⊕B

00 11 01 10AB

110

1

00 01 11 10

0

1

AB

0

1 00

C0

A⊕BA⊕B

The map for Σ x = A⊕B Map of C0⊕x

Map of C0⊕x
with x expanded
so one can see A, B

Same map with
columns arranged in

K-map order, showing

C0⊕x = C0⊕ (A ⊕ B)

Maps showing � = C0⊕ (A ⊕ B)

Map for C1.

Addition

© John Knight

Dig Cir p. 99 Revised; November 18, 2003

The 4-Bit Adder

Σ1

C1C2

B1A1

�

� = (A ⊕ B) ⊕ C0 A

B

A

C0
B

�

Σ0

C0C1

B0A0

�

Σ3

C3C4

B3A3

�

Σ2

C2C3

B2A2

�

G3
P3

Σ2

C2

B2A2

�

Σ3

B3A3

G2
P2

G4
P4

G1
P1

Σ0

C0

B0A0

�

Σ1

C1

B1A1

�C3�

C = G + PC0

G
PC

C0

Generate carry; G

Propagate carry; P

Ripple Carry Using Propagate and Generate

C0C4

Ripple-Carry Adder

Basic Adder Blocks

Longest PathG and P are independent of C �

Slide 55

Carleton University © John Knight
Digital Circuits p. 100 Revised; November 18, 2003

Addition The 1-Bit Full Adder

Comment on Slide 55

2. PROBLEM

Show that the PMOS part of the full adder on Slide 54, implements the complement of the NMOS part.
Hint: plot the PMOS function on a Karnaugh map. Then invert each square on the map to get the complement of
The PMOS function, and check that it matches the NMOS map.

3.• PROBLEM

Some books define P=A⊕B. Show what this does to the C1 and � functions.
What advantage does it have, i.e. smaller, faster, less power.

Solution:

The alternate P is generated for free because it is needed in the sum, thus saving an OR gate in each block.
However the XOR takes more time to calculate, so the Ps will be delayed.
Some circuits,. like the carry-bypass adder, demand that P=XOR.

Addition

© John Knight

Dig Cir p. 101 Revised; November 18, 2003

Derivation of Carry Look-Ahead Blocks

G3
P3

C2

G2
P2

G4
P4

G1
P1

C0C1C3

Serial Carry Using P and G (repeated)

C04

C4 = G4 + P4(G3 + P3(G2 + P2(G1 + P1C0)))

C2 = G2 + P2(G1 + P1C0)

C3 = G3 + P3(G2 + P2(G1 + P1C0))

C1 = G1 + P1C0

C0

P2

G1

G2

P1

+V

C2 C0

G1 P1

C1

+V

C0

G2P1

P2

G1

C0

C0

P1 G1
G1P1

P2
G2

P3
G3

P4
G4

C0
P1G1

G2
P2

G3
P3

G4
P4

+ V

C4

C0
G1P1

P2
G2

P3
G3

C0
P1G1

G2
P2

G3
P3

+V

C3

Σ3

B3A3

�

Σ1

B2A2

�

Σ1

B1A1

�

Σ1

B0A0

�

Convert Serial Carry to Parallel Circuits

Slide 56

Carleton University © John Knight
Digital Circuits p. 102 Revised; November 18, 2003

Addition Carry Look-Ahead Adder

Comment on Slide 56

Carry Look-Ahead Adder
Eliminating The Long Path-Delay For The Carry

Deep Gates Instead of Long Paths?

The long carry chain makes the add slow. One can factor the carry propagation equation to make each Ci one
complex gate. However for C4, this complex gate will have 5 series transistors (one would not go to C5). To
compensate for the five channel resistances, the transistors in the C4 gate would be made 2.5 times wider than
those in the C1 NAND-OR gate. This greatly increases the adder area and power consumption.

The large capacitance seen by C0, especially at the wide gates of the left most circuits, causes some delay.
However, the propagation time from C0 to C4 is still about half that of the serial carry using P and G.

PMOS and NMOS are Almost Symmetric

The PMOS logic here is not that found by applying DeMorgan directly to the NMOS logic.
Neither is it derived directly from the corresponding NMOS equation. For example:

C3 = G3 + P3 (G2 + P2(G1 + P1C0))

using the methods in “Using the Sum of Products (Σ of Π) for the PMOS function” on page 28

Remember that Gi+1 = AiBi, and Pi+1= Ai + Bi, hence one will
never get the case Gi+1,Pi+1 =1,0.
The outputs for these inputs become don’t cares on the map, for the
C3 equation and the equation for the PMOS circuit can be derived.

4. PROBLEM

Derive the equation for the PMOS circuits for C2.
C3 will have a similar but longer derivation.

1

d

P1

G1

P2

G2

d d

00

01

11

10

00 01 11 10G1P1

G2P2

1 d

d

d
1

1

d

C0

1

P1

G1

P2

G2

1

d

00

01

11

10

G2P2

1

d d

d
1

1

d

C0

00 01 11 10G1P1d

d

Addition

© John Knight

Dig Cir p. 103 Revised; November 18, 2003

The 4-Bit Carry Look-Ahead Adder

G3

P3Σ3
G2 P2

G4

P4
G1

P1

C3

�

Carry Lookahead Using P and G

C0

C4 Σ1
C1

�

Σ0

C0�

Σ2

C2

�

P1
G1

G2

C1 =

G0+P0C0

C7

�

C8
C5

� �

C5

�
C3

�

C0
C4

C1

� �

C2

�

Look-Ahead Carry Blocks

C0

Blocks Connected By Ripple Carry

Note no carry signal propagates through the Σ blocks. Ci is not connected to Pi+1 or Gi+1

Slide 57

Carleton University © John Knight
Digital Circuits p. 104 Revised; November 18, 2003

Addition Carry Look-Ahead Adder

Comment on Slide 57

Look-Ahead

Carry look-ahead depends on single gates, albeit with large fan-in, being faster than a chain of gates. This is
true up to 3 or 4 full-adders (4 or 5 series transistors in the final carry block).

The area used increases significantly with carry look-ahead because the gates are larger, and to maintain speed,
the transistors in the series chains of large gates must be larger.

Grouping Blocks

Since only four adders can be put in a block, larger adders must have chains of blocks. The longest delay is the
delay for C0 to reach C8 above, or C4n for n blocks.
If all gates had the same delay τ, the adder delay would be 4τn for the ripple-carry and τn for the carry look-
ahead.

Unfortunately the large gates provide a large capacitive load to their source gates and slow down the look-ahead
carry signal, C4n, to roughly 2τn. This calculation is fairly complex and involves placing buffer inverters after
C4, C8 ...

5. PROBLEM

Take the NMOS part of the carry circuit for C1 on Slide 56. If the G0 transistor has a width of 1 unit in order to
pull down at a certain speed, then the P1 and C0 transistors must have a width of 2 units to pull that path down at
the same speed. This assumes channel resistance is proportional; to width which is close to true. Show that in
the NMOS circuit for C4, the G4 transistor need only have a width of 1 to maintain speed but some other
transistors need a width of 5 units.

6. PROBLEM

There are five outputs in the compromise adder on Slide 58, Σ1, Σ2. Σ3, Σ4 and C4.
Rate each output as being slower, the same, or faster than the 4-bit carry look-ahead adder.

S1 is about the same, although the load on C0 will slow its rise time. S2, S3 are slower because their signal goes through the same

number of gates, but the P and G inputs are more highly loaded. S4 is faster because of fast path to the complex gate.

Addition

© John Knight

Dig Cir p. 105 Revised; November 18, 2003

Compromise Carry Look-Ahead Adder.

Properties Delay C0->C4 Area
Ripple P&G 2 1

Full parallel 1.1 3.5

Compromise 1 2.5

Description
By not using parallel look-ahead on C3, C2, and C1

C3 will have 50% more delay than C4,
but C3 is not passed on to later stages.

C0->C4 is slightly faster because of reduced loading on C0.

G3

P3Σ3
G2

P2

G4

P4
G1

P1

C3

�

C0

C4 Σ1
C1

�

Σ0

C0�

Σ2

C2

�

P0G0
G1

G2

C0

Slide 58

Carleton University © John Knight
Digital Circuits p. 106 Revised; November 18, 2003

Addition Compromise Carry Look-Ahead Adder

Compromise Carry Look-Ahead Adder
For more than 4-bits, this is the fastest adder shown so far.

In a multi-block adder, one might want to make the final block or the last two blocks fully carry look-ahead so
that the sum bits would not be delayed more than the final carry.

Later we will show how gradually increasing the length of the blocks will reduce the number of blocks.
For long adders, the delay will increase with sqrt(n) rather than linearly with n (2τn) as it does here.

The next carry look-ahead adder will have a delay which increases with log2(n).

Comment on Slide 58n

Addition

© John Knight

Dig Cir p. 107 Revised; November 18, 2003

The Brent-Kung Carry-Lookahead Adder

Generalized propagate and generate

A propagate through a block of adders
If P7

4=1 then:
C3 can propagate thru adders Σ3 to Σ6
and come out as C7

A generate within a block of adders
that can also propagate thru the block internaly

If G7
4=1 then:

A carry was generated on G4, G5, G6, and/or G7

it was able to propagate to the output G7
4.

And come out on C7

�6

�5

�4

�3

C7

C3

P7
4

G7
4

Propagated Carry

b3

a3

b6

a6

G4
P4

G7
P7

Generalized Propagate Pm
k

Generalized Generate Gm
k

�6

�5

�4

�3

C7

C3

P7
4

G7
4

Generated Carryb3

a3

b6

a6

G4
P4

G7
P7

Slide 59

Carleton University © John Knight
Digital Circuits p. 108 Revised; November 18, 2003

Addition Compromise Carry Look-Ahead Adder

Generalized generate and propagate.

Pm
k is a propagate between adder m and adder k

If Pm
k=1 then:

Ck-1 can propagate thru the adders
that produce Gk, Gk+1 ... Gm and Pk, Pk+1 ... Pm

(adders Σk-1, ..., Σm-1)
It comes out on Cm

Gm
k is a generate for adders m thru k that reaches m.

If G m
k=1 then:

a carry was generated inside the block of adders
that produce Gk, Gk+1 ... Gm and Pk, Pk+1 ... Pm
and propagated inside the block to the output.

�6

�5

�4

�3

Cm

Ck-1

Pm
k

Gm
k

Propagated Carry

bk-1

ak-1

bm-1

am-1

Gk
Pk

Gm
Pm

�6

�5

�4

�3

Cm

Ck-13

Pm
k

Gm
k

Generated Carrybk-1

ak-1

bm-1

am-1

Gk
Pk

Gm
Pm

Comment on Slide 59

Addition

© John Knight

Dig Cir p. 109 Revised; November 18, 2003

Generalized generate and propagate

Pm
k composite propagate.

For the adder’s inputs am-1 and bm-1

From other G and P signals

Examples:
P5

2 = P5P4P3P2 Pm
0 = PmPm-1Pm-2....P0

P5
3 = P5

5P4
3 P5

3 = P5
4P3

3

Gm
k composite generate

A carry is generated between m and k, and reaches m.

For the adder inputs am-1 and bm-1

From other G and P signals

am-1bm-1
Gm

Pm

Gj-1
k

Pm
j

Gm
k

Gm
j

Pm
k

Pj-1
k

Gm-1
k

Pm
m

Gm
k

Gm
m

Pm
k

Pm-1
k

G4
3

P5
5

G5
3

G5
5

P5
3

P4
3

Pm
m = Pm = am-1+bm-1, P0 = 1

Pm
k = PmPm-1

k = Pm
jPj-1

k

Gm
m = Gm = am-1bm-1, G0 = C0 which is often 0

Gm
k = Gm + PmGm-1

k = Gm
j + Pm

jGj-1
k

Slide 60

Carleton University © John Knight
Digital Circuits p. 110 Revised; November 18, 2003

Addition The Brent-Kung Carry-Lookahead Adder

The Brent-Kung Carry-Lookahead Adder
Brent and Kung introduced a generalized generate and propagate. Thus Pm

k represents a composite propagate
from adder m down to adder k.

For the adder’s initial inputs am and bm:-

After the initial inputs:-

Examples:
P5

2 = P5P4P3P2 Pm
0 = PmPm-1Pm-2....P0

P5
3 = P5

5P4
3 , P5

3 = P5
4P3

3 (c)

Also Gm
k represents a composite generate between adders m thru k.

For the initial adder inputs am and bm:-

After the initial inputs:-

Examples:

Gm
0 =Cm

G5
3= G5 + P5G4

3 (a)
= G5 + P5(G4+ P4G3

3) (b)
= (G5 + P5G4) + P5P4G3
= G5

4 + P5
4G3 (c)

am-1bm-1
Gm

Pm

G3
3

P4
4

G4
3

G4
4

P4
3

P3
3

G4
3

P5
5

G5
3

G5
5

P5
3

P4
3

G3
3

P5
4

G5
3

G5
4

P5
3

P3
3

P5
5

G5
3

G5
5

P5
3

(a)

(b)

(c)

Pm
m = Pm = am-1+bm-1, P0 = 1

Pm
k = PmPm-1

k = Pm
jPj-1

k

Gm
m = Gm = am-1bm-1, G0 = C0 which is often 0

Gm
k = Gm + PmGm-1

k = Gm
j + Pm

jGj-1
k

Comment on Slide 60

Addition

© John Knight

Dig Cir p. 111 Revised; November 18, 2003

Generalized generate and propagate.

Pm
k is a propagate between adder m and adder k

If Pm
k=1 then:

Ck-1 can propagate thru the adders
that produce Gk, Gk+1 ... Gm and Pk, Pk+1 ... Pm

(adders Σk-1, ..., Σm-1)
It comes out on Cm

Example

If P7
4=1 then:

C3 can propagate thru adders Σ3 to Σ6
and come out as C7

Gm
k is a generate for adders m thru k that reaches m.

If G m
k=1 then:

a carry was generated inside the block of adders
that produce Gk, Gk+1 ... Gm and Pk, Pk+1 ... Pm
and propagated inside the block to the output.

Example

If G7
4=1 then:

a carry was generated on G4, G5, G6, and/or G7
it was able to propagate to the output G7

4.
and come out on C7

�6

�5

�4

�3

C7

C3

P7
4

G7
4

Propagated Carry

b3

a3

b6

a6

G4
P4

G7
P7

�6

�5

�4

�3

C7

C3

P7
4

G7
4

Generated Carryb3

a3

b6

a6

G4
P4

G7
P7

Slide 61

Carleton University © John Knight
Digital Circuits p. 112 Revised; November 18, 2003

Addition The Brent-Kung Carry-Lookahead Adder

Add without an initial carry in C0

Larger Example

G1
0= C1= G1+ P1C0 =G1 + 0

G2
0= C2=G2 + P2C1 =G2 + P2G1

0

G4
3=G4+P4G3

G4
0= G4

3 + P4
3G2

0

=(G4+P4G3) + (P4P3)(G2 + P2G1
0)

Since C0 ≡ 0, we do not have to “waste” an
input, and the block can add 4-bit numbers.

P1

G2

G2
0

P2

G1

P2
0

P3

G4

G4
3

P4

G3

P4
3

P2
0

G4
3

G4
0=C4

P4
3

G2
0

P4
0=p4p3p2p1p0

Here C0 is taken as 0

b0

a0
C0≡0

so this adds 4 bit numbers.

G1=G1
0=C1 since C0=0

b3

a3

•
•
•

Comment on Slide 61

Addition

© John Knight

Dig Cir p. 113 Revised; November 18, 2003

The Generalized Carry Operator

Takes in two adjacent G and P pairs

Puts out a merged G and P pair

What to Remember
The General Formula for
combining carrys

The are absorbed

P1
0

G3
2

G3
0= C3

P3
2

G1
0

P3
0

Pj-1
k

Gm
j

Gm
k

Pm
j

Gj-1
k

Pm
k

ExampleIn General

Pj-1
k

Gm
j

Gm
k

Pm
j

Gj-1
k

Pm
k

j-1
k

m
j m

k

j-1
j

Slide 62

Carleton University © John Knight
Digital Circuits p. 114 Revised; November 18, 2003

Addition

Comment on Slide 62

Addition

© John Knight

Dig Cir p. 115 Revised; November 18, 2003

The Brent-Kung Carry-Lookahead Adder

�6

G3
0

P7
4

G7
0

�5 �4 �3

G7
4

�2

P3
0

�1 �0

G3
0

P7
0

P3
0

Carry structure
inside this block

P0

G1

G1
0= C1

P1

G0

P1
0

P2

G3

G3
2

P3

G2

P3
2

P1
0

G3
2

G3
0= C3

P3
2

G1
0

P3
0

Combining Pm
k and Gm

k

Gm
k = Gm

j + Pm
jGj-1

k

Pm
k = Pm

jPj-1
k

G7
0 = G7

4 + P7
4G3

0

P7
0 = P7

4P3
0

b0a0

adder
inputs

1

Cin

Pm
m = Pm

Gm
m = Gm

Gm
0 = Cm

b0

a0

b1

a1

C01

Carry in, C0 ,uses the
first adder position.
This block can only
add two 3-bit numbers.

If C0 ≡ 0, always, then two
4-bit numbers can be added.

b2

a2

b2a2b3a3b6a6

Slide 63

Carleton University © John Knight
Digital Circuits p. 116 Revised; November 18, 2003

Addition

7. PROBLEM:

Assume the implied interconnections to the left of the dividing line.
Sketch the circuit with interconnections to calculate carrys C8 through C15
Do not increase the depth more than necessary.

8.• PROBLEM

Following the example of the compromise adder, Slide 58, show how to reduce the size of a few of the
intermediate carrys in the Brent-Kung adder without reducing speed.One can only do the ones for the first n/2
bits. There is not as much saving here as in the compromise adder.

1
1

00

3
3

22

5
5

44

7
7

66

9
9

88

11
11

1010

3
01

0

3
2

7
45

4

7
6

11
89

8

11
10

7
03

0

7
4

13
13

1212

15
15

1414 15
1213

12

15
14

15
811

8

15
12

C10

C11

C12

C8

C9

C13

C14

C15

Comment on Slide 63

Addition

© John Knight

Dig Cir p. 117 Revised; November 18, 2003

P0

G1

G1
0= C1

P1

G0

P1
0

P2

G3

G3
2

P3

G2

P3
2

P1
0

G3
2

G3
0= C3

P3
2

G1
0

P3
0

P4

G5

G5
4

P5

G4

P5
4

P6

G7

G7
6

P7

G6

P7
6

P5
4

G7
6

G7
4

P7
6

G5
4

P7
4

P8

G9

G9
8

P9

G8

P9
8

P10

G11

G11
10

P11

G10

P11
10

G11
10

G11
8

P11
10

G9
8

P11
8

P9
8

P3
0

G7
4

G7
0= C7

P7
4

G3
0

P7
0

P7
0

G11
8

G11
0= C11

P11
8

P11
0

Brent-Kung Adder Showing Depth of Final Carry
Depth = log2(Number of bits)

DEPTH=4

DEPTH=3

Slide 64

Carleton University © John Knight
Digital Circuits p. 118 Revised; November 18, 2003

Addition

A 12 Bit Brent-Krung Adder
There were 11 of the three-gate blocks when only a fast C12 was needed.

None of this extra circuitry was needed for a ripple-carry adder using P and G. The gates to generate the initial P
and G are needed but not shown in the above diagram.

To get the other carries one must add another 9 three-gates pairs for a total of 20. This is shown on the next
slide.

Comment on Slide 64

Addition

© John Knight

Dig Cir p. 119 Revised; November 18, 2003

Brent-Kung Adder
Showing extra hardware for intermediate carrys
The depth is still 4 or less
The amount of hardware has nearly doubled.

1
1

00

3
3

22

5
5

44

7
7

66

9
9

88

11
11

1010

3
01

0

3
2

7
45

4

7
6

11
89

8

11
10

7
03

0

7
4

11
07

0

11
8

2
01

0

2

4
03

0

4

5
03

0

5
4

6
6

4
6

03
0

6
4

5
4

8
07

0

8

9
07

0

9
8

10
10

8
10

07
0

10
8

9
8

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

Gates From
Prev. Picture

New Gates
For Intrnal Carrys

DEPTH=4

DEPTH=3

DEPTH=2

Slide 65

Carleton University © John Knight
Digital Circuits p. 120 Revised; November 18, 2003

Addition Brent-Kung Adder Summary

Brent-Kung Adder Summary
• The depth of the carry chain increases by 1 when the number of bits doubles.

A depth of 4 would allow 9 to 16 bit words.

• Alternately the depth is the ceiling(log2(n)) where n is the number of bits.1 Remember that C0 takes up
one bit position unless it is always zero.

• The delay goes up more quickly because of the large fanout as n increases. On Slide 62, one
generalized gate fans out to 5 gates. An n bit adder will have one gate that fans out to about n/2 gates.

• The number of generalized carry blocks is, for a (n/2)log2(n), when n is a power of 2.

• For 32 bits or more, this adder has the maximum hardware of all the carry-lookahead adders.
Its area is proportional to nlog2(n). The area of the other carry look-ahead adders is proportional to n.

• It is a big power-hungry adder, but fast.

1. The ceiling is the smallest integer larger than a number

Comment on Slide 65

Addition

© John Knight

Dig Cir p. 121 Revised; November 18, 2003

Summary Of Adders Types (Previously Covered)

Σ1

C2

B1A1

� C0C1C4 C3

Σ0

B0A0

�

Σ2

B2A2

�

Σ3

B3A3

�
(1) Ripple-Carry

G3

P3

G2
P1

G4

P4
G1

P0

C3

C0
C4

C1

C0

C2

P0G1
G2

C0

Σ3

B3A3

�

Σ2

B2A2

�

Σ1

B1A1

�

Σ0

B0A0

�

(2) Carry Look-Ahead

1
1

00

3
3

22

5
5

44 3
01

0

3
2

2
01

0

2 4
03

0

4

5
03

0

5
4

C1

C2

C4

C3

C5

(3) Brent-Kung

slow; delay = O(n)
small; area = O(n)

faster; delay = O(n)

large; area = O(n)

fastest O(log2(n))
largest O(nlog2(n))

2x(ripple area)

0.5x(ripple delay)

area passes compromise
carry look-ahead about n=10

P1

G1

P5

G5

P0

G0

Slide 66

Carleton University © John Knight
Digital Circuits p. 122 Revised; November 18, 2003

Addition Properties of look-ahead adders

Properties of look-ahead adders

O(n) notation
The notation delay=O(n), means that the delay increases in proportion to n for large n.

Thus delay=13n is O(n), but so is delay = 26 + 13n because the 26 is negligible when n is large

More generally if some property = a + bn + cn2 + dn3

the property is said to be O(n3) because it increases proportional to n3 for large n.

For n=4 or 8, small details in implementation, like buffer sizing, may make the look-ahead faster than Brent-
Kung, but when n>32, it is clear that Brent-Kung will beat the pants off the others.

B
re

nt
-K

un
g

Ripple with P&G

Ful
l l

oo
k-

ah
ea

d

Compromise look-ahead

Brent-Kung

Full look-ahead

Compromise look-ahead

Rip
pl

e
w

ith
P&G

Number of bits (n)Number of bits (n)

D
el

ayA
re

a

32 64 32 64

To the final
carry out.
Some sum bits
take a little longer.

Comment on Slide 66

Addition

© John Knight

Dig Cir p. 123 Revised; November 18, 2003

Summary Of Adders Types : (About to be covered)

1

0
C0A3

B3
A2

B2
A3

B3
A0

B0

Σ

C4 1
1

1
1A7

B7
A6

B6
A5

B5
A4

B4
C8

1

01
1

1
1

Σ STAGE 2 STAGE 16) Carry Select

G3
P3

G2
P2

G4

P4

G1
P1

C1C3

C0
1

1G1

MUX
C4 C0

P4

C2

P3 P2 P1

When P3P2P1P0=1, does not wait for the ripple carry.

5) Carry Skip

C0

Σ3

B3A3

�

Σ2

B2A2

�

Σ1

B1A1

�

Σ0

B0A0

�

Four New Adder Types

Speeds up slowest
C0->C4 path
with little
extra area.

Does not help
other paths.

Doubles area

Very fast path
C0->C4

Still
delay = O(n)

Select the correct one

Adder for C0=1Adder for C4=1

Adder for C4=0 Adder for C0=0

Calculate answers for both
C0=1 and for C0=0

Slide 67

Carleton University © John Knight
Digital Circuits p. 124 Revised; November 18, 2003

Addition Properties of these new adders

Properties of these new adders
Carry-Bypass (Carry-Skip)

This is much like the compromise look-ahead adder.:

• The logic is a little smaller because the gate to calculate C4 is smaller.

• The smaller gate will make the C0-> C4 path slightly faster.

• The path Ai,Bi -> C4 will be slower.

Carry-Select
Calculate 4-bit sums with Cin=0 and Cin=1. Use Cin to select the correct one.

• Double the size of the base adder.

• The path C0->C4->C8 is very fast.
The delay is mainly in the 4-bit adder block.

• For cascade blocks, the adds are all done in parallel.
C0 beats the mux inputs at the C4 mux,
but the data is waiting at the C8 mux when the C4 control signal gets there.

Comment on Slide 67

Addition

© John Knight

Dig Cir p. 125 Revised; November 18, 2003

Types of Adders Summary: (About to be covered, cont)
(7) Conditional Sum Adder

G3 P3

B2A2B3A3

G2 P2

G4

G1

P1

B0A0B1A1

Cout

G2
1

P2
1

G3
1

P3
1

P4
1

G4
1

0 1

G
1

M
UX

Σ

P4

Σ Σ Σ Σ Σ Σ Σ

Σ2
Σ0Σ1

C0

Σ3

(8) Carry Save Adder
7:0 7:07:0

8:17:08:1 7:0 7:08:1

9:2 8:1 8:1 7:0

10:3 9:1

11:4 10:0

12:0

7:0 7:07:0 7:0 7:07:0

ΣC ΣC ΣC

ΣCΣC

ΣC

ΣC

Combination of
carry-select
carry-skip

Used for multiple adds

Carry and Sum seperate

Adds nine
8-bit numbers

Carry not propagated

until the last adder.

Σ1

B1A1 D1

C2 Σ0

B0A0

�

D0

C1

�

Σ1C2

�

�

Σ3C3

Adding three
2-bit numbers

Final answer

Slide 68

Carleton University © John Knight
Digital Circuits p. 126 Revised; November 18, 2003

Addition Properties of these new adders

Properties of these new adders
Conditional Sum Adder

This is much like the compromise look-ahead adder.

• It calculates both sums and selects the correct one, like the carry-select adder.

• It calculates C4 much like the carry-bypass adder.

• It is probably the fastest adder after the Brent-Kung.

Carry-Save Adder
An adder for a different purpose.

• It is good for adding several numbers, such as in multipliers.

• It uses the carry inputs in its adders to add a third number.

• Three numbers go in and two (a vector of carry bits and a vector of sum bits) come out.

• At the end one must add the two vectors together with a normal adder which propagates the carries.
However it saves propagating carries during each two-number add.

Comment on Slide 68

The Carry-Bypass Adder)

© John Knight

Dig Cir p. 127 Revised; November 18, 2003

The Carry-Bypass Adder)

Generate and Propagate Revisited
• Redefine P=A⊕B

• Then when P=1, COUT =CIN

Extend this across 4 bits

• When P3P2P1P0=1, C4 = C0

The Carry-Bypass Adder

• C0 -> C4 has two paths, one fast and one slow.

• The red (slow path) cannot actually happen and is called a false path.

CINCOUT

G=AB

P=A⊕B

P + G

A
B

0

1

0 1

0

1

CIN

CIN

COUT

G3
P3

Σ3

B3A3

G2
P2

G4

P4

G0
P1

Σ0

C0

B0A0

�

Σ1

C1

B1A1

�C3�

C0C4
1

1G1

MUX
C4

C0

P4 Σ2

C2

B2A2

�

P3 P2 P1

When P4P3P2P1=1, do not wait for the ripple carry.
Switch the MUX and get C4=C0 directly.

Slide 69

Carleton University © John Knight
Digital Circuits p. 128 Revised; November 18, 2003

The Carry-Bypass Adder) The Carry-Bypass Adder

The Carry-Bypass Adder
This circuit allows the carry to bypass certain adder sections where the propagate signals are all asserted.

It speeds up the longest path where a carry propagates all the way from C0 to C4

Comment on Slide 69

False Paths

© John Knight

Dig Cir p. 129 Revised; November 18, 2003

False Paths

An continuous path through combinational gates that:

1) cannot be sensitized, or

2) always has a faster sensitized parallel path.

Sensitized Path

A path that can be made to propagate a signal change.

false path

false path

C=0

A=0

B

A=1

1
1 1

A=0

0
0 0

B

B
fast path

(1) (2)

1
1
0

1

0

0
1

1

0

sensitized path

Slide 70

Carleton University © John Knight
Digital Circuits p. 130 Revised; November 18, 2003

False Paths The Carry-Bypass Adder

False Paths
A false path is a connection through gates from the start to the end of the path which will never propagate a
signal change (be sensitized) under proper operation.
.

false path

False path when the complete path cannot be sensitized. The carry-bypass adder has that type of path.

False path due to redundant circuitry. F = CB + CA + AB

false path

false pathThe term AB is redundant. Any

C

A

B
signal change through the inverter in
the B path, will get to F faster through CB.

redundant

Comment on Slide 70

False Paths

© John Knight

Dig Cir p. 131 Revised; November 18, 2003

False Paths
Paths that will never propagate a signal change

Long unused paths cause two problems, timing and testing

Timing problems
• Static timing verification checks the delay of the

longest combinational paths in a circuit.
• Path delay - input reg to output register - must be

under a clock cycle.
• Here timing verification will say the clock period

should be at least 70 ns.

If the 70 ns path is a false path,
and the next longest real path is 40 ns.
• The verifier will state the clock period > 80ns.
• You will likely believe it!

Testing Problems

Suppose the MUX in the carry-bypass adder was stuck
up. The circuit would still work albeit more slowly.
• One needs a test in which the 80ns path output is

definitely wrong for the 60 ns or so.
• Generating this glitch free test is very difficult.
• Also testing usually not done at maximum speed.

1D

C1

1D

C1

1D

C1

1D

C1

1D

C1

1D

C1

40 ns

70 ns

CLK

CLK CLK

GOOD CIRCUIT

FALSE PATH ONLY (IDEAL)

40 ns PATH

TESTER CHECKS
HERE

FALSE PATH ONLY (WITH GLITCHES)

70 ns PATH

Slide 71

Carleton University © John Knight
Digital Circuits p. 132 Revised; November 18, 2003

False Paths False Paths in the Carry-Bypass Adder

False Paths in the Carry-Bypass Adder
Timing Problems.

Synchronous logic

• In synchronous logic the input flip-flop outputs change just after the active clock edge.

• These changes propagate through the combinational logic (gates only, no flip-flops). The outputs of the
gates change.They may go up and down several times.

• Eventually the changes will die out and the logic levels will stabilize.

• After that a new active clock edge may come and store these stable values in the output flip-flops.

• One must have:
(The clock period) > (longest delay through the combinational logic).

False Paths

• A false path is one which can never propagate a level change to an output.

• A common reason is the false path has a redundant parallel path. The output gets the correct answer
from another path in less time than the propagation delay through the false path.

• Another reason is that the gates in the false path cannot all turn on at once.

Static Timing Verification
• After a circuit is designed and converted to a silicon layout, the delays in each gate can be calculated.

• A timing verifier is a program which goes through a logic circuit after all the gate delays have been
estimated, and calculates that if all signals will be stable before the next clock edge.

• Unfortunately many of these programs only check the propagation delay along a path.
They do not know if the output will be stabilized sooner by another parallel path.
They do not know if the all the gates in the path can be turned on at once.

• Thus they will suggest making the clock slower than is actually needed.

false path

Comment on Slide 71

False Paths

© John Knight

Dig Cir p. 133 Revised; November 18, 2003

The Redundant Carry-Bypass Adder (Carry-Skip)

Case I. The Redundant Path

G2 P2
G1 P1

Σ0

C0

B0A0

�

Σ1

C1

B1A1

�

C0

P2 P1

E2
1
1G1

MUXC2
C0

01

10

01A0B0

A1B1

00

01

11

10

00 01

C0

C0

C0

C0

11 10A0B0

A1B1

Separate into

C2 =

MUX Control = P2P1

P
1=

A
0⊕

B
0

P2= A1⊕B1

C2 = (P2P1)C0

• Variable entered maps:

MUX DOWN, P2P1 =1

P2P1C0

00

01

11

10

00 01

E2 E2

E2

E2

E2 E2

E2

E2

11 10A0B0

A1B1

E2 E2 E2 E2

E2=G2+P2G1+P2P1C0

MUX UP, P2P1 = 0

C2= (P2•P1)E2

• Shaded squares selected by MUX.
squares are don't care squares, and never selected.

When P2P1=1, map value = C0

10

When P2P1=0, map value = E2

(P2P1)E2

Map for

Map for

E2 = G2+P2(G1+P1C0)
= G2 + P2G1 + P2P1C0

- MUX up path
- MUX down path

as P=A⊕B

Recall we redefined P

Slide 72

Carleton University © John Knight
Digital Circuits p. 134 Revised; November 18, 2003

False Paths False Paths in the Carry-Bypass Adder

False Paths in the Carry-Bypass Adder (cont.)

Testing Problems

The tester would:
load the flip-flops with a test input,
trigger a clock edge,

wait for a clock period,
and then trigger another clock edge and read the outputs as captured by the flip-flops.

If the outputs are stable, it is easy to compare expected and actual signals. If the output is still active when the
clock comes it is, difficult to predict what the actual signal will do. One needs to be sure the flip-flop will
capture a wrong value if the faster path is defective. Designing such a test is difficult even for a single false path.
Such tests cannot be done by normal test generation programs.

Most modern tests do not test at the full clock speed. Scan tests, to be discussed later, do not run at full speed.

Faster Circuits Do Not Have To Have False Paths

False paths are not necessary. It was proven in19911 that any redundant path, put in strictly to improve speed,
could be replaced by a nonredundant circuit with no speed penalty.

1. K, Keutzer, S. Malik and A. Saldanha, “Is Redundancy Necessary to Reduce Delay?”, IEEE Trans, on CAD, April 1991, pp 427-435.

False paths are not necessary

Comment on Slide 72

False Paths

© John Knight

Dig Cir p. 135 Revised; November 18, 2003

The Redundant Carry-Bypass Adder (Carry-Skip)

Case I. The Redundant Path (cont.)

G2 P2
G1 P1

Σ0

C0

B0A0

�

Σ1

C1

B1A1

�

C0

P2 P1

E2
1
1G1

MUXC2
C0

01

10

01A0B0

A1B1

11

A0B0

A1B1

00

01

11

10

11A0B0

A1B1

E2 = G2+P2G1 + P2P1C0)

C2 =

P
1=

A
0⊕

B
0

P2= A1⊕B1

P2= A1⊕B1

C2 = P2P1C0

G
1=

A
0·

B
0

G
2=

A
1·

B
1

MUX DOWN, P2P1 =1

P2P1C0

00

01

11

10

00 01

0 0

0

0

0

G2

11 10A0B0

A1B1

0

E2=G2+P2G1+P2P1C0

MUX UP, P2P1 = 0

C2= (P2P1)E2

don't care squares.

10

01 10

G2

G2

G2

P2G1P2G1

• False Path, never selected here .
Data travels over path selected here .

00

01

11

10

00 01

C0

C0

C0

C0

11 10A0B0

A1B1

C0

C0

C0

C0C0C0

C0

C0

C0

C0 C0

C0

P2G1 P2G1

P2P1 P2P1

P2P1P2P1

(P2P1)E2

Map of
Mux Control=P2P1

Show E2 is more complex
than needed

Redundant

Map of P2G1Map of G2

Slide 73

Carleton University © John Knight
Digital Circuits p. 136 Revised; November 18, 2003

False Paths The Redundant Carry-Bypass Adder

The Redundant Carry-Bypass Adder
The Maps for E2, the Upper MUX Input

• Three maps, G2, P2G2 and P2P1, derive the expression for E2. The left map encircles the G2 term. These
squares will be “1”s of E2.

• The centre map encircles the two columns of P2 and the row of G1. The term is P2·G1 so the
intersection of the circles will be “1”s of E2.

• The lower centre map shows P2·P1 as the four squares at the intersections of the columns, P2, and the
rows, P1.

• The OR of the three maps is E2 and is shown in the “MUX UP” map.

• The MUX DOWN map shows P2·P1·C0. The value C0 is placed in those 4 squares. This avoids making
a 5-variable map.

Don't Care Conditions Caused By Multiple Equations.

The four squares in the “MUX UP” map are don’t care because the mux is always down (P2P1=1) for those
four squares. For the function E2, those squares contain the value of C0, but who cares, they never transfer this
value to the output C2.

The twelve squares in the “MUX DOWN” map are don’t care because the mux is down (P1P2=1) for only
four squares. The map is actually filled with the value of C0, but only the four useful ones are shown.

Comment on Slide 73

False Paths

© John Knight

Dig Cir p. 137 Revised; November 18, 2003

The Redundant Carry-Bypass Adder (Carry-Skip)

Case II. A Nonredundant Path (cont.)

G2 P2
G1 P1

Σ0

C0

B0A0

�

Σ1

C1

B1A1

�

C0

P2 P1

H2
1
1G1

MUXC2
C0

01

10

01A0B0

A1B1

11

A0B0

A1B1

00

01

11

10

11A0B0

A1B1

H2 = G2+P2G1 + P2P1C0)

C2 =

P
1=

A
0⊕

B
0

P2= A1⊕B1

Map of P2G1

P2= A1⊕B1

Map of G2

C2 = P2P1C0

G
1=

A
0·

B
0

G
2=

A
1·

B
1

MUX DOWN, P2P1 =1

P2P1C0

00

01

11

10

00 01

0 0

0

0

0

G2

11 10A0B0

A1B1

0

H2=G2+P2G1

MUX UP, P2P1 = 0

C2= (P2P1)H2

don't care squares.

10

01 10

G2

G2

G2

P2G1P2G1

• False Path, removed .
Data travels over path selected here .

00

01

11

10

00 01

C0

C0

C0

C0

11 10A0B0

A1B1

C0

C0

C0

C0C0C0

C0

C0

C0

C0 C0

C0

P2G1 P2G1

P2P1 P2P1

P2P1P2P1

(P2P1)H2

Map of
Mux Control=P2P1

E2 is reduced to H2
Redundant path removed

No false path

Slide 74

Carleton University © John Knight
Digital Circuits p. 138 Revised; November 18, 2003

False Paths A Nonredundant Carry-Bypass Adder

A Nonredundant Carry-Bypass Adder
The Upper MUX Input

• In the previous slide
E2 = G2 + P2G2 + P2P1C0

The P2P1C0 term was redundant because it was never “1” when the mux was in its upper position.
This term is only used in the lower mux position.

• In this slide we drop P2P1C0 from E2 leaving
E2 = G2 + P2G2

• This removes the false path.
C0 no longer appears to have a path through the upper position in the mux.

Comment on Slide 74

False Paths

© John Knight

Dig Cir p. 139 Revised; November 18, 2003

Case III. The Simpler Nonredundant Path

G2 P2
G1 P1

Σ0

C0

B0A0

�

Σ1

C1

B1A1

�

C0

P2 P1

01 10A0B0

A1B1

01 10A0B0

A1B1

00

01

11

10

11A0B0

A1B1

00

01

11

10

00 01

C0

C0

C0

C0

11 10A0B0

A1B1

F2 = G2+P2A0

C2 =

Map of Mux Control=P2P1

P1= A0⊕B0

P2= A1⊕B1

Map of A0P2Map of G2

C2 = P2P1C0

A0G
2=

A
1·

B
1

MUX DOWN, P2P2 =1

(P2P1)F2

P2P1C0

00

01

11

10

00 01

0 0

0 0

0

0

0

G2

11 10A0B0

A1B1

0

F2=G2+P2A0

MUX UP, P2P1 = 0

C2= (P2P1)F2

A0

P2= A1⊕B1

F2
1
1G1

MUXC2
C0

G2

G2

G2

A0P2 A0P2

A0P2 A0P2

A0P2 A0P2

A0P2 A0P2

C0

C0

C0

C0C0C0

C0

C0

C0

C0 C0

C0

P2P1 P2P1

P2P1P2P1

Faster than the previous one!

Slide 75

Carleton University © John Knight
Digital Circuits p. 140 Revised; November 18, 2003

False Paths The Carry-Bypass Adder, Nonredundant

The Carry-Bypass Adder, Nonredundant Circuit
Here the P2P1C0 term is replaced by A0.
The new output F2 is the same as the previous E2 except for the four “don’t care” squares.

Compare E2 and F2 equations and maps.
E2 = G2+ P2G1 + P2P1C0) F2 = G2+P2A0

• The P2P1C0 term only appeared in the don’t care squares. It was removed.

• The P2G1only appeared in two squares. It was replaced by a P2A0 that made those two squares correct
but changed the don’t care squares.

Summary

• The don’t care terms were caused by partitioning the logic into several functions.

• The don’t care terms were utilized to remove redundant logic and false a path.

• Now both the static-timing verifier and the test engineer are happy.

9. PROBLEM

Recall that here P2 = A1⊕B1. The term P2A0 is on the time-critical path, and can be replaced by a slightly
faster term. However it will cost a few extra transistors because one will not be able to utilize the adders XOR
gate. Find this revised circuit.

Comment on Slide 75

Adders

© John Knight

Dig Cir p. 141 Revised; November 18, 2003

Adders

The Carry Select Adder

Trade silicon for speed.
Uses Two Adders.

• Do 2 parallel adds
• One based on C0=0.

The other for C0=1.
• Use C0 to select the

correct answer.

Time Saving

One stage saves little time.

Best with many stages.
The add blocks are all done
in parallel.

The carries ripple through
the stages with one MUX
delay per stage.

3-stage time delay = time for 4-bit add + 3*(delay thru MUX)

A3
B3

A2
B2

A3
B3

A0
B0

Σ3 Σ2 Σ1 Σ0

C0=1

1

1G1

MUX

Σ3 Σ2 Σ1 Σ0

C
0
=

0

1
1G1

MUXC4

Σ3

Σ2

Σ1

Σ0

YOUR FAVORITE 4-BIT ADDER

YOUR FAVORITE 4-BIT ADDER

C4

C4

4

4 C0

1

0
C0A3

B3
A2

B2
A3

B3
A0

B0

Σ

C4 1
1

1
1A7

B7
A6

B6
A5

B5
A4

B4
C8

1

01
1

1
1

Σ

A11
B11

A10
B10

A9
B9

A8
B8

C12

1

01
1

1
1

Σ STAGE 3 STAGE 2 STAGE 1

Slide 76

Carleton University © John Knight
Digital Circuits p. 142 Revised; November 18, 2003

Adders The Carry-Select Adder

The Carry-Select Adder
A Fast, But Large, Adder

This adder consists of two normal adders in parallel. They might be ripple-carry or carry look-ahead, or any
other type. They would usually be 4-bits adders or more.
One adder adds as if C0=0, the other as if C0=1. The real C0 selects the correct answer with a MUX.

Speed

The 4-bit single MUX carry-select adder saves only one or two gate delays in the right-hand section. Probably
about the same as the extra delay added by the MUX.

The carry-select adder is best for long word lengths broken into sections. For example 32 bits made of 8
sections of 4 bits each.

All the adds are done at the same time, so there is an initial delay for them to finish. Then the sums and carry
outputs are available, but no one knows which to use.

Then the carry must propagate serially through the chain of MUXs, each carry switching a MUX which selects
a carry, which in turn is used as the control for the next MUX.

This delay increases linearly with the number of MUXs. However it is faster than most other systems which
increase linearly with the number of full adders.

10. PROBLEM

Does the carry-select adder contain redundant paths?

HINTS

Are there two apparent paths for the carry? Check the paths, is one ever turned off so a change cannot propagate
through it, while the other is turned on? Alternately do two paths give the same answer but one path clearly
always faster than the other.

Comment on Slide 76

Adders

© John Knight

Dig Cir p. 143 Revised; November 18, 2003

The Carry-Select Adder (Cont.)
The two adders can share some circuitry

• The common blocks contain G=AB; P= A⊕B.

• The distinct (striped) block contain S=P⊕CPREV; C=G+PCOLD for each bit

• About 60% more area than a single adder.

C0

B3

A3

P4
G4

B2

A2

P3
G3

B2

A2

P2
G2

B0

A0

P1
G1

Σ3 Σ2 Σ1 Σ0
C4

C0=1

1

1G1

MUX

Σ3 Σ2 Σ1 Σ0

C4

P4G4 P3G3 P2G2 P1G1

C0=0
1
1G1

MUXC4

Σ3

Σ2

Σ1

Σ0

4

4

P4G4 P3G3 P2G2 P1G1

Σ = P⊕CPREV

C

G

CPREV

P

common

Slide 77

Carleton University © John Knight
Digital Circuits p. 144 Revised; November 18, 2003

Adders The Carry-Select Adder (Cont.)

The Carry-Select Adder (Cont.)
Sharing Circuitry

The propagate and generate circuits are common to the upper and lower adders because they do not use the carry.
The other circuits involve carries and must be separate.

11. PROBLEM

Since the c0 input is known to be 1 or 0, redesign the first full-adders in each 4-bit chain to utilize this fact.

Comment on Slide 77

Conditional Sum Adder

© John Knight

Dig Cir p. 145 Revised; November 18, 2003

Conditional Sum Adder

G3 P3

B3A3B4A4

G2 P2
G4 G1 P1

B1A1B2A2

Cout

G2
1

P2
1 = P2P1

G3
1

P3
1 = P3P2

1

P4
1 = P4P3

1

G4
1

0 1

G
1

M
UX

Σ

P4

Σ Σ Σ Σ Σ Σ Σ

Σ4 Σ3
Σ1Σ2

C0

Slide 78

Carleton University © John Knight
Digital Circuits p. 146 Revised; November 18, 2003

Conditional Sum Adder The Conditional-Sum Adder

The Conditional-Sum Adder
At one time considered to be the fastest adder theoretically.
It combines features of the carry look-ahead, the carry-select, and the carry-bypass adders.

Each adder block calculates:

P = carry out if there is a carry in, Cout(C0=1).
G= carry out if it is independent of a carry in, Cout(C0=0).
Σ = sum out if carry in is 0, Σ(Cin=0).
Σ = sum out if carry in is 1, Σ(Cin=1).

Select the right carry and the right sum outside the adder block

Outside the adder block the previous P and G lines along with C0 are used to select the proper sum.
The proper carry out is G if C0=1 and P if C0=0
However the proper one is not selected immediately. Both are passed on to the next adder block.
The next block upgrades P and G and passes them on.

The carry out from a block of (usually four) adders is selected from the previous P and G by C0.

Comment on Slide 78

Conditional Sum Adder

© John Knight

Dig Cir p. 147 Revised; November 18, 2003

G4 P4

B3A3

Calculate in the adder box

Cout = Gn
0

C0

G3
1 = G3 + P3G2

1

P3
1 = P3P2

1G4
1 = G4 + P4G3

1

P4
1 = P4P3

1

Σ Σ

Σ3

Gk+1
1 = carry out from the kth adder

Gk+1
2 = carry out from the kth adder

Pn
1 = PnPn-1 · · · P2P1

Sum Σk=
Pk if Ck-1=1

Pn
1 = PnPn-1

1

Gn
1 = Gn + PnGn-1

1

Gk if Ck-1=0Σ if Ck=0

Σk-1 = Ak-1⊕Bk-1

Σ if Ck=1
Carry out Ck = Σk-1 = Ak-1⊕Bk-1⊕1

Gk = Ak-1Bk-1

Pk = Ak-1+Bk-1

Select the correct sum to send out

Select the right carry to send on.

ignoring C0. (C0=0)

Gk+1
0 = carry out from the kth adder

ignoring G1,P1, and C0. (G1=0=C0)

a bit can propagate C0� Cout

= PnPn-1 · · · P2P1

If (Pn
1 ==1), then

Calculate both sum and carry values

Slide 79

Carleton University © John Knight
Digital Circuits p. 148 Revised; November 18, 2003

Conditional Sum Adder The Conditional-Sum Adder

Carry Calculations1

The initial carry C0 bypasses all intermediate carry calculations

Two carries are calculated:
One G is value of the carry if C0=0

The other P is the value if C0=1.

C0 is not used to tell which carry is correct until the final output carry.

Notice that the propagation delay for P is exactly that of the carry-bypass adder, the delay of 4 ANDs and 2 ORs.

Also note that the next block takes in C4 and sends out C8.
The signals P and G are calculated in parallel with those in the first block, so C8 does not have to wait extra time
for its P and G. The delay for C8 is that of 5 ANDs and 3 Ors

1. A. Bellaouar and M Elmasary, Low-powered Digital VLSI Design Circuits and Systems, Kluwer 1995, p.424 has a good summary
of the csa..

Σ Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ Σ

C8

C4

C0

Calculated in parallel

Comment on Slide 79

Conditional Sum Adder

© John Knight

Dig Cir p. 149 Revised; November 18, 2003

Conditional Sum Adder

G3

P3

B2A2B3A3

G2

P2

G4

G1

P1

B0A0B1A1

Carry Calculations

Cout=G4
0

C0

G2
1 = G2 + P2G1

P2
1 = P2P1

G3
1 = G3 + P3G2

1

P3
1 = P3P2

1

P4
1 = P4P3

1

G4
1 = G4 + P4G3

1

1 1

Σ

P4

Σ Σ Σ Σ Σ Σ Σ

Σ3 Σ2 Σ1

G4
0 = carry out from the 4th adder = Cout

G4
1 = carry out from the 4th adder with C0 =0

Σ0

P4
1 = P4P3P2P1

i.e C0 =1 � Cout =1

C3 if C0 is ignored

C4 if C0 is ignored

C2 if C0 is ignored

If (P4
1 =1) if a carry would propagate through all 4 adders

Slide 80

Carleton University © John Knight
Digital Circuits p. 150 Revised; November 18, 2003

Conditional Sum Adder The Conditional-Sum Adder

Carry Calculations

The G chain

This is the same as the carry chain in the P and G ripple adder except it does not contain C0.

It calculates C1, C2, C3 and C4, ignoring C0.

The P chain

This is the same as the P chain in the carry-bypass adder, except, as shown on the next page, it has taps to select
the correct sum for individual full adders.

Comparison with other schemes

Combination of carry-select and carry-bypass adders

Like the carry-select adder, it calculates both Σ(C0=0) and Σ(C0=1).

It sends C0 -> Cout directly if all propagate signals are true, like the carry-bypass adder. Thus the propagate
time, if C0 goes to Cout is almost the same as for the carry-bypass adder. The extra P line loading will slow it a
little.

Note also this carry bypass is done for all the adders, for example Σ4 is controlled by P3P2P1C0. This means the
individual sum terms will be faster than in the carry look ahead adder which uses G3+P3(G2+P2(G1+P1C0)))
to propagate C0 into adder 4.

It uses the generalized generate signal Gn
k which signals if a carry comes from circuitry between adders n and

k. This is like the Brent-Kung adder, except here it uses only Gn
1

It does not use the logarithmic carry propagation so, for long word lengths, it will be slower than Brent-Kung.

There is an alternate implementation of the carry-select adder which uses transmission gates.1

1. See Jan M. Rabaey, Digital Integrated Circuits, Prentice Hall, 1996, Chapt. 7, Prob. 8, pp. 429-30.

Comment on Slide 80

Conditional Sum Adder

© John Knight

Dig Cir p. 151 Revised; November 18, 2003

Conditional Sum Adder

G3 P3

B2A2B3A3

G2 P2
G4

G1 P1

B0A0B1A1

Selecting the sum terms

Cout

C0

G2
1

P2
1 = P2P1

G3
1

P3
1 = P3P2

1

P4
1 = P4P3

1

G4
1

1 1

G
1

M
UX

Σ

P4

Σ Σ Σ Σ Σ Σ Σ

Σ3 Σ2
Σ1

Pk
1

C0

Gk
1

Σ Σ

1 1

GP
00 01 11 10

0

1

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

C0

Sum if carry in is 1
Sum if carry in is 0

Σ0

carry in = Gk
0 = Gk

1 + Pk
1C0

Slide 81

Carleton University © John Knight
Digital Circuits p. 152 Revised; November 18, 2003

Conditional Sum Adder Conditional Sum Adder

Conditional Sum Adder

Comment on Slide 81

Conditional Sum Adder

© John Knight

Dig Cir p. 153 Revised; November 18, 2003

Reducing Delay By Gradually Increasing Stage Length
The stages calculate in parallel
• Their outputs reach the carry muxs at the same time (with equal lengths).
• Path 0 delay increases by a mux delay at each stage.

If (mux delay) ≈ (G P delay), can do one more add in each successive stage.

Carry-Select

Delay now increases as sqrt(n), O(√n), instead of linearly with n, O(n).

Carry-Bypass

C0
C2 1

1

C5 1
1

C9 1
1

STAGE 3 STAGE 1

Inputs 2 to 4Inputs 5 to 8

STAGE 2

4 bits 3bits

path 3

Inputs 0 to 1
2 bits

path 0

1

0

1

0

1

0

C0
C2 1

1

C5 1
1

C9 1
1

STAGE 3 STAGE 1

Inputs 5 to 8

STAGE 2

4 bits

path 3

path 0

Inputs 2 to 4
3bits 2 bits

Inputs 0 to 1
S3 S2 S1

path 1

Slide 82

Carleton University © John Knight
Digital Circuits p. 154 Revised; November 18, 2003

Conditional Sum Adder Increasing Stage Length

Increasing Stage Length
Renumber the carrys by stage by making the output carry of stage k be Sk. In the picture, S1=C2, S2=C4, ...

Balance delays so path 0 and path k are equal. Path k is the longest path from some stage k input to Sk.
τk is its path delay. Path 3 is shown.

In the first stage, signal C0 will reach S1 before the signal on path 1, so the delay to S1 is τ1.

After that, as long as path k can reach mux k before the signal along path 0, then
(delay along path 0 up to carry Sk) = τ0k = τ1+k*τmux

The increase in delay between τ0k and τ0(k+1) is one mux delay as long as path k+1 can reach the mux k before
the signal along path 0.

Thus we can increase the delay along each path k by one mux delay for each stage.

Thus τ0m, the total carry-out delay for m stages, is τ1+m*τmux

The number of full adders, n = 2+3+4+5+. . .+ m = m(m+1)/2 - 1. (Sum of arithmetic series)

Solve the quadratic equation to find m = -0.5 + √(2.25 + n)

For n>>2.25 τ0m ≈ τmux√n

Balancing the whole sum
Carry-Bypass

The circuits above have the delay to
the final carry faster than to some of
the high order bits of the sum. Then one of the critical paths is shown on the right. Here the stage length is
decreased symmetrically on both ends to equalize the delay to the final sum bit in each stage.

Carry-Select

Here the final sum is selected in parallel by the carry. Shortening the most-significant end is not necessary.

Comment on Slide 82

Conditional Sum Adder

© John Knight

Dig Cir p. 155 Revised; November 18, 2003

Comparison of Adders1

Adapted from Rabaey.

The carry select adder area and speed depends on the stage “your favourite” adder type.

Details will change relative properties, particularly for low n.

1. Jan M. Rabaey, Digital Integrated Circuits, Prentice Hall, 1995. pp. 399, 403, 424.

Ripple

Skip
BypassLo

oka
hea

d

Number of bits (n)

A
re

a

Look Ahead

Select

R
ip

pl
e

D
e
la

y

Number of bits (n)
32

√

Bypass√

328

Slide 83

Carleton University © John Knight
Digital Circuits p. 156 Revised; November 18, 2003

Conditional Sum Adder Summary of Adders

Summary of Adders
Ripple-carry adder is the smallest and the lowest power consumption, and for short words it may be fastest.

The bit-serial version is very small and very slow. It takes in and gives out bit streams. See
Lealand Jackson, Digital Filters and Signal Processing, Kluwer 1989, pp 343-345.

The Brent-Kung adder is by far the fastest, but it gets very large.
The conditional-sum adder is the second choice for speed, and has much less area.

Experience with Small Adders

For small adders, O(n) approximations may be misleading.

For 4 to 7 bit adds, using library Designware, a Carleton graduate student, Youxing Zhao found:
The conditional sum adder (csa) was the fastest.
The ripple carry adder (rpl) was second and significantly slower.
The fast carry look-ahead (clf) was third.
The Brent-Kung (bk) and the carry look-ahead adder (cla) were last and about the same.

Comment on Slide 83

Verilog Adders

© John Knight

Dig Cir p. 157 Revised; November 18, 2003

Verilog Adders

Ripple-Carry Adder

module ripple_add8(cout,s,a,b,cin);
input [7:0] a, b, input cin;
output [7:0] s; reg [7:0] s;
output cout; reg cout;
integer i;
wire cy;

always @(a or b or cin)
begin

cy=cin
for (i=0; i<=7; i=i+1)

begin
{cy, s[i]) = a[i] + b[i] + cy;

end
cout=cy;

end

endmodule // ripple_add8

s[0]

cinc1

b[0]a[0]

FA0

s[2]

c3

a[2]

FA2

b[2]

s[1]

c2

a[1]

FA1

b[1]

s[3]

c4

a[3]

FA3

b[3]

s[7]

cout

a[7]

FA7

b[7]

Slide 84

Carleton University © John Knight
Digital Circuits p. 158 Revised; November 18, 2003

Verilog Adders Verilog Adders

Verilog Adders
Ripple-Carry Adder

Connections

• The input and output ports, a, b, cin, cout and s, do not have to be declared again.
The internal connection, c1, c2, ..., normally would be declared. However:

• Wires do not have to be declared explicitly if they serve as wiring between arguments of module
instantiations. For example c1, c2,

Module Definitions

• We define a module ripple_add8 and a module fulladder. Ripple_add8 calls
fulladder eight times.

• The definition of a module must be completely outside the definition of any other module. Note the
endmodule statement for ripple_add8 came before module fulladder started

Behavioural Model for Adder

The full adder was defined by logic equations rather than gates. This allows a logic synthesizer to choose how
the gates are to be put together. For example it might factor the carry into:

a(b + c) + bc.

Normally the synthesizer will do a much better job than the designer. Two exceptions are:

1. when custom cells available that are not in the synthesizer library.

2. When the logic is too much for the minimizer. Carry-select adders are probably too much.

Comment on Slide 84

Verilog Adders

© John Knight

Dig Cir p. 159 Revised; November 18, 2003

Carry Lookahead Adder
module lookahead_add8(cout,s,a,b,cin);

input [7:0] a, b; input cin;
output [7:0] s; output cout;
wire ca;

lookahead_4 LA4_a(ca, s[3:0],a[3:0],b[3:0],cin],
LA4_b(cout, s[7:4],a[7:4],b[7:4],ca];

endmodule //lookahead_add8

module lookahead_4(cout,s,a,b,cin);

input [3:0] a, b, cin;
output [3:0] s; output cout;
wires [3:0] c, p, g;

// Connect the carry, cin, and carry lookahead c[i].
assign c[0] = cin,

c[1] = g[0] | p[0]&c[0],
c[2] = g[1] | p[1]&g[0] | p[1]&p[0]&c[0],
c[3] = g[2] | p[2]&g[1] | p[2]&p[1]&g[0]
| p[2]&p[1]&p[0]&c[0],
cout = g[3] | p[3]&g[2] | p[3]&p[2]&g[1]
| p[3]&p[2]&p[1]&g[0] | p[3]&p[2]&p[1]&p[0]&c[0];

// Connect propagate and generate signals; connect the sum.
assign p = a^b,

g = a&b,
s = p^c;

end module // lookahead_4

cout ca cin
LA4_b LA4_a

Slide 85

Carleton University © John Knight
Digital Circuits p. 160 Revised; November 18, 2003

Verilog Adders Carry Lookahead Adder

Carry Lookahead Adder
Connections

• The input and output ports, a, b, cin, cout and s, do not have to be declared again.
The internal connection, ca , was declared. However in this case it was optional (see below).

• Wires do not have to be declared explicitly if they serve as wiring between arguments of module
instantiations. For example declaration of ca in LA4_a and LA4_b, is optional.

Nonprocedural Verilog Is a Circuit

• Note again that Verilog statements, except in procedures, are definitions of connections. The order of
the statements does not matter any more than it matters which gate is put at the top of a wiring diagram.

• The two 4-bit sections are coupled by a ripple carry

The Carry Lookahead Code

• the equations were written to follow my guess at the fastest implementation. A good synthesizer may
change the gate connections considerably.

Comment on Slide 85

Verilog Adders

© John Knight

Dig Cir p. 161 Revised; November 18, 2003

Carry-Select Adder
module select_add8(cout,s,a,b,cin);

input [7:0] a, b; input cin;
output [7:0] s; output cout;
wire [7:0] s0, s1; wire ca;
parameter zero=0, one=1;

add4 ADD4_a0(ca0, s[3:0],a[3:0],b[3:0],zero),
ADD4_a1(ca1, s[3:0],a[3:0],b[3:0], one),
ADD4_b0(cout0, s[7:4],a[7:4],b[7:4],zero),
ADD4_b1(cout1, s[7:4],a[7:4],b[7:4],one);

// The MUXs
assign ca = (cin) ? ca1 : ca0,

cout = (ca) ? cout1 : cout0,
s[3:0] = (cin) ? s1[3:0] : s0[3:0], // Not shown on diagram
s[7:4] = (ca) ? s1[7:4] : s0[7:4];

endmodule //select_add8

module add4(cout,s,a,b,cin);
input [3:0] a, b, input cin;
output [3:0] s; output cout;

// The 4-bit behavioural adder. Let the synthesizer decide.
assign {cout,s} = a + b + cin;

endmodule // add4

cout1 ca1

cin

ADD4_a0ca0cout0

cout
ADD4_b1 ADD4_a1

ADD4_b0

Slide 86

Carleton University © John Knight
Digital Circuits p. 162 Revised; November 18, 2003

Verilog Adders The Carry-Select Adder

The Carry-Select Adder
Wire Declarations

• I tend to declare wires even when the default do not require it. It helps:

a. to keep one from using the same symbol for two wires.

b. to keep one confusing vectors and scalers, for example cin and c[0].

Parameters

parameter zero=0, one=1;
This defines constants 0 and 1 at the start rather than deep inside the module. Then if one wants to change
them, say the input should be asserted low logic, it is easy to do.

Concatenation Left of the “=”

Concatenation on the left side of an equal sign is handy:
assign {cout,s} = a + b + cin;

Comment on Slide 86

Precoded Verilog Adders

© John Knight

Dig Cir p. 163 Revised; November 18, 2003

Precoded Verilog Adders

Libraries

Most sites have access to precoded operators.

In Synopsys a library is called Designware.

In dc one can see it by

> report_lib standard.sldb

In PKS one can see what is in the library using
> report_lib

The libaries will usually have:-
add, subtract,
various compares (signed, unsigned) >, <, <=, ==, ...
multiply

Adders, for example are differentiated according to:
- bit lengths of both operands
- two’s compliment or unsigned (for overflow checking)
- carry propagation mechanism.

Slide 87

Carleton University © John Knight
Digital Circuits p. 164 Revised; November 18, 2003

Precoded Verilog Adders Module Generators and Libraries

Module Generators and Libraries
The fast way to get circuits

Most logic synthesizers have several types of adders already created.
These may be Verilog descriptions coded as macros.
They may be already laid out.

Use a Behavioural Description with Libraries

The library or generator usually wants the simplest high-level description of the function:

{cout,s}= a + b;

Put it in a module like add8.

Tell the synthesizer you want the module implemented by a macro or cell.

Comment on Slide 87

Incrementers

© John Knight

Dig Cir p. 165 Revised; November 18, 2003

Incrementers

Compare incrementers and Adders

Full Adder
Add � = a ⊕ b ⊕ Cin Cout = g + p·Cin = a·b + b·Cin +a·Cin

Half Adder
Increment b=0 � = a ⊕ 0 ⊕ Cin Cout = g + p·Cin = a·0 + 0·Cin +a·Cin

� = a ⊕ Cin Cout = 0 + a·Cin = a·Cin

First input C0=1 � = a C1 = a0

4-Bit incrementer

Carry Lookahead
C4 = a3a2a1a0

Σ1

C1

a1

C2

Σ0

1

a0

Σ2

a2

C3

Σ3

a3

C4

Slide 88

Carleton University © John Knight
Digital Circuits p. 166 Revised; November 18, 2003

Incrementers Incrementer/Decrementer

Incrementer/Decrementer
Adders With One Input Fixed at One.

An adder can be used as an incrementer.
If a unit is to do nothing but increment, use a much simpler circuit.

• Adders are made of full adders. Incrementers are made of half adders.

Verilog and Incrementers

How smart is your sythesizer?

// If the synthesizer knows about incrementers this should generate one.

// Maybe, but likely you will get an adder.

// Unlikely

12. PROBLEM

Design a carry-select incrementer.

Hint: It is just a rearrangement of the AND gates.

assign s = a +1;

assign s = a +one;
parameter one = 1;

s = a +cin;
assign cin = 1,

Comment on Slide 88

Negative Numbers

© John Knight

Dig Cir p. 167 Revised; November 18, 2003

Negative Numbers

Two’s Complement
The numbers

• Positive numbers start with 0.
• Negative numbers start with 1.

The first bit tells the sign.
-1 is always 1111 . . .

• They use a normal positive-number adder.

Overflow

• Test for overflow is
Overflow = Cn ⊕ Cn-1

• Maximum positive becomes maximum negative.
011 + 001 � 100 3 + 1 � -4

Example, accumulating adder v.s. integrator:

2’s complement

+3 011
+2 010
+1 001

0 000
-1 111
-2 110
-3 101
-4 100a

b
Σ

Cn

0 1 1+3
1 1 1

0 1 0

11 1

-1
+2

C3⊕ C2= 0

0 1 1+3
0 0 1
1 0 0

10 1

+1
- 4

C3⊕ C2= 1

Saturating overflow
Op-amp-

+

b

Two’s complement overflow

1

1

Slide 89

Carleton University © John Knight
Digital Circuits p. 168 Revised; November 18, 2003

Negative Numbers Subtraction

Subtraction
Common representations for signed numbers

1. Two’s compliment
Uses a normal adder.

2. One’s complement
Uses a normal adder except carry wraps around, Can double add times. Has two values representing zero.

3. Sign magnitude
Cumbersome to implement.
Normal output format for some A to Ds and some additive encoding compression schemes.

Overflow test for 2’s Complement

Adding numbers of opposite sign can never overflow.
Since a[n] and b[n] are the sign of a and b, a[n]=b[n]
is the only potential overflow.

Case (i) Numbers have same sign ie. a[n]=b[n]
If a[n]=b[n], then c[n] = Σ[n], (see map of �n on right).
� c[n] is the apparent sign of the number just as Σ[n] is.

The sum Σ[n] must have the common sign of a[n]and b[n] or there is overflow.
But the sign Σ[n]= c[n]
Further c[n+1] = 1 if a[n]=1=b[n], c[n+1]=0 if a[n]=0=b[n]

Deduce that c[n+1] ≠ c[n] � sign of Σ is opposite the common sign of a and b � overflow.
That is c[n+1] ⊕ c[n]=1 � overflow.

Case (ii) a[n]≠b[n]
If a[n]≠b[n], then c[n+1] = c[n] and c[n+1] ⊕ c[n]=0. This agrees with no overflow.

010100

01

00 01 11 10

0

1

AnBn
Cn

10

11 1010 Cn+1�n

Overflow

Comment on Slide 89

Negative Numbers

© John Knight

Dig Cir p. 169 Revised; November 18, 2003

Two’s Complement (cont.)

Negating Numbers

a. Invert each bit.

b. Add1.

c. Ignore any off-end carry.

In Verilog

When Two’s Complement Overflow Can Be Ignored

a. Do n-bit arithmetic on a signal

b. Allowed operations are +, -, and multiply by an integer .

c. If the correct output would not overflow n-bits,
then internal overflows do not cause an error!

Example, accumulating adder

0 1 1+3

1 0 0

1 0 1

~(+3)

- 3
1+

1 1 1-1

0 0 0

0 0 1

~(-1)

+1
1+

wire [7:0] minus_a, a;
minus_a = (~a)+1

x*17 OK x*1.7

Overflow here,
will not affect
the accuracy
here

t

a

b
Σ

Cn

CLK

Register
1 + noise

Slide 90

Carleton University © John Knight
Digital Circuits p. 170 Revised; November 18, 2003

Negative Numbers Two’s Complement

Two’s Complement
Overflow

Two’s complement overflow can be very bad because it goes from maximum positive to maximum negative.

On the other hand one can often recover from the overflow.

Recovery from overflow

Let x be a large number such that adding 3+x overflows.
Now immediately add -4 to the result. This will do a negative overflow and take the result back to x-1.
This is exactly the result if their had been no overflow.

Intermediate results which overflow cause no error if the correct final answer lies within range.

This applies only to addition and subtraction.
Multiplication by an integer is all right because that is equivalent to adding many times.
Multiplication by a fraction is not all right. There is an element of division destroys the overflow recovery.

Comment on Slide 90

Negative Numbers

© John Knight

Dig Cir p. 171 Revised; November 18, 2003

Coding An Add/Subtract Unit

Coding for Synthesis

The Poor Way

Depending on the value of cntr, s is assigned to either a - b or a + b.

Unless the synthesis tool is very smart. it will generate:
• a mux from the conditional statement
• separate arithmetic units;

one which adds, and one which subtracts.

module adder(s, cntr, a, b);
output [7:0] s;
input cntr;
input [7:0] a , b;

assign s = (cntr) ? (a+b) : (a-b);

a

b

Σ

1

1G1

MUX

a

b

Dif
a - b

a + b

s

Slide 91

Carleton University © John Knight
Digital Circuits p. 172 Revised; November 18, 2003

Negative Numbers Subtraction

Subtraction
Making a subtractor from an adder

Converting Add to Subtract

To convert A + B into A - B:

1. Individually invert all the bits of B to ~B.

2. Apply ~B to the adder input. Remember we also had to add 1.

3. Do the adds A- B = A + (~ B + 1) = A + (~B) + 1.
Do the +1 by sending 1 into C0 (Carry in)

Verilog Add/Subtract Circuit.

13. PROBLEM

Estimate the area generated for this circuit vs the one on the next slide using XORs as a controlled inverter.

module add_subtract(overflw, cout, s, a, b, plus_minus_n)

// plus_minus_n =1 is add; plus_minus_n = 0 is subtract.

input [7:0] a,b; input plus_minus;
output [7:0] s; output overflw, cout;
wire [7:0] tildaB;

assign tildaB = (plus_minus) ? b : ~b, // or plus_minus ^ b
{cout,s} = a + tildaB + (~plus_minus),
overflw = cout^((a[7]=tildaB[7])& s[7]);

endmodule

Comment on Slide 91

Negative Numbers

© John Knight

Dig Cir p. 173 Revised; November 18, 2003

Coding for Synthesis

Smaller Faster Circuit

a - b can be performed by inverting b and adding "1".

-b = ~b +1

Rewrite the code using cntr to:
• form a conditional "add 1" (add the value of cntr)
• conditionally invert b by using XOR gates.

module adder(s, cntr, a, b);
output [7:0] s;
input cntr;
input [7:0] a , b;

assign s = cntr + a +({8{cntr}} ^ b);

a

b

a + bs

cntr
⊕

The XOR inverts b when cntr =1.

Slide 92

Carleton University © John Knight
Digital Circuits p. 174 Revised; November 18, 2003

Negative Numbers Subtraction

Coding For Synthesis

Having a reasonable concept of what the synthesizer will do will make smaller faster circuits.

Comment on Slide 92

Negative Numbers

© John Knight

Dig Cir p. 175 Revised; November 18, 2003

Negating Two’s Complement Numbers
// ...

// Starting at the least sig bit, x[0]. Pass it directly through to y

// As long as x[i] is 0, don’t invert it.

// After reaching the first x[i]=1, do not invert that x[i].

// But do invert all bits after the first x[i]=1.

// ~~

wire [N-1:0]cry, x, y;
always @(x)

begin

//cry[0] = 0; Tells whether to invert the next bit

y[0] = x[0]; //y[0] = x[0] ^0;
cry[1]=x[0];

y[1] = x[1]^cry[1] ;

cry[2]=x[1] | cry[1];

y[2] = x[2]^cry[2] ;

cry[3]=x[2] | cry[2];

. . .

end

Slide 93

Carleton University © John Knight
Digital Circuits p. 176 Revised; November 18, 2003

Negative Numbers Negating Two’s Complement Numbers

Negating Two’s Complement Numbers
The algorithm shown is fast and simple.

Examples

001010 = 10d

Start on the right, travel left.
As long as the bits are 0 leave them unchanged.

On the first 1 leave that unchanged,
but invert all bits from then on.
The colon shows the break between inversion and noninversion.

1101:10 =-10d

110100 =-12d

001:100 =-12d

000101 = 5d

11101:1 =-5d

Comment on Slide 93

Negative Numbers

© John Knight

Dig Cir p. 177 Revised; November 18, 2003

Circuit to find 2’s Complememnt

reg [N-1:0] y; // minus x
wire [N-1:0] x;
wire cry;
integer i;

always @(x)
begin

cry=0; // Becomes 1 after the first 1 in x.l
// Start at least sig bit, move left.

// Invert x next i after the first 1 in x is reached.
// cry will remember when the first 1 was reached.

end

for(i=0; i<N; i=i+1)

y[i]= x[i]^cry;
cry = x[i] | cry;

begin

end

y1

cry

x1

cry

y0

0

x0

y2

x2

cry

y3

x3
cry

iteration i=3 iteration i=2 iteration i=1 iteration i=0

Slide 94

Carleton University © John Knight
Digital Circuits p. 178 Revised; November 18, 2003

Negative Numbers Finding the Two’s Complement

Finding the Two’s Complement
This is a good circuit to use if you are not going to do an addition on the number after conversion.

If you are going to add the number immediately afterward, just invert each bit and make the carry-in for the
adder equal 1.

Comment on Slide 94

