- Logarithmic Circuits .

Logarithmic Circuits

Binary Up Counter

Carleton
UNIVERSITY
Dig Cir p. 89
© John Knight
Revised; November 18, 2003
Slide 50

Logarithmic Circuits •
Binary Counters
Binary Counters
The simplest counters use toggle flip-flops. These are made from D flip-flops as shown.
This is why many circuits of counters show an XOR gate and an AND gate for each flip-flop.

The AND gates, drawn on top of the waveforms, show how the flip-flops toggle whenever all the preceding flip-flops are one.

Counter Speed

Note that for long counters the chain of AND gates will get very long and will limit the speed of the counter. For a 32 bit counter, the clock speed must allow propagation through 31 AND gates plus the clock-to-output and setup times of a flip-flop.

Logarithmic Carry in a Binary Counter

Ripple Carry Circuit Using T Flip-Flops

8 -bit binary counter using a ripple carry

Logarithmic Carry Circuit Using T Flip-Flops
8 -bit binary counter using logarithmic carry

Carleton
Dig Cir p. 91
© John Knight
Revised; November 18, 2003
Slide 51

Logarithmic Circuits •
Logarithmic Ripple-Carry Counter

Logarithmic Ripple-Carry Counter

By placing a buffer as shown, the end-to-end carry need only pass through $2 \log _{2}(\mathrm{~N})$ gates.

Counter Speed

In the ripple-carry circuit.
The time between a clock edge and a stable outbut from TC is:

$$
\mathrm{T}_{\mathrm{CHQV}} \text { for } \mathrm{Q}_{0}+\left(\mathrm{T}_{\mathrm{pd}} \text { for } 7 \text { AND gates }\right) .
$$

Ignoring the flip-flop delay, this is a delay proportional to $\mathbf{N}-\mathbf{1}$, for N flip-flops.
The fanout also effects the delay. Here all fanouts are 2.

In the logarithmic carry circuit.

The slowest carry, TC, must go from:
a. The clock input to Q0
b. Q0 through a 1st level AND (green with a " 1 " in side).
c. through a 2nd level AND gate (red with a " 2 " inside).
d. through a 3rd level AND gate (blue with a " 3 " inside).

For N flip-flops this delay is proportional to $\boldsymbol{\operatorname { l o g }}_{2}(\mathbf{N})$.
However the fanouts increase the delay. The largest fanout is $\mathrm{N} / 2+1$, (five for $\mathrm{N}=8$).

- Logarithmic Circuits .

Logarithmic Carry for TC for a 16-Bit Counter

Carleton
Dig Cir p. 93
© John Knight
Revised; November 18, 2003
Slide 52

Logarithmic Circuits •

More Organized Picture of The Logarithmic Carry

This shows how the earlier ANDs are done in parallel so any signal used in calculating TC only has to pass through 4 AND gates.
The symbol $\mathrm{C}_{\mathrm{n}}{ }^{\mathrm{m}}$ is used to show what signals are ANDed together to make up a component of the carry. Thus the symbol $\mathrm{C}_{7}{ }^{4}$ means $\mathrm{Q}_{7} \cdot \mathrm{Q}_{6} \cdot \mathrm{Q}_{5} \cdot \mathrm{Q}_{4}$.

This only shows the gates needed to calculate TC. The next page shows the gates needed to calculate the intermediate carries.
The next page also gives a rough approximation of the delay. It only hints at delay optimization from transistor sizing and adding buffers. Both of these will reduce delay at the expense of power and area.

- Logarithmic Circuits .

Approximate summary: delay under half, area more than double.

Carleton
Dig Cir p. 95
© John Knight
UNIVERSIty

If the delay of a two-input AND equals its fanout, then the delays are shown in ovals.

Without the buffers shown, the total delay, Q_{0} to T_{16}, is $1+3+5+9+1=19$. In general $\mathrm{N}-1+\log _{2}(\mathrm{~N})$.
The buffer requires a more complex calculation but it will decrease the 9 substantially.
Compare with the serial carry which is $1+15 \cdot 2=31$. In general $2 \cdot \mathrm{~N}-1$

Addition

The 1-Bit Full Adder

CARRY

- Generate C_{1} from inputs A, B $C_{1}=1$ if $A=1, B=1$ ($A B$)
- Propagate previous $C_{0} \rightarrow C_{1}$ if $A=1$ or $B=1 \quad(A+B) C_{0}$

$$
\begin{aligned}
C_{1} & =\underbrace{A B}_{G}+\underbrace{(A+B) C_{0}}_{P} \\
& =G+P C_{0}
\end{aligned}
$$

Logical C_{1} using G and P

Alternate Definition

- $\Sigma=1$ if all 3 inputs are $1,\left(A B C_{0}\right)$
- Or if only one of A, B or C_{0} is 1 ie any inputs $=1$, but not two ie any inputs $=1$, but no carry out $\left(A+B+C_{0}\right) \bar{C}_{1}$

Compact Circuit But No Separate P and G Signals

Carleton
UNIVERSITY
Dig Cir p. 97
© John Knigh
Revised; November 18, 2003
Slide 54

Addition •
The 1-Bit Full Adder

The 1-Bit Full Adder

It adds 3 bits, $\mathrm{A}+\mathrm{B}+\mathrm{C}_{0}$
The Karnaugh maps for the full adder.

The CMOS carry circuit

The PMOS part of the circuit does not implement $\bar{C}_{1}=(\overline{\mathrm{A}}+\overline{\mathrm{B}}) \cdot\left(\overline{\mathrm{B}}+\overline{\mathrm{C}}_{0}\right) \cdot\left(\overline{\mathrm{A}}+\overline{\mathrm{C}}_{0}\right)$ as good CMOS is supposed(?) to do.

1. PROBLEM
a. Find the expression it does implement
b. Show that it really is $\overline{\mathrm{C}}_{1}$.

The 4-Bit Adder

Ripple-Carry Adder

Ripple Carry Using Propagate and Generate

Basic Adder Blocks

2. PROBLEM

Show that the PMOS part of the full adder on Slide 54, implements the complement of the NMOS part. Hint: plot the PMOS function on a Karnaugh map. Then invert each square on the map to get the complement of The PMOS function, and check that it matches the NMOS map.
3. PROBLEM

Some books define $\mathrm{P}=\mathrm{A} \oplus \mathrm{B}$. Show what this does to the C_{1} and Σ functions.
What advantage does it have, i.e. smaller, faster, less power.
Solution:
The alternate P is generated for free because it is needed in the sum, thus saving an OR gate in each block. However the XOR takes more time to calculate, so the Ps will be delayed.
Some circuits.. like the carry-bypass adder, demand that $\mathrm{P}=\mathrm{XOR}$.

Derivation of Carry Look-Ahead Blocks

Serial Carry Using P and G (repeated)

Convert Serial Carry to Parallel Circuits

$C_{4}=G_{4}+P_{4}\left(G_{3}+P_{3}\left(G_{2}+P_{2}\left(G_{1}+P_{1} C_{0}\right)\right)\right)$

$C_{3}=G_{3}+P_{3}\left(G_{2}+P_{2}\left(G_{1}+P_{1} C_{0}\right)\right)$

$$
C_{2}=G_{2}+P_{2}\left(G_{1}+P_{1} C_{0}\right)
$$

Curletan $_{\text {UNTVETY}}$
Dig Cir p. 101
© John Knight
UNIVERSITY
Revised; November 18, 2003
Slide 56

Addition •
Carry Look-Ahead Adder

Carry Look-Ahead Adder

Eliminating The Long Path-Delay For The Carry

Deep Gates Instead of Long Paths?

The long carry chain makes the add slow. One can factor the carry propagation equation to make each C_{i} one complex gate. However for C_{4}, this complex gate will have 5 series transistors (one would not go to C 5). To compensate for the five channel resistances, the transistors in the C_{4} gate would be made 2.5 times wider than those in the C_{1} NAND-OR gate. This greatly increases the adder area and power consumption.
The large capacitance seen by C_{0}, especially at the wide gates of the left most circuits, causes some delay. However, the propagation time from C_{0} to C_{4} is still about half that of the serial carry using P and G .

PMOS and NMOS are Almost Symmetric

The PMOS logic here is not that found by applying DeMorgan directly to the NMOS logic. Neither is it derived directly from the corresponding NMOS equation. For example:

$$
C_{3}=G_{3}+P_{3}\left(G_{2}+P_{2}\left(G_{1}+P_{1} C_{0}\right)\right)
$$

using the methods in "Using the Sum of Products (Σ of Π) for the PMOS function" on page 28
Remember that $\mathbf{G}_{\mathbf{i}+\mathbf{1}}=\mathbf{A}_{\mathbf{i}} \mathbf{B}_{\mathbf{i}}$, and $\mathbf{P}_{\mathbf{i}+\mathbf{1}}=\mathbf{A}_{\mathbf{i}}+\mathbf{B}_{\mathbf{i}}$, hence one will never get the case $\mathbf{G}_{\mathbf{i}+\mathbf{1}}, \mathbf{P}_{\mathbf{i + 1}}=\mathbf{1 , 0}$.
The outputs for these inputs become don't cares on the map, for the C_{3} equation and the equation for the PMOS circuit can be derived.

4. PROBLEM

Derive the equation for the PMOS circuits for \mathbf{C}_{2}. C_{3} will have a similar but longer derivation.

The 4-Bit Carry Look-Ahead Adder

Carry Lookahead Using P and G

Note no carry signal propagates through the Σ blocks. $\mathbf{C}_{\mathbf{i}}$ is not connected to $\mathbf{P}_{\mathbf{i}+1}$ or $\mathbf{G}_{\mathbf{i}+1}$

Look-Ahead Carry Blocks

Blocks Connected By Ripple Carry

Carleton
UNIVERSITY
Dig Cir p. 103
© John Knight
Revised; November 18, 2003

Look-Ahead

Carry look-ahead depends on single gates, albeit with large fan-in, being faster than a chain of gates. This is true up to 3 or 4 full-adders (4 or 5 series transistors in the final carry block).

The area used increases significantly with carry look-ahead because the gates are larger, and to maintain speed, the transistors in the series chains of large gates must be larger.

Grouping Blocks

Since only four adders can be put in a block, larger adders must have chains of blocks. The longest delay is the delay for C_{0} to reach C_{8} above, or $\mathrm{C}_{4 \mathrm{n}}$ for n blocks.
If all gates had the same delay τ, the adder delay would be $4 \tau \mathrm{n}$ for the ripple-carry and $\tau \mathrm{n}$ for the carry lookahead.
Unfortunately the large gates provide a large capacitive load to their source gates and slow down the look-ahead carry signal, $\mathrm{C}_{4 \mathrm{n}}$, to roughly $2 \tau \mathrm{n}$. This calculation is fairly complex and involves placing buffer inverters after $\mathrm{C}_{4}, \mathrm{C}_{8} \ldots$
5. PROBLEM

Take the NMOS part of the carry circuit for C_{1} on Slide 56 . If the G_{0} transistor has a width of 1 unit in order to pull down at a certain speed, then the P_{1} and C_{0} transistors must have a width of 2 units to pull that path down at the same speed. This assumes channel resistance is proportional; to width which is close to true. Show that in the NMOS circuit for C_{4}, the G_{4} transistor need only have a width of 1 to maintain speed but some other transistors need a width of 5 units.
6. PROBLEM

There are five outputs in the compromise adder on Slide $58, \Sigma_{1}, \Sigma_{2} . \Sigma_{3}, \Sigma_{4}$ and C_{4}.
Rate each output as being slower, the same, or faster than the 4-bit carry look-ahead adder.
S_{1} is about the same, although the load on C_{0} will slow its rise time. S_{2}, S_{3} are slower because their signal goes through the same number of gates, but the P and G inputs are more highly loaded. S_{4} is faster because of fast path to the complex gate.

Compromise Carry Look-Ahead Adder.

Properties	Delay $\mathrm{C}_{0}->\mathrm{C}_{4}$	Area
Ripple P\&G	2	1
Full parallel	1.1	3.5
Compromise	1	2.5

Description

By not using parallel look-ahead on $\mathrm{C}_{3}, \mathrm{C}_{2}$, and C_{1}
C_{3} will have 50% more delay than C_{4},
but C_{3} is not passed on to later stages.
$C_{0}>C_{4}$ is slightly faster because of reduced loading on C_{0}.

Compromise Carry Look-Ahead Adder

For more than 4-bits, this is the fastest adder shown so far.
| In a multi-block adder, one might want to make the final block or the last two blocks fully carry look-ahead so that the sum bits would not be delayed more than the final carry.
Later we will show how gradually increasing the length of the blocks will reduce the number of blocks. For long adders, the delay will increase with $\operatorname{sqrt}(\mathrm{n})$ rather than linearly with $\mathrm{n}(2 \tau \mathrm{n})$ as it does here.
The next carry look-ahead adder will have a delay which increases with $\log _{2}(\mathrm{n})$.

The Brent-Kung Carry-Lookahead Adder

Generalized propagate and generate

Generalized Propagate $\mathrm{P}_{\mathrm{m}}{ }^{k}$

A propagate through a block of adders
If $P_{7}^{4}=1$ then:
C_{3} can propagate thru adders Σ_{3} to Σ_{6} and come out as C_{7}

Generalized Generate $G_{m}{ }^{k}$

A generate within a block of adders that can also propagate thru the block internaly
If $\mathrm{G}_{7}{ }^{4}=1$ then:
A carry was generated on G_{4}, G_{5}, G_{6}, and/or G_{7} it was able to propagate to the output $G_{7}{ }^{4}$. And come out on C_{7}

Addition •

Generalized generate and propagate.

$\mathbf{P}_{\mathbf{m}} \mathbf{k}^{\text {is a propagate between adder } \mathrm{m} \text { and adder } \mathrm{k}}$ If $\mathrm{P}_{\mathrm{m}}{ }^{\mathrm{k}}=1$ then:
$\mathrm{C}_{\mathrm{k}-1}$ can propagate thru the adders
that produce $G_{k}, G_{k+1} \ldots G_{m}$ and $P_{k}, P_{k+1} \ldots P_{m}$ (adders $\Sigma_{\mathrm{k}-1}, \ldots, \Sigma_{\mathrm{m}-1}$)
It comes out on C_{m}
$\mathrm{G}_{\mathrm{m}}{ }^{\mathbf{k}}$ is a generate for adders m thru k that reaches m.
If $G_{m}{ }^{k}=1$ then:
a carry was generated inside the block of adders
that produce $\mathrm{G}_{\mathrm{k}}, \mathrm{G}_{\mathrm{k}+1} \ldots \mathrm{G}_{\mathrm{m}}$ and $\mathrm{P}_{\mathrm{k}}, \mathrm{P}_{\mathrm{k}+1} \ldots \mathrm{P}_{\mathrm{m}}$ and propagated inside the block to the output.

Compromise Carry Look-Ahead Adder

Generalized generate and propagate

$\mathrm{P}_{\mathrm{m}}{ }^{\mathrm{k}}$ composite propagate.

For the adder's inputs $\mathrm{a}_{\mathrm{m}-1}$ and $\mathrm{b}_{\mathrm{m}-1}$

$$
P_{m}{ }^{m}=P_{m}=a_{m-1}+b_{m-1}, \quad P_{0}=1
$$

From other G and P signals

$$
\mathbf{P}_{\mathrm{m}}{ }^{\mathbf{k}}=\mathbf{P}_{\mathrm{m}} \mathbf{P}_{\mathrm{m}-1}{ }^{\mathbf{k}}=\mathbf{P}_{\mathrm{m}}{ }^{\mathbf{j}} \mathbf{P}_{\mathrm{j}-1}{ }^{\mathbf{k}}
$$

Examples:
$P_{5}{ }^{2}=P_{5} P_{4} P_{3} P_{2} \quad P_{m}{ }^{0}=P_{m} P_{m-1} P_{m-2} \cdots P_{0}$
$\mathrm{P}_{5}{ }^{3}=\mathrm{P}_{5}{ }^{5} \mathrm{P}_{4}{ }^{3} \quad \mathrm{P}_{5}{ }^{3}=\mathrm{P}_{5}{ }^{4} \mathrm{P}_{3}{ }^{3}$

$\mathrm{G}_{\mathrm{m}}{ }^{\mathrm{k}}$ composite generate
A carry is generated between m and k, and reaches m.
For the adder inputs $\mathrm{a}_{\mathrm{m}-1}$ and $\mathrm{b}_{\mathrm{m}-1}$

$$
\mathbf{G}_{\mathbf{m}}^{\mathbf{m}}=\mathbf{G}_{\mathbf{m}}=\mathbf{a}_{\mathbf{m}-\mathbf{1}} \mathbf{b}_{\mathbf{m}-\mathbf{1}}, \quad \mathbf{G}_{\mathbf{0}}=\mathbf{C}_{\mathbf{0}} \text { which is often } 0
$$

From other G and P signals

$$
G_{m}{ }^{k}=G_{m}+P_{m} G_{m-1}{ }^{k}=G_{m}{ }^{j}+P_{m}{ }^{j} G_{j-1}{ }^{k}
$$

Carleton
UNIVERSITY
Slide 60

The Brent-Kung Carry-Lookahead Adder

Brent and Kung introduced a generalized generate and propagate. Thus $\mathrm{P}_{\mathrm{m}}{ }^{\mathrm{k}}$ represents a composite propagate from adder m down to adder k .
For the adder's initial inputs a_{m} and b_{m} :-

$$
P_{m}^{m}=P_{m}=a_{m-1}+b_{m-1}, \quad P_{0}=1
$$

After the initial inputs:-

$$
P_{m}^{k}=P_{m} P_{m-1}^{k}=P_{m}^{j} P_{j-1}^{k}
$$

Examples:

$$
\begin{array}{ll}
\mathrm{P}_{5}^{2}=\mathrm{P}_{5} \mathrm{P}_{4} \mathrm{P}_{3} \mathrm{P}_{2} & \mathrm{P}_{\mathrm{m}}^{0}=\mathrm{P}_{\mathrm{m}} \mathrm{P}_{\mathrm{m}-1} \mathrm{P}_{\mathrm{m}-2} \cdots \mathrm{P}_{0} \\
\mathrm{P}_{5}^{3}=\mathrm{P}_{5}^{5} \mathrm{P}_{4}^{3}, & \mathrm{P}_{5}^{3}=\mathrm{P}_{5}^{4} \mathrm{P}_{3}^{3} \tag{c}
\end{array}
$$

$$
\quad \mathrm{P}_{5}^{3}=\mathrm{P}_{5}{ }^{5} \mathrm{P}_{4}^{3}
$$

Also $\mathrm{G}_{\mathrm{m}}{ }^{\mathrm{k}}$ represents a composite generate between adders m thru k .

For the initial adder inputs a_{m} and b_{m} :-

$$
\mathbf{G}_{\mathbf{m}}^{\mathbf{m}}=\mathbf{G}_{\mathbf{m}}=\mathbf{a}_{\mathbf{m}-\mathbf{1}} \mathbf{b}_{\mathbf{m}-\mathbf{1}}, \quad \mathbf{G}_{\mathbf{0}}=\mathbf{C}_{\mathbf{0}} \text { which is often } 0
$$

After the initial inputs:-

$$
G_{m}^{k}=G_{m}+P_{m} G_{m-1}^{k}=G_{m}^{j}+P_{m}^{j} G_{j-1}^{k}
$$

Examples:
| $\mathrm{G}_{\mathrm{m}}{ }^{0}=\mathrm{C}_{\mathrm{m}}$

$$
\begin{align*}
\mathrm{G}_{5}^{3} & =\mathrm{G}_{5}+\mathrm{P}_{5} \mathrm{G}_{4}{ }^{3} \tag{a}\\
& =\mathrm{G}_{5}+\mathrm{P}_{5}\left(\mathrm{G}_{4}+\mathrm{P}_{4} \mathrm{G}_{3}{ }^{3}\right) \tag{b}\\
& =\left(\mathrm{G}_{5}+\mathrm{P}_{5} \mathrm{G}_{4}\right)+\mathrm{P}_{5} \mathrm{P}_{4} \mathrm{G}_{3} \\
& =\quad \mathrm{G}_{5}^{4}+\mathrm{P}_{5}^{4} \mathrm{G}_{3} \tag{c}
\end{align*}
$$

Generalized generate and propagate.

$P_{m}{ }^{k}$ is a propagate between adder m and adder k
If $P_{m}{ }^{k}=1$ then:
$\mathrm{C}_{\mathrm{k}-1}$ can propagate thru the adders
that produce $G_{k}, G_{k+1} \ldots G_{m}$ and $P_{k}, P_{k+1} \ldots P_{m}$
(adders $\Sigma_{k-1}, \ldots, \Sigma_{m-1}$)
It comes out on C_{m}
Example
If $P_{7}{ }^{4}=1$ then: C_{3} can propagate thru adders Σ_{3} to Σ_{6} and come out as C_{7}
$G_{m}{ }^{k}$ is a generate for adders m thru k that reaches m. If $\mathrm{G}_{\mathrm{m}}{ }^{\mathrm{k}}=1$ then: a carry was generated inside the block of adders that produce $G_{k}, G_{k+1} \ldots G_{m}$ and $P_{k}, P_{k+1} \ldots P_{m}$
and propagated inside the block to the output. that produce $G_{k}, G_{k+1} \ldots G_{m}$ and $P_{k}, P_{k+1} \ldots P_{m}$
and propagated inside the block to the output.
Example
If $\mathrm{G}_{7}{ }^{4}=1$ then: a carry was generated on $G_{4}, G_{5}, G_{6,}$ and/or G_{7} it was able to propagate to the output $G_{7}{ }^{4}$. and come out on C_{7}

| \quad Add without an initial carry in $\mathbf{C}_{\mathbf{0}}$

Larger Example
$\mathrm{G}_{1}{ }^{0}=\mathrm{C}_{1}=\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{C}_{0}=\mathrm{G}_{1}+0$
$\mathrm{G}_{2}{ }^{0}=\mathrm{C}_{2}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{C}_{1}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{1}{ }^{0}$
$\mathrm{G}_{4}{ }^{3}=\mathrm{G}_{4}+\mathrm{P}_{4} \mathrm{G}_{3}$
$\mathrm{G}_{4}{ }^{0}=\mathrm{G}_{4}{ }^{3}+\mathrm{P}_{4}{ }^{3} \mathrm{G}_{2}{ }^{0}$

$$
=\left(\mathrm{G}_{4}+\mathrm{P}_{4} \mathrm{G}_{3}\right)+\left(\mathrm{P}_{4} \mathrm{P}_{3}\right)\left(\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{1}^{0}\right)
$$

Since $\mathrm{C}_{0} \equiv 0$, we do not have to "waste" an input, and the block can add 4-bit numbers.

. Addition .

The Generalized Carry Operator

Takes in two adjacent G and P pairs
Puts out a merged G and P pair

What to Remember

The General Formula for combining carrys
The $\underset{j-j}{ }$ are absorbed

Carleton
Dig Cir p. 113
© John Knight
Revised; November 18, 2003

Addition •

\mid

The Brent-Kung Carry-Lookahead Adder

$$
\begin{aligned}
& \text { Combining } P_{m}^{k} \text { and } G_{m}^{k} \\
& G_{m}^{k}=G_{m}^{j}+P_{m}^{j} G_{j-1}^{k} \\
& G_{7}^{0}=G_{7}^{4}+P_{7}^{4} G_{3}^{0} \\
& P_{m}^{k}=P_{m}^{j} P_{j-1} k \\
& P_{7}^{0}=P_{7}^{4} P_{3}^{0} \\
& P_{m}^{m}=P_{m} \\
& G_{m}{ }^{m}=G_{m} \\
& G_{m}^{0}=C_{m}
\end{aligned}
$$

Carry in, C_{0}, uses the
first adder position. This block can only add two 3-bit numbers.

If $\mathrm{C}_{0} \equiv 0$, always, then two 4-bit numbers can be added.

Carleton
UNIVERSITY
Dig Cir p. 115
© John Knight
Revised; November 18, 2003

Addition •

| 7. PROBLEM:

Assume the implied interconnections to the left of the dividing line.
Sketch the circuit with interconnections to calculate carrys C_{8} through C_{15}
Do not increase the depth more than necessary.

$=C_{8}$
$=C_{9}$
$=C_{10}$
$=C_{11}$
$=C_{12}$
$=C_{13}$
$=C_{14}$
$=C_{15}$
8. - PROBLEM

Following the example of the compromise adder, Slide 58, show how to reduce the size of a few of the intermediate carrys in the Brent-Kung adder without reducing speed.One can only do the ones for the first $\mathrm{n} / 2$ bits. There is not as much saving here as in the compromise adder.

Carleton
UNIVERSITY
Dig Cir p. 117
© John Knight
Revised; November 18, 2003

Slide 64

Addition •

A 12 Bit Brent-Krung Adder

There were 11 of the three-gate blocks when only a fast C_{12} was needed.
None of this extra circuitry was needed for a ripple-carry adder using P and G . The gates to generate the initial P and G are needed but not shown in the above diagram.

To get the other carries one must add another 9 three-gates pairs for a total of 20 . This is shown on the next slide.

Brent-Kung Adder

Showing extra hardware for intermediate carrys The depth is still 4 or less
The amount of hardware has nearly doubled.

Brent-Kung Adder Summary

Brent-Kung Adder Summary

- The depth of the carry chain increases by 1 when the number of bits doubles. A depth of 4 would allow 9 to 16 bit words
- Alternately the depth is the ceiling $\left(\log _{2}(\mathrm{n})\right)$ where n is the number of bits. ${ }^{1}$ Remember that C_{0} takes up one bit position unless it is always zero.
- The delay goes up more quickly because of the large fanout as n increases. On Slide 62, one generalized gate fans out to 5 gates. An n bit adder will have one gate that fans out to about $n / 2$ gates.
- The number of generalized carry blocks is, for $a(n / 2) \log _{2}(n)$, when n is a power of 2 .
- For 32 bits or more, this adder has the maximum hardware of all the carry-lookahead adders. Its area is proportional to $\mathrm{n} \log 2(\mathrm{n})$. The area of the other carry look-ahead adders is proportional to n .
- It is a big power-hungry adder, but fast.

[^0]
Summary Of Adders Types (Previously Covered)

(1) Ripple-Carry slow; delay = O(n) small; area $=0(n)$

(2) Carry Look-Ahead
faster; delay = O(n) $0.5 x$ (ripple delay) large; area $=0(n)$ 2x(ripple area)

(3) Brent-Kung
fastest $\mathrm{O}\left(\log _{2}(\mathrm{n})\right)$
largest $O\left(n \log _{2}(n)\right)$
area passes compromise carry look-ahead about $\mathrm{n}=10$

Properties of look-ahead adders

O(n) notation
The notation delay $=O(n)$, means that the delay increases in proportion to n for large n.
Thus delay $=13 n$ is $O(n)$, but so is delay $=26+13 n$ because the 26 is negligible when n is large
More generally if some property $=a+b n+\mathrm{cn}^{2}+\mathrm{dn}^{3}$
the property is said to be $\mathrm{O}\left(\mathrm{n}^{3}\right)$ because it increases proportional to n^{3} for large n .
For $n=4$ or 8 , small details in implementation, like buffer sizing, may make the look-ahead faster than BrentKung, but when $n>32$, it is clear that Brent-Kung will beat the pants off the others.

Summary Of Adders Types: (About to be covered)

Four New Adder Types

When $P_{3} P_{2} P_{1} P_{0}=1$, does not wait for the ripple carry.
6) Carry Select

Doubles area
Very fast path $\mathrm{C}_{0} \rightarrow \mathrm{C}_{4}$

Still
delay $=0(n)$
© John Knight
Revised; November 18, 2003

Addition • Properties of these new adders

Properties of these new adders

Carry-Bypass (Carry-Skip)

This is much like the compromise look-ahead adder.:

- The logic is a little smaller because the gate to calculate C_{4} is smaller.
- The smaller gate will make the $\mathrm{C}_{0^{-}}>\mathrm{C}_{4}$ path slightly faster.
- The path $\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}} \rightarrow \mathrm{C}_{4}$ will be slower.

Carry-Select

Calculate 4-bit sums with $\operatorname{Cin}=0$ and $\operatorname{Cin}=1$. Use Cin to select the correct one.

- Double the size of the base adder.
- The path $\mathrm{C}_{0}->\mathrm{C}_{4}->\mathrm{C}_{8}$ is very fast.

The delay is mainly in the 4-bit adder block.

- For cascade blocks, the adds are all done in parallel.
C_{0} beats the mux inputs at the C_{4} mux,
but the data is waiting at the C_{8} mux when the C_{4} control signal gets there.

Types of Adders Summary: (About to be covered, cont)

(8) Carry Save Adder

Used for multiple adds

Carleton
UNIVERSITY
Dig Cir p. 125
© John Knight
Revised; November 18, 2003

Slide 68

Addition •
Properties of these new adders

Properties of these new adders

Conditional Sum Adder

This is much like the compromise look-ahead adder.

- It calculates both sums and selects the correct one, like the carry-select adder.
- It calculates C_{4} much like the carry-bypass adder.
- It is probably the fastest adder after the Brent-Kung.

Carry-Save Adder

An adder for a different purpose.

- It is good for adding several numbers, such as in multipliers.
- It uses the carry inputs in its adders to add a third number.
- Three numbers go in and two (a vector of carry bits and a vector of sum bits) come out.
- At the end one must add the two vectors together with a normal adder which propagates the carries. However it saves propagating carries during each two-number add.

The Carry-Bypass Adder)

Generate and Propagate Revisited

- Redefine $\mathbf{P = A \oplus B}$
- Then when $P=1, C_{\text {out }}=C_{\text {IN }}$

Extend this across 4 bits

- When $\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}=1, \mathrm{C}_{4}=\mathrm{C}_{0}$

The Carry-Bypass Adder

When $P_{4} P_{3} P_{2} P_{1}=1$, do not wait for the ripple carry. Switch the MUX and get $\mathrm{C}_{4}=\mathrm{C}_{0}$ directly.

- $\mathbf{C 0}$-> C4 has two paths, one fast and one slow.
- The red (slow path) cannot actually happen and is called a false path.
© John Knight
Revised; November 18, 2003
Slide 69

The Carry-Bypass Adder) •
The Carry-Bypass Adder

The Carry-Bypass Adder

This circuit allows the carry to bypass certain adder sections where the propagate signals are all asserted.
| It speeds up the longest path where a carry propagates all the way from C_{0} to C_{4}

False Paths

An continuous path through combinational gates that:

1) cannot be sensitized, or
2) always has a faster sensitized parallel path.
(1)

(2)

Sensitized Path

A path that can be made to propagate a signal change.

Carleton
 UNIVERSITY

Dig Cir p. 129
© John Knight
Revised; November 18, 2003
Slide 70

False Paths -
The Carry-Bypass Adder

False Paths

A false path is a connection through gates from the start to the end of the path which will never propagate a signal change (be sensitized) under proper operation.

False path when the complete path cannot be sensitized. The carry-bypass adder has that type of path.

False path due to redundant circuitry. The term $\mathbf{A B}$ is redundant. Any signal change through the inverter in the \mathbf{B} path, will get to \mathbf{F} faster through $\overline{\mathbf{C}} \mathbf{B}$.

False Paths

Paths that will never propagate a signal change
Long unused paths cause two problems, timing and testing

Timing problems

- Static timing verification checks the delay of the longest combinational paths in a circuit.
- Path delay - input reg to output register - must be under a clock cycle.
- Here timing verification will say the clock period should be at least 70 ns .

If the 70 ns path is a false path, and the next longest real path is 40 ns .

- The verifier will state the clock period $>80 \mathrm{~ns}$.

- You will likely believe it!

Testing Problems

Suppose the MUX in the carry-bypass adder was stuck up. The circuit would still work albeit more slowly.

- One needs a test in which the 80 ns path output is definitely wrong for the 60 ns or so.
- Generating this glitch free test is very difficult.
- Also testing usually not done at maximum speed.

False Paths -
False Paths in the Carry-Bypass Adder

False Paths in the Carry-Bypass Adder

Timing Problems.

Synchronous logic

- In synchronous logic the input flip-flop outputs change just after the active clock edge.
- These changes propagate through the combinational logic (gates only, no flip-flops). The outputs of the gates change. They may go up and down several times.
- Eventually the changes will die out and the logic levels will stabilize.
- After that a new active clock edge may come and store these stable values in the output flip-flops.
- One must have:
$($ The clock period $)>($ longest delay through the combinational logic).

False Paths

- A false path is one which can never propagate a level change to an output.
- A common reason is the false path has a redundant parallel path. The output gets the correct answer from another path in less time than the propagation delay through the false path.
- Another reason is that the gates in the false path cannot all turn on at once.

Static Timing Verification

- After a circuit is designed and converted to a silicon layout, the delays in each gate can be calculated.
- A timing verifier is a program which goes through a logic circuit after all the gate delays have been estimated, and calculates that if all signals will be stable before the next clock edge.
- Unfortunately many of these programs only check the propagation delay along a path. They do not know if the output will be stabilized sooner by another parallel path. They do not know if the all the gates in the path can be turned on at once.
- Thus they will suggest making the clock slower than is actually needed.

The Redundant Carry-Bypass Adder (Carry-Skip)
Case I. The Redundant Path

Carleton
 university

Dig Cir p. 133
© John Knight
Revised; November 18, 2003

False Paths in the Carry-Bypass Adder (cont.)

Testing Problems

The tester would:
load the flip-flops with a test input,
trigger a clock edge,
wait for a clock period,
and then trigger another clock edge and read the outputs as captured by the flip-flops.
If the outputs are stable, it is easy to compare expected and actual signals. If the output is still active when the clock comes it is, difficult to predict what the actual signal will do. One needs to be sure the flip-flop will capture a wrong value if the faster path is defective. Designing such a test is difficult even for a single false path. Such tests cannot be done by normal test generation programs.
Most modern tests do not test at the full clock speed. Scan tests, to be discussed later, do not run at full speed.

Faster Circuits Do Not Have To Have False Paths

False paths are not necessary. It was proven in 1991^{1} that any redundant path, put in strictly to improve speed, could be replaced by a nonredundant circuit with no speed penalty.

False paths are not necessary

[^1]The Redundant Carry-Bypass Adder (Carry-Skip)
Case I. The Redundant Path (cont.)

Carleton
UNIVERSITY
Dig Cir p. 135
© John Knight
Revised; November 18, 2003
Slide 73

False Paths
The Redundant Carry-Bypass Adder

The Redundant Carry-Bypass Adder

The Maps for E_{2}, the Upper MUX Input

- Three maps, $G_{2}, P_{2} G_{2}$ and $P_{2} P_{1}$, derive the expression for E_{2}. The left map encircles the G_{2} term. These squares will be " 1 "s of E_{2}.
- The centre map encircles the two columns of P_{2} and the row of G_{1}. The term is $P_{2} \cdot G_{1}$ so the intersection of the circles will be " 1 "s of E_{2}.
- The lower centre map shows $\mathrm{P}_{2} \cdot \mathrm{P}_{1}$ as the four squares at the intersections of the columns, P_{2}, and the rows, P_{1}.
- The OR of the three maps is E_{2} and is shown in the "MUX UP" map.
- The MUX DOWN map shows $\mathrm{P}_{2} \cdot \mathrm{P}_{1} \cdot \mathrm{C}_{0}$. The value C_{0} is placed in those 4 squares. This avoids making a 5-variable map.

Don't Care Conditions Caused By Multiple Equations.

The four \boxtimes squares in the "MUX UP" map are don't care because the mux is always down $\left(\mathrm{P}_{2} \mathrm{P}_{1}=1\right)$ for those four squares. For the function E_{2}, those squares contain the value of C_{0}, but who cares, they never transfer this value to the output C_{2}.
The twelve \measuredangle squares in the "MUX DOWN" map are don't care because the mux is down $\left(\mathrm{P}_{1} \mathrm{P}_{2}=1\right)$ for only four squares. The map is actually filled with the value of C_{0}, but only the four useful ones are shown.

The Redundant Carry-Bypass Adder (Carry-Skip)

Case II. A Nonredundant Path (cont.)

$\mathrm{C}_{2}=\overline{\left(\bar{P}_{2} \mathrm{P}_{1}\right)} \mathrm{H}_{2}$
$\mathrm{H}_{2}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{1}$
No false path
\boxtimes don't care squares

Carleton
UNIVERSITY
Dig Cir p. 137
© John Knight
Revised; November 18, 2003

False Paths -
A Nonredundant Carry-Bypass Adder

A Nonredundant Carry-Bypass Adder

The Upper MUX Input

- In the previous slide

$$
\mathrm{E}_{2}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{C}_{0}
$$

The $P_{2} \mathrm{P}_{1} \mathrm{C}_{0}$ term was redundant because it was never " 1 " when the mux was in its upper position. This term is only used in the lower mux position.

- In this slide we drop $\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{C}_{0}$ from E_{2} leaving

$$
\mathrm{E}_{2}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{2}
$$

- This removes the false path.

C0 no longer appears to have a path through the upper position in the mux.

Case III. The Simpler Nonredundant Path

Carleton
Dig Cir p. 139

False Paths -
The Carry-Bypass Adder, Nonredundant

The Carry-Bypass Adder, Nonredundant Circuit

Here the $\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{C}_{0}$ term is replaced by A_{0}.
The new output F_{2} is the same as the previous E_{2} except for the four "don't care" \boxtimes squares.
Compare E2 and F2 equations and maps.

$$
\left.\mathrm{E}_{2}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{C}_{0}\right) \quad \mathrm{F}_{2}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{~A}_{0}
$$

- The $P_{2} P_{1} C_{0}$ term only appeared in the don't care squares. It was removed.
- The $P_{2} G_{1}$ only appeared in two squares. It was replaced by a $P_{2} A_{0}$ that made those two squares correct but changed the don't care squares.

Summary

- The don't care terms were caused by partitioning the logic into several functions.
- The don't care terms were utilized to remove redundant logic and false a path.
- Now both the static-timing verifier and the test engineer are happy.

9. PROBLEM

Recall that here $P_{2}=A_{1} \oplus B_{1}$. The term $P_{2} A_{0}$ is on the time-critical path, and can be replaced by a slightly faster term. However it will cost a few extra transistors because one will not be able to utilize the adders XOR gate. Find this revised circuit.

The Carry Select Adder

Trade silicon for speed. Uses Two Adders.

- Do 2 parallel adds
- One based on $\mathrm{C}_{0}=0$. The other for $\mathrm{C}_{0}=1$.
- Use C_{0} to select the correct answer.

Time Saving

One stage saves little time.
Best with many stages.
The add blocks are all done in parallel.
The carries ripple through the stages with one MUX delay per stage.

3-stage time delay $=$ time for 4 -bit add $+3^{*}$ (delay thru MUX)

The Carry-Select Adder

A Fast, But Large, Adder

This adder consists of two normal adders in parallel. They might be ripple-carry or carry look-ahead, or any other type. They would usually be 4-bits adders or more.
One adder adds as if $\mathrm{C}_{0}=0$, the other as if $\mathrm{C}_{0}=1$. The real C_{0} selects the correct answer with a MUX.

Speed

The 4-bit single MUX carry-select adder saves only one or two gate delays in the right-hand section. Probably about the same as the extra delay added by the MUX.
The carry-select adder is best for long word lengths broken into sections. For example 32 bits made of 8 sections of 4 bits each.
All the adds are done at the same time, so there is an initial delay for them to finish. Then the sums and carry outputs are available, but no one knows which to use.

Then the carry must propagate serially through the chain of MUXs, each carry switching a MUX which selects a carry, which in turn is used as the control for the next MUX.
This delay increases linearly with the number of MUXs. However it is faster than most other systems which increase linearly with the number of full adders.
10. Problem

Does the carry-select adder contain redundant paths?
Hints
Are there two apparent paths for the carry? Check the paths, is one ever turned off so a change cannot propagate through it, while the other is turned on? Alternately do two paths give the same answer but one path clearly always faster than the other.

The Carry-Select Adder (Cont.)

The two adders can share some circuitry

- The common blocks contain $\mathrm{G}=\mathrm{AB} ; \mathrm{P}=\mathrm{A} \oplus \mathrm{B}$.
- The distinct (striped) block contain $\mathrm{S}=\mathrm{P} \oplus \mathrm{C}_{\text {PREV }} ; \quad \mathrm{C}=\mathrm{G}+\mathrm{PC} \mathrm{ClD}_{\text {old }}$ for each bit
- About 60% more area than a single adder.

Adders •

The Carry-Select Adder (Cont.)

Sharing Circuitry

The propagate and generate circuits are common to the upper and lower adders because they do not use the carry. The other circuits involve carries and must be separate.
11. PROBLEM

Since the c_{0} input is known to be 1 or 0 , redesign the first full-adders in each 4-bit chain to utilize this fact.

Conditional Sum Adder

© John Knight
Revised; November 18, 2003
Slide 78

Conditional Sum Adder •
The Conditional-Sum Adder

The Conditional-Sum Adder

At one time considered to be the fastest adder theoretically.
It combines features of the carry look-ahead, the carry-select, and the carry-bypass adders.

Each adder block calculates:

$\mathrm{P}=$ carry out if there is a carry in, $\operatorname{Cout}\left(\mathrm{C}_{0}=1\right)$.
$\mathrm{G}=$ carry out if it is independent of a carry in, $\operatorname{Cout}\left(\mathrm{C}_{0}=0\right)$.
$\Sigma=$ sum out if carry in is $0, \Sigma\left(\mathrm{C}_{\mathrm{in}}=0\right)$.
$\bar{\Sigma}=$ sum out if carry in is $1, \Sigma\left(\mathrm{C}_{\mathrm{in}}=1\right)$.

Select the right carry and the right sum outside the adder block

Outside the adder block the previous P and G lines along with C 0 are used to select the proper sum.
The proper carry out is G if $C 0=1$ and P if $C 0=0$
However the proper one is not selected immediately. Both are passed on to the next adder block.
The next block upgrades P and G and passes them on.
The carry out from a block of (usually four) adders is selected from the previous P and G by C_{0}.
. Conditional Sum Adder .

Calculate both sum and carry values

$$
\text { Sum } \Sigma_{k}=\left\{\begin{array}{l}
\Sigma \text { if } C_{k}=0 \\
\bar{\Sigma} \text { if } C_{k}=1
\end{array} \quad \text { Carry out } C_{k}=\left\{\begin{array}{l}
G_{k} \text { if } C_{k-1}=0 \\
P_{k} \text { if } C_{k-1}=1
\end{array}\right.\right.
$$

Calculate in the adder box
$\Sigma_{k-1}=A_{k-1} \oplus B_{k-1}$
$\Sigma_{k-1}=A_{k-1} \oplus B_{k-1} \oplus 1$
$\mathbf{G}_{k}=A_{k-1} B_{k-1}$
$\mathbf{P}_{k}=A_{k-1}+B_{k-1}$

Conditional Sum Adder -

The Conditional-Sum Adder

Carry Calculations ${ }^{1}$

The initial carry $\mathbf{C}_{\mathbf{0}} \underline{\text { bypasses all intermediate carry calculations }}$

Two carries are calculated:
One G is value of the carry if $\mathrm{C}_{0}=0$
The other P is the value if $\mathrm{C}_{0}=1$.
C_{0} is not used to tell which carry is correct until the final output carry.
Notice that the propagation delay for P is exactly that of the carry-bypass adder, the delay of 4 ANDs and 2 ORs.
Also note that the next block takes in C_{4} and sends out C_{8}.
The signals P and G are calculated in parallel with those in the first block, so C_{8} does not have to wait extra time for its P and G . The delay for C_{8} is that of 5 ANDs and 3 Ors

[^2]
Conditional Sum Adder

Carry Calculations

$\mathrm{G}_{4}{ }^{0}=$ carry out from the 4 th adder $=\mathrm{C}_{\text {out }}$
$\mathrm{G}_{4}{ }^{1}=$ carry out from the 4 th adder with $\mathrm{C}_{0}=0$
$\mathrm{P}_{4}{ }^{1}=\mathrm{P}_{4} \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1}$
If ($P_{4}{ }^{1}=1$) if a carry would propagate through all 4 adders
i.e $C_{0}=1 \Rightarrow C_{\text {out }}=1$

Carleton
UNIVERSITY
Dig Cir p. 149
© John Knight
Revised; November 18, 2003

Slide 80

Conditional Sum Adder •

The Conditional-Sum Adder

Carry Calculations

The G chain

This is the same as the carry chain in the P and G ripple adder except it does not contain C_{0}.
It calculates $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ and C 4 , ignoring C 0 .

The P chain

This is the same as the P chain in the carry-bypass adder, except, as shown on the next page, it has taps to select the correct sum for individual full adders.

Comparison with other schemes

Combination of carry-select and carry-bypass adders
Like the carry-select adder, it calculates both $\Sigma\left(\mathrm{C}_{0}=0\right)$ and $\Sigma\left(\mathrm{C}_{0}=1\right)$.
It sends $\mathrm{C}_{0}->$ Cout directly if all propagate signals are true, like the carry-bypass adder. Thus the propagate time, if C_{0} goes to Cout is almost the same as for the carry-bypass adder. The extra P line loading will slow it a little.

Note also this carry bypass is done for all the adders, for example Σ_{4} is controlled by $\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{C}_{0}$. This means the individual sum terms will be faster than in the carry look ahead adder which uses $\mathrm{G}_{3}+\mathrm{P}_{3}\left(\mathrm{G}_{2}+\mathrm{P}_{2}\left(\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{C}_{0}\right)\right)$) to propagate C_{0} into adder 4 .
It uses the generalized generate signal $\mathrm{G}_{\mathrm{n}}{ }^{\mathrm{k}}$ which signals if a carry comes from circuitry between adders n and k. This is like the Brent-Kung adder, except here it uses only $G_{n}{ }^{1}$

It does not use the logarithmic carry propagation so, for long word lengths, it will be slower than Brent-Kung.
| There is an alternate implementation of the carry-select adder which uses transmission gates. ${ }^{1}$

[^3]
Conditional Sum Adder

Selecting the sum terms

© John Knight
Revised; November 18, 2003

Conditional Sum Adder :
Conditional Sum Adder

Reducing Delay By Gradually Increasing Stage Length

The stages calculate in parallel

- Their outputs reach the carry muxs at the same time (with equal lengths).
- Path 0 delay increases by a mux delay at each stage.

If (mux delay) \approx ($G P$ delay), can do one more add in each successive stage.
Carry-Select

Delay now increases as sqrt(n), $O(\sqrt{ } n)$, instead of linearly with $n, O(n)$.
Carry-Bypass

Carleton
UNIVERSITY
Dig Cir p. 153
© John Knight
Revised; November 18, 2003
Slide 82

Increasing Stage Length

Renumber the carrys by stage by making the output carry of stage k be S_{k}. In the picture, $S_{1}=C_{2}, S_{2}=C_{4}, \ldots$
Balance delays so path 0 and path k are equal. Path k is the longest path from some stage k input to S_{k}.
τ_{k} is its path delay. Path 3 is shown.
In the first stage, signal C_{0} will reach S_{1} before the signal on path 1 , so the delay to S_{1} is τ_{1}.
After that, as long as path k can reach mux k before the signal along path 0 , then
(delay along path 0 up to carry S_{k}) $=\tau_{0 \mathrm{k}}=\tau_{1}+\mathrm{k} * \tau_{\text {mux }}$
The increase in delay between $\tau_{0 \mathrm{k}}$ and $\tau_{0(\mathrm{k}+1)}$ is one mux delay as long as path $\mathrm{k}+1$ can reach the mux k before the signal along path 0 .
Thus we can increase the delay along each path k by one mux delay for each stage.
Thus $\tau_{0 \mathrm{~m}}$, the total carry-out delay for m stages, is $\tau_{1}+\mathrm{m} * \tau_{\text {mux }}$
The number of full adders, $\mathrm{n}=2+3+4+5+\ldots+\mathrm{m}=\mathrm{m}(\mathrm{m}+1) / 2-1$. (Sum of arithmetic series)
Solve the quadratic equation to find $m=-0.5+\sqrt{ }(2.25+n)$
For $\mathrm{n} \gg 2.25 \quad \tau_{0 \mathrm{~m}} \approx \tau_{\text {mux }} \sqrt{ }{ }_{\mathrm{n}}$

Balancing the whole sum

Carry-Bypass
The circuits above have the delay to
 the final carry faster than to some of the high order bits of the sum. Then one of the critical paths is shown on the right. Here the stage length is | decreased symmetrically on both ends to equalize the delay to the final sum bit in each stage.

Carry-Select

Here the final sum is selected in parallel by the carry. Shortening the most-significant end is not necessary.

Comparison of Adders ${ }^{1}$

Adapted from Rabaey.

The carry select adder area and speed depends on the stage "your favourite" adder type. Details will change relative properties, particularly for low n.

[^4]
Carleton
 UNIVERSITY

Dig Cir p. 155
© John Knight
Revised; November 18, 2003
Slide 83

Conditional Sum Adder :

Summary of Adders

Summary of Adders

Ripple-carry adder is the smallest and the lowest power consumption, and for short words it may be fastest.
The bit-serial version is very small and very slow. It takes in and gives out bit streams. See
Lealand Jackson, Digital Filters and Signal Processing, Kluwer 1989, pp 343-345.
The Brent-Kung adder is by far the fastest, but it gets very large.
The conditional-sum adder is the second choice for speed, and has much less area.

Experience with Small Adders

For small adders, $\mathrm{O}(\mathrm{n})$ approximations may be misleading.
For 4 to 7 bit adds, using library Designware ${ }^{\circledR}$, a Carleton graduate student, Youxing Zhao found:
The conditional sum adder (csa) was the fastest.
The ripple carry adder (rpl) was second and significantly slower.
The fast carry look-ahead (clf) was third.
The Brent-Kung (bk) and the carry look-ahead adder (cla) were last and about the same.

Verilog Adders

Ripple-Carry Adder

```
module ripple_add8(cout,s,a,b,cin);
        input [7:0] a, b, input cin;
        output [7:0] s; reg [7:0] s;
        output cout; reg cout;
        integer i;
        wire cy;
        always @(a or b or cin)
        begin
            cy=cin
            for (i=0; i<=7; i=i+1)
                begin
                    {cy,s[i]) = a[i] +b[i] + cy;
                end
            cout=cy;
        end
    endmodule // ripple_add8
```


Verilog Adders

Ripple-Carry Adder

Connections

- The input and output ports, $\mathbf{a}, \mathbf{b}, \mathbf{c i n}$, cout and \mathbf{s}, do not have to be declared again. The internal connection, c1, c2, ..., normally would be declared. However:
- Wires do not have to be declared explicitly if they serve as wiring between arguments of module instantiations. For example c1, c2,

Module Definitions

- We define a module ripple_add8 and a module fulladder. Ripple_add8 calls fulladder eight times.
- The definition of a module must be completely outside the definition of any other module. Note the endmodule statement for ripple_add8 came before module fulladder started

Behavioural Model for Adder

The full adder was defined by logic equations rather than gates. This allows a logic synthesizer to choose how the gates are to be put together. For example it might factor the carry into:

$$
a(b+c)+b c .
$$

Normally the synthesizer will do a much better job than the designer. Two exceptions are:

1. when custom cells available that are not in the synthesizer library.
2. When the logic is too much for the minimizer. Carry-select adders are probably too much.

Carry Lookahead Adder

```
module lookahead_add8(cout,s,a,b,cin);
        input [7:0] a, b; input cin;
        output[7:0] s; output cout;
        wire ca;
    lookahead_4 LA4_a(ca, s[3:0],a[3:0],b[3:0],cin],
            LA4_b(cout, s[7:4],a[7:4],b[7:4],ca];
endmodule //lookahead_add8
    module lookahead 4(cout,s,a,b,cin);
        input [3:0] a, b, cin;
        output [3:0] s; output cout;
        wires [3:0] c, p, g;
    // Connect the carry, cin, and carry lookahead c[i].
        assign c[0] = cin,
            c[1] = g[0] 
```



```
    c[3] = g[2] | p[2]&g[1] | p[2]&p[1]&g[0]
    | p[2]&p[1]&p[0]&c[0],
    cout = g[3] | p[3]&g[2] | p[3]&p[2]&g[1]
    | p[3]&p[2]&p[1]&g[0] | p[3]&p[2]&p[1]&p[0]&c[0];
    // Connect propagate and generate signals; connect the sum.
        assign p = a^b,
            g = a&b,
            s = p^c;
    end module // lookahead_4
```


Carry Lookahead Adder

Connections

- The input and output ports, $\mathbf{a}, \mathrm{b}, \mathrm{c}$ in, cout and \mathbf{s}, do not have to be declared again. The internal connection, ca, was declared. However in this case it was optional (see below).
- Wires do not have to be declared explicitly if they serve as wiring between arguments of module instantiations. For example declaration of ca in LA4_a and LA4_b, is optional.

Nonprocedural Verilog Is a Circuit

- Note again that Verilog statements, except in procedures, are definitions of connections. The order of the statements does not matter any more than it matters which gate is put at the top of a wiring diagram.
- The two 4-bit sections are coupled by a ripple carry

The Carry Lookahead Code

- the equations were written to follow my guess at the fastest implementation. A good synthesizer may change the gate connections considerably.
- Verilog Adders .

Carry-Select Adder

```
module select_add8 (cout, s, a,b,cin);
    input [7: \(\overline{0}] \quad \mathrm{a}, \mathrm{b}\); input cin;
    output [7:0] s; output cout;
    wire [7:0] s0, s1; wire ca;
    parameter zero=0, one=1;
    add4 ADD4_a0(ca0, s[3:0],a[3:0],b[3:0], zero),
        ADD4_a1 (ca1, s[3:0], a[3:0],b[3:0], one),
        ADD4_b0 (cout0, \(s[7: 4], a[7: 4], b[7: 4], z e r o)\),
        ADD4_b1 (cout1, s[7:4],a[7:4],b[7:4], one);
// The MUXs
    assign ca \(=(\) cin \() ~ ? ~ c a 1 ~: ~ c a 0, ~\)
        cout \(=(c a)\) ? cout1 : cout0,
                \(\mathrm{s}[3: 0]=(\mathrm{cin})\) ? \(\mathrm{s} 1[3: 0]\) : \(\mathrm{s} 0[3: 0], \mathrm{l} /\) Not shown on diagram
                s[7:4] = (ca) ? s1[7:4] : s0[7:4];
endmodule //select_add8
    module add4 (cout, s, a,b,cin);
        input [3:0] \(a, b\), input cin;
        output [3:0] s; output cout;
    // The 4-bit behavioural adder. Let the synthesizer decide.
        assign \(\{\) cout, \(s\}=a+b+c i n ;\)
    endmodule // add4
```

Carleton
UNIVERSITY
Dig Cir p. 161
© John Knight
Revised; November 18, 2003
Slide 86

Verilog Adders ■
The Carry-Select Adder

The Carry-Select Adder

Wire Declarations

- I tend to declare wires even when the default do not require it. It helps:
a. to keep one from using the same symbol for two wires.
b. to keep one confusing vectors and scalers, for example cin and c[0].

Parameters

parameter zero=0, one=1;
This defines constants 0 and 1 at the start rather than deep inside the module. Then if one wants to change them, say the input should be asserted low logic, it is easy to do.

Concatenation Left of the " $=$ "

Concatenation on the left side of an equal sign is handy:

$$
\text { assign }\{\text { cout, } s\}=a+b+c i n ;
$$

. Precoded Verilog Adders .

Precoded Verilog Adders

Libraries

```
Most sites have access to precoded operators.
In Synopsys a library is called Designware.
In dc one can see it by
> report_lib standard.sldb
In PKS one can see what is in the library using
> report_lib
The libaries will usually have:-
add, subtract,
various compares (signed, unsigned) >, <, <=, ==, ...
multiply
```

Adders, for example are differentiated according to:

- bit lengths of both operands
- two's compliment or unsigned (for overflow checking)
- carry propagation mechanism.

Module Generators and Libraries

The fast way to get circuits
Most logic synthesizers have several types of adders already created.
These may be Verilog descriptions coded as macros.
They may be already laid out.
Use a Behavioural Description with Libraries
The library or generator usually wants the simplest high-level description of the function:

$$
\{\text { cout }, \mathrm{s}\}=\mathrm{a}+\mathrm{b} ;
$$

Put it in a module like add8.
Tell the synthesizer you want the module implemented by a macro or cell.

Incrementers

Compare incrementers and Adders

Full Adder

Add		$\Sigma \mathbf{~} \mathbf{a} \oplus \mathbf{b} \oplus \mathbf{C i n}$	Cout $=\mathrm{g}+\mathrm{p} \cdot \mathrm{Cin}=\mathrm{a} \cdot \mathrm{b}+\mathrm{b} \cdot \mathrm{Cin}+\mathrm{a} \cdot \mathrm{Cin}$
Half Adder			
Increment	$b=0$	$\Sigma \mathbf{=} \mathbf{a} \oplus \mathbf{0} \oplus \mathbf{C i n}$	Cout $=\mathrm{g}+\mathrm{p} \cdot \mathrm{Cin}=\mathrm{a} \cdot \mathrm{O}+0 \cdot \mathrm{Cin}+\mathrm{a} \cdot \mathrm{Cin}$
		$\Sigma=\underline{\mathbf{a}} \oplus \mathrm{Cin}$	Cout $=0+\mathrm{a} \cdot \mathrm{Cin}=\mathrm{a} \cdot \mathrm{Cin}$
First input	$\mathrm{C}_{0}=1$	$\Sigma=\mathbf{a}$	$\mathrm{C}_{1}=\mathrm{a}_{0}$

4-Bit incrementer

Carry Lookahead

$$
C_{4}=a_{3} a_{2} a_{1} a_{0}
$$

Incrementer/Decrementer

Adders With One Input Fixed at One.
An adder can be used as an incrementer.
If a unit is to do nothing but increment, use a much simpler circuit.

- Adders are made of full adders. Incrementers are made of half adders.

Verilog and Incrementers

How smart is your sythesizer?

assign $s=a+1 ; \quad / /$ If the synthesizer knows about incrementers this should generate one.
parameter one = 1;
assign $\mathbf{s}=\mathrm{a}$ +one; // Maybe, but likely you will get an adder.
assign $\operatorname{cin}=1$,
s = a +cin; // Unlikely
12. PROBLEM

Design a carry-select incrementer
Hint: It is just a rearrangement of the AND gates.

Negative Numbers

Two's Complement

The numbers

- Positive numbers start with 0 .
- Negative numbers start with 1. The first bit tells the sign.
-1 is always 1111 ...
- They use a normal positive-number adder.

2's complement

+3 011
+2 010
+1 001
-1 111
-2 110
-3 101
-4 100

Overflow

- Test for overflow is

Overflow = Cn $\oplus \mathbf{C n}-1$

- Maximum positive becomes maximum negative.
$011+001 \Rightarrow 100 \quad 3+1 \Rightarrow-4$

Example, accumulating adder v.s. integrator:

Caviversity
Dig Cir p. 167
© John Knight
Revised; November 18, 2003
Slide 89

Negative Numbers -
Subtraction

Subtraction

Common representations for signed numbers

1. Two's compliment

Uses a normal adder.
2. One's complement

Uses a normal adder except carry wraps around, Can double add times. Has two values representing zero.
3. Sign magnitude

Cumbersome to implement.
Normal output format for some A to Ds and some additive encoding compression schemes.

Overflow test for 2's Complement

Adding numbers of opposite sign can never overflow.
Since $a[n]$ and $b[n]$ are the sign of a and $b, a[n]=b[n]$ is the only potential overflow.
Case (i) Numbers have same sign ie. $a[n]=b[n]$
If $a[n]=b[n]$, then $c[n]=\Sigma[n]$, (see map of Σ_{n} on right), $\Rightarrow c[n]$ is the apparent sign of the number just as $\Sigma[n]$ is.

The $\operatorname{sum} \Sigma[n]$ must have the common sign of $a[n]$ and $b[n]$ or there is overflow.
But the $\operatorname{sign} \Sigma[n]=c[n]$
Further $c[n+1]=1$ if $a[n]=1=b[n], \quad c[n+1]=0 \quad$ if $a[n]=0=b[n]$
Deduce that $c[n+1] \neq c[n] \Rightarrow$ sign of Σ is opposite the common sign of a and $b \Rightarrow$ overflow. That is $c[n+1] \oplus c[n]=1 \Rightarrow$ overflow.
$\underline{\text { Case (ii) }} \underline{a[n]} \neq b[n]$
If $a[n] \neq b[n]$, then $c[n+1]=c[n]$ and $c[n+1] \oplus c[n]=0$. This agrees with no overflow.

- Negative Numbers .

Two's Complement (cont.)

Negating Numbers

a. Invert each bit.
b. Add1.
c. Ignore any off-end carry.

In Verilog

```
wire [7:0] minus_a, a;
    minus_a = (~a)}+
```


When Two's Complement Overflow Can Be Ignored

a. Do n-bit arithmetic on a signal
b. Allowed operations are + , -, and multiply by an integer $\mathrm{x}^{\star} 17$ OK $\mathrm{x}^{\star} 1.7$.
c. If the correct output would not overflow n-bits, then internal overflows do not cause an error!
Example, accumulating adder

Carleton

Dig Cir p. 169
© John Knight
Revised; November 18, 2003

Two's Complement

Negative Numbers •

_Two's Complement

Overflow

Two's complement overflow can be very bad because it goes from maximum positive to maximum negative.
On the other hand one can often recover from the overflow.

Recovery from overflow

Let x be a large number such that adding $3+\mathrm{x}$ overflows.
Now immediately add -4 to the result. This will do a negative overflow and take the result back to $\mathrm{x}-1$.
This is exactly the result if their had been no overflow.
Intermediate results which overflow cause no error if the correct final answer lies within range.
This applies only to addition and subtraction.
Multiplication by an integer is all right because that is equivalent to adding many times.
Multiplication by a fraction is not all right. There is an element of division destroys the overflow recovery.

- Negative Numbers .

Coding An Add/Subtract Unit

Coding for Synthesis

The Poor Way

Depending on the value of cntr, s is assigned to either $a-b$ or $a+b$.
module adder (s, cntr, a, b);
output [7:0] s;
input entr;
input [7:0] a , b;
assign $s=($ cntr) $?(a+b):(a-b)$;

Unless the synthesis tool is very smart. it will generate:

- a mux from the conditional statement
- separate arithmetic units;
one which adds, and one which subtracts.

Dig Cir p. 171
© John Knight
Revised; November 18, 2003

Slide 91

Subtraction

Making a subtractor from an adder

Converting Add to Subtract

To convert $\mathrm{A}+\mathrm{B}$ into $\mathrm{A}-\mathrm{B}$:

1. Individually invert all the bits of B to $\sim B$.
2. Apply $\sim B$ to the adder input. Remember we also had to add 1 .
3. Do the adds $\mathrm{A}-\mathrm{B}=\mathrm{A}+(\sim \mathrm{B}+1)=\mathrm{A}+(\sim \mathrm{B})+1$.

Do the +1 by sending 1 into C 0 (Carry in)

Verilog Add/Subtract Circuit.

module add_subtract(overflw, cout, s, a, b, plus_minus_n)
// plus_minus_n $=1$ is add; plus_minus_n $=0$ is subtract.
input [7:0] a,b; input plus_minus;
output [7:0] s; output overflw, cout;
wire [7:0] tildaB;
assign tildaB $=$ (plus_minus) ? $\mathrm{b}: \sim \mathrm{b}, \quad / /$ or plus_minus $\wedge^{\wedge} \mathrm{b}$
$\{$ cout, s$\}=\mathrm{a}+$ tildaB $+(\sim$ plus_minus $)$, overflw $=\operatorname{cout}^{\wedge}((\mathrm{a}[7]=$ tildaB[7] $) \& \mathrm{~s}[7])$;
endmodule
13. PROBLEM

Estimate the area generated for this circuit vs the one on the next slide using XORs as a controlled inverter.

- Negative Numbers .

Coding for Synthesis

Smaller Faster Circuit

$a-b$ can be performed by inverting b and adding "1". $-\mathrm{b}=\sim \mathrm{b}+1$

Rewrite the code using cntr to:

- form a conditional "add 1" (add the value of cntr)
- conditionally invert b by using XOR gates.
module adder (s, cntr, $a, b)$;
output [7:0] s;
input cntr;
input [7:0] a , b;

```
            assign s = cntr + a + ({8{cntr}} ^ b);
```


The XOR inverts b when cntr $=1$.

Carleton
UNIVERSITY
Dig Cir p. 173
| Slide 92

- Negative Numbers .

Negating Two's Complement Numbers

The algorithm shown is fast and simple.

Examples

$001010=10 \mathrm{~d}$
Start on the right, travel left.
As long as the bits are 0 leave them unchanged.
On the first 1 leave that unchanged,
but invert all bits from then on.
The colon shows the break between inversion and noninversion.
$1101: 10=-10 \mathrm{~d}$
$110100=-12 \mathrm{~d}$
$001: 100=-12 d$
$000101=5 \mathrm{~d}$
$11101: 1=-5 \mathrm{~d}$

. Negative Numbers .

Circuit to find 2's Complememnt

 reg [N-1:0] \(y\); // minus \(x\)
 wire [N-1:0] \(\mathbf{x}\);
 | wire cry;
integer i;
always @ (x)
begin
cry=0; // Becomes 1 after the first 1 in x.l
for ($i=0 ; i<N ; i=i+1$) // Start at least sig bit, move left.
begin
$y[i]=x[i]$ ^cry; $/ /$ Invert x next i after the first 1 in x is reached.
cry $=\mathbf{x}[i]$ | cry; // cry will remember when the first 1 was reached.
end
end

© John Knight

Revised; November 18, 2003

Finding the Two's Complement

Negative Numbers •

Finding the Two's Complement

This is a good circuit to use if you are not going to do an addition on the number after conversion.
If you are going to add the number immediately afterward, just invert each bit and make the carry-in for the adder equal 1.

[^0]: ${ }^{1 .}$ The ceiling is the smallest integer larger than a number

[^1]: ${ }^{1 .}$ K, Keutzer, S. Malik and A. Saldanha, "Is Redundancy Necessary to Reduce Delay?", IEEE Trans, on CAD, April 1991, pp 427-435.

[^2]: ${ }^{1 .}$ A. Bellaouar and M Elmasary, Low-powered Digital VLSI Design Circuits and Systems, Kluwer 1995, p. 424 has a good summary of the csa..

[^3]: ${ }^{1 .}$ See Jan M. Rabaey, Digital Integrated Circuits, Prentice Hall, 1996, Chapt. 7, Prob. 8, pp. 429-30.

[^4]: ${ }^{1}$. Jan M. Rabaey, Digital Integrated Circuits, Prentice Hall, 1995. pp. 399, 403, 424.

