
Digital Circuits

© John Knight

Dig Cir p. 47 Revised; October 9, 2003

Digital Circuits
People don’t understand double negatives

Asserted-Low (Low-True) Signals

Low-true signals implement their name when low.
Their names often end in “(L)” or “_N”

High-true signals implement their name when high.
Their names end in “(H)” or nothing.

.

Example: Cow feeding circuit

FEED(H) is asserted high (high-true).
It implements its name when high.

CLK is not asserted either high or low.

E
G

F E,G and F have no physical
meaning. They are not
asserted-high or asserted-low

Cow feeding
Logic

FEED(H)

CLK

Slide 24

Carleton University © John Knight

Digital Circuits p. 48 Revised; October 9, 2003

Digital Circuits Asserted-Low Signals

Common Digital Circuits

Asserted-Low Signals

“The electrons have no knowledge of what meanings we attach to these signals.” (Richard Hamming)

Asserted-Low (Low-True) Signals

Definition

These are signals which carry out the function of their name, when low.

Examples

FLASH_LED(L), ERROR(L) used to be prefered for schematic design.

CLEAR_LATCH_N, CHIP_SELECT_N for Verilog code which cannot have brackets.

b_N(7), b_N(6), . . . b_N(0) as bits of a binary number.

Warning

The notation “(L)” or “_N” can get very cumbersome.
It is very useful for work involving block diagram interconnections or maintenance.

It is very messy to do Boolean algebra on such names. Instead convert the signals to normal high-true signals to
do thinking.

It is very easy to use DeMorgan’s theorem to transform them back at the end.

Comment on Slide 24

Digital Circuits

© John Knight

Dig Cir p. 49 Revised; October 9, 2003

Asserted-Low Signals (cont.)

• Change the signal name to STARVE(L)

• Convention places an where a low-true signal
enters or leaves a circuit block.

• This only reinforces the low-true naming.
The physical circuit is unchanged!

• IEEE convention, used by TI and Signetics, uses a
rather than

• Avoids temptation to insert a real inverter for a
mental one.

Most Board Inputs are Asserted-Low

In TTL logic a disconnected input went high.
Pulling an input plug would assert high-true inputs.

This was usually not wanted.
(suppose the input fired missiles)

Thus TTL inputs were made asserted low

CMOS board designers often still use pull-ups to VDD,
They then design for asserted-low

to avoid the plug pulling problem..

Such is the strength of tradition

Convert After Thinking is Done

Cow feeding
Logic

STARVE_N

CLK

Cow feeding
LogicCLK

BETTER

STARVE_N

+VDD

LAUNCH(L)

Slide 25

Carleton University © John Knight

Digital Circuits p. 50 Revised; October 9, 2003

Digital Circuits Asserted Low Conventions

Comment on Slide 25

Digital Circuits

Asserted Low Conventions
• Any asserted low signal entering a block (not a gate) type symbol has an inverting symbol

or better where it enters the block.

• Then mentally, all signals are asserted high inside the block as a symbol.
When ENABLE_N=0, EN inside the box symbol is true,
and the chip is enabled.

• Since the conversion ENABLE_N=0, to an asserted-high EN inside the block is only mental, the is a
better symbol, but it is so seldom used it may cause more confusion than it saves.

• Asserted-low output signals are analogous.

The is not used for gate-level schematics

On a schematic, a low-true signal may have to enter a gate without a
or preferably one may be able to DeMorgan the gate to get an input .

•

ENABLE_N

EN

RESET_N

RESET_N

Common Circuit Blocks

© John Knight

Dig Cir p. 51 Revised; October 9, 2003

Common Circuit Blocks

Combinational Circuits
1. Multiplexer (MUX)

a. Digital

b. Analog

2. DeMUX, Decoder

3. Priority Encoder

4. Barrel Rotators and Shifters

5. Adders

6. Incrementers

7. Subtracters and Two’s Complement

Descriptions Given For the Above Circuits
1. Verilog

2. Circuit

Slide 26

Carleton University © John Knight

Digital Circuits p. 52 Revised; October 9, 2003

Common Circuit Blocks Common Circuit Blocks

Comment on Slide 26

Common Circuit Blocks

These blocks will be discussed in reasonable detail.

Multiplexers

© John Knight

Dig Cir p. 53 Revised; October 9, 2003

Multiplexers

Digital 2-Input MUX
Application

Symbol

IEEE symbol:

S= 0 connects b y
S= 1 connects a y

Circuit

Complex Gate Circuit

SELECT1

1

1

1

SELECT

2-input

1

1

S

a

b

MUX
y

S

0
1

Virtual
signal

1
1

Select
Inputs

Connects

b y
a y

1

1

G1/1

S

a

b
y

G1/1

Often shortened
to G1

S

b

+5 V

S

S

a
y

S

b

a

S

b

+5 V

S S

a

y
S

ba

Complex Gate
Details

S

a

b

y

S
a

b

y

Slide 27

Carleton University © John Knight

Digital Circuits p. 54 Revised; October 9, 2003

Multiplexers Common Circuit Blocks

Comment on Slide 27

IEEE Symbols for a MUX

2-Input MUX

The numbers represent internal “virtual” signals. One
could have used say 7 instead of 1.

A G1 stands for “Gate” (AND) input present signal S
with a virtual signal 1 from some other point in the
circuit.

A G1 means Gate with signal 1 when this line is low.

The G1/1 means Gate with signal 1 when this line is
high and with 1 when it is low.

It is usual to assume the 1 for a MUX and just write G1.

The word MUX at the top shows the circuit combines
these gated inputs like a MUX.

The IEEE standard does not retain the shaped gates.
They put everything in rectangles.

1

1
G1

S

a

b

MUX

S

a 1

1

1
G1/1

S

a

b

MUX 7

7
G7/7

S

a

b

MUX

1

1
G1/1

S

a

b

MUX

1
G1

S

b

MUX

1

G1
S

a MUX

S

b 1

G1

S

b

a 1

1

1

1

G1

a

b

MUX

y

S

y

y

y y

y

y

Multiplexers

© John Knight

Dig Cir p. 55 Revised; October 9, 2003

Digital 2-Input MUX (cont.)

Verilog
Behavioural Description

Uses Conditional operator

If Cond ? True: False;

//Verilog MUX
//Using Structual If

m

wire y; //output
wire a, b, S; //inputs: control

assign y = (S) ? a: b;

S
y

1

1a
a

Slide 28

Carleton University © John Knight

Digital Circuits p. 56 Revised; October 9, 2003

Multiplexers 2-Input Mux

Comment on Slide 28

2-Input Mux
A 2-input MUX is perhaps easiest to write this way.

Multiplexers

© John Knight

Dig Cir p. 57 Revised; October 9, 2003

Digital 2-Input MUX
Verilog

Structural Description

Built from gates

• Wires are for internal
connections.

• Some simple wires are
defaults so a declaration is
optional

• Gates do not need individual
names. We won’t refer to
them later.

• S_ is a common way
to write S.

Verilog

Behavioural Description

• Easy to follow.

• Synthesizer will build
easily

//Verilog MUX
//Built from “primitive” gates

wire a, b, S, d, e, S_;
wire y;

not (S_, S);
and (e, a, S);
and (d, b, S_);
or (y, e, d);

S

a

b

e

d
S_

y

//Verilog MUX
//Built from case

wire a, b, S;
reg y;

always @(a or b)

begin: mux_defn

case(S)
0: y=b;
1: y=a;

endcase
end

Slide 29

Carleton University © John Knight

Digital Circuits p. 58 Revised; October 9, 2003

Multiplexers Verilog

Comment on Slide 29

Verilog
Wires names and gate names

• One-bit wires connecting component instances together are considered implicit wires. They do not
need to be declared. However implicit wires are only one bit wide. Bus connection between two
components must be declared as a wire.

• Note that wires connecting components in continuous assignments must be declared. Only those
connected directly to ports (the module input/output signals) are defaults.
Thus (Slide 31) used only defaults.

If one had said

we would have had to declare f a wire. Note means f.

• Before, we named each gate instance.
Gates do not need individual names if one will not refer to them individually later.
Thus we can say

assign y = (S) ? a: b;

assign f = (S) ? a: b;
assign y = ~f;

~f;

nand NANDY(OUT, IN1, IN2);

and (e, a, S);

Multiplexers

© John Knight

Dig Cir p. 59 Revised; October 9, 2003

Transmission Gates; a Switch of Transistors
For Low Channel Resistance, One Needs a Large Gate-to-Channel Voltage

+5 V

G

VCHAN ≈ 0V

NMOS

NMOS can pass low voltages

+5 V

VCHANNEL≈ 5V

|VG-CHAN|

R
E

S
IS

TA
N

C
E

PMOS

PMOS can pass high voltages

R

+5 V

VOUT

LOAD

but not low ones. but not high ones.

4
3
2
1

5

0

Lo

∞

G

VG-CHAN

R
E

S
IS

TA
N

C
E

4
3
2
1

5

0

Lo

∞

Threshold

With both PMOS and NMOS, can both Hi and Lo.

VIN

VIN

PMOS-RONNMOS-RON

TOTAL-RON

0 5

RON

Slide 30

Carleton University © John Knight

Digital Circuits p. 60 Revised; October 9, 2003

Multiplexers Verilog

Comment on Slide 30

Conducting Transistors

In order for a transistor channel to conduct well, the gate voltage must be much higher than the channel voltage

Substrate Connection For Transmission Gates

The substrate must be connected to the lowest voltage, probably ground, for NMOS and
the highest voltage, probably VDD for PMOS.
Otherwise the channel-substrate diode becomes forward biased.

P
N+N+

SOURCEDRAIN
GATE

The gate voltage attracts carriers to
form a thin layer under the oxide. They
make a channel between N+ and N+
A high gate voltage attracts more carriers
and gives lower on resistance.Channel under the

thin oxide.

(c)

VDD

PMOS

NMOS

Multiplexers

© John Knight

Dig Cir p. 61 Revised; October 9, 2003

Analog MUX
Transmission Gate

• The gate and two symbols

Transmission Gate Mux

• Very small 6 transistor circuit.

• Does not invert.

• Transmission gates add extra resistance
and hence delay.

• Parallel transistors are hard to test.
The circuit still partially works if one is
open.

Analog Signals

• The circuit will switch analog signals, but - - -
If a and b go negative, your channel-substrate junction will become forward biased.

MUX is Bidirectional

• Do not drive buses through a transmission gate.
A high powered bus may feed backwards through
the gate and overpower weaker logic.

VCNTRL

VIN VOUT VIN

VCNTRL

VOUT

VCNTRL

VIN VOUT

SEL

a

b

1

1

X1/1

SEL

b

a

MUXy y

IEEE SYMBOLCIRCUIT

SEL

A bit of artistic

license

VCNTRL BUS

1D
C1

Weak D-ff contains transmission gates

Slide 31

Carleton University © John Knight

Digital Circuits p. 62 Revised; October 9, 2003

Multiplexers Verilog

Comment on Slide 31

Analog MUX

The Transmission Gate

On and Off

The Analog MUX

The IEEE Symbol
• The letter G on the digital MUX is replaced by X. G stood for gated, indicated an ANDing of two leads.

X is a bidirectional gateing. The analog MUX can work in either direction.

• The double arrows show the signals can travel either way.

Advantages
• This MUX is very simple, replacing 10 or 12 transistors in the gate built MUX, with 6 or 8. The larger

number in each case is for an inverter at the output.

• The MUX does not invert. However most MUX standard cells will add an inverter an output buffer..

Disadvantages
• This MUX adds an extra resistance in the signal path. Remember the delay has a component that

increases quadraticly with the number of series transistors (Comment on Slide 14). Check if the gates
driving a or b have three or more series gates already.

• Suppose one of the parallel transistors in a transmission gate is no good. The other one will still conduct albeit with a
higher resistance and a possible threshold drop. Capacitances may be half charged and give erratic results.1 Many
circuit will work but more slowly. Testing for slow response, delay testing, is much harder than normal static testing.

Testing for static power supply current, IDDQ testing, can sometimes find partial charges on capacitors, since these
may allow a direct path from VDD to ground. This is changing the present attitude toward transmission gates.

1. Thomas DeMassa and Zack Ciccone, Digital Integrated Circuits, John Wiley, 1996, p.432.

VCNTRL=1 VCNTRL= 0

1

0

0

1

OFFON

Multiplexers

© John Knight

Dig Cir p. 63 Revised; October 9, 2003

4-Input MUX
The IEEE symbol

decodes the 2-bit number
S1S0 into 4 virtual control
signals.

The Circuit

36 transistor CMOS
circuit.

Verilog

l = bitwise OR

& = bitwise AND

~ = bitwise NOT

Consider:

4-input

0
1 G0

3

MUX

0
1
2
3

a
b
c
d

S0
S1

y

S1 S0

21 20

0
0

0
1
0
1

1
1

Virtual
signal

0
1
2
3

Weight
Select
Inputs

Connects

a y
b y
c y
d y

S0

c

d

y

a

b

S1

6+4

6

6

6

8

36 transistors
(28 as a complex gate)

//Verilog 4-Input MUX
//

wire a, b, c, d;
wire S1, S0, y;

assign y = (~S1 & ~S0 & a)| // virtual sig 0
(~S1 & S0 & b)| // virtual sig 1
(S1 & ~S0 & c)| // virtual sig 2
(S1 & S0 & d; // virtual sig 3

// Good for mental exercise
assign y =

S1 ? (S0 ? d : c)
: (S0 ? b : a) ;

Slide 32

Carleton University © John Knight

Digital Circuits p. 64 Revised; October 9, 2003

Multiplexers Verilog 4-Input Mux

Verilog 4-Input Mux

Verilog

The integer 2 is translated into 10
{S1,S0} says concatenate bits together.

%d says display {S1,S0} as a decimal.

4-input

0
1 G0

3

MUX

0
1
2
3

a
b
c
d

S0
S1

y

S1 S0

0
0

0
1
0
1

1
1

Virtual
signal

0
1
2
3

Select
Inputs

Connects

a y
b y
c y
d y

S0

c

d

y

a

b

S1

6+4

6

6

6

8

//Verilog 4-Input MUX

wire a, b, c, d;
wire S1, S0,
reg y;

always @ (a or b or c or d or S1 or S0);
case({S1,S0})
0: y=a;
1: y=b;
2: y=c;
3: y=d;

default: $display
(“Bad input %d to 4-input mux”, {S1,S0})

endcase

Comment on Slide 32n

Demultiplexers, Decoders

© John Knight

Dig Cir p. 65 Revised; October 9, 2003

Demultiplexers, Decoders

Decoder
Application

Decode 2-bit binary
into 1-out-of-4.

Select one of the 64K
memory blocks.

CS = chip select

Symbol

IEEE symbols:

The DeMuX and Decode are
exactly the same.

The decode thinks of the y
input as an enable.

if y=0 all outputs=0

Other decoder symbol
One code in
Another code out.

Σ (nonzero inputs) tells
which outputs are true.

1
2

X/1-of-4
0
1
2
3

S0
S1

A19
A18
A17
A16

.

.
A1
A0 3FFFF-00000

FFFFF-C0000

BFFFF-80000

7FFFF-40000

CS

CS

CS

CS

Address Bus

64K
M

E
M

B
L

O
C

K
S

µ
C

O
M

P
U

TE
R

0
1 G

0
7

DMUX

0
1
2
3

a
b
c
d

S0
S1

Decode

2

4
5
6
7

e
f
g
h

S2

E En

Decode

1
2

X / OCT

3-bit binary to
1-out-of-8

0
1
2
3

a
b
c
d

4
5
6
7

e
f
g
h

S0
S1

S2 4
E En

0
1 G

0
7

DMUX

0
1
2
3

a
b
c
d

S0
S1

y

DeMUX

2

4
5
6
7

e
f
g
h

S2

If inputs 2 and 4 are true, output 2+4=6 will be true.

2+4

Slide 33

Carleton University © John Knight

Digital Circuits p. 66 Revised; October 9, 2003

Demultiplexers, Decoders The DeMUX/Decoder

The DeMUX/Decoder
Decoding the memory bank

Only one of the 4 blocks is selected at any given time.
The 18 low-order address lines go to all blocks, but only one is enabled.

IEEE symbols
The official convention does not shape the gates.

X/ means some code usually binary.

The output lines that are true are calculated from the sum of the numbers
of the input lines.
If input “1”=1, “2”=0, “4”=1, Then output line “1”+”4”= 5 would be 1.
If input “1”=0, “2”=1, “4”=1, Then output line “2”+”4”= 6 would be 1.

The Enable line (En) must be 1 or all outputs are 0.

1
2

X / OCT

1+4

0
1
2
3

0
0
0
0

4
5
6
7

0
1
0
0

4
1 En

0
1

1

1
2

X / OCT

2+4

0
1
2
3

0
0
0
0

4
5
6
7

0
0
1
0

4
1 En

1
0

1

Comment on Slide 33

Demultiplexers, Decoders

© John Knight

Dig Cir p. 67 Revised; October 9, 2003

Verilog Decoder
Procedural Verilog for a 3-to-8 Decoder

wire S2, S1, S0, E;
reg a, b, c, d, e, f, g, h;//they hold their values like variables in C

always @(S2orS1orS0orE)//execute code below if any of S2,S1,S0 or E change

begin: 3to8decode //Start of procedure code

a=0; b=0; c=0; d=0; e=0; f=0; g=0; h=0;

case ({S2,S1,S0})//Concatenate the 3 bits into a number used below.

3'd0 : a=E; // When S2S1S0 = 0 decimal (000 binary), make a = E.
3'd1 : b=E; // 3'd1; a 3-bit number, value in decimal is 1.
3'd2 : c=E; // When S2S1S0 = 2 decimal (010 binary), make c = E.
3'd3 : d=E;
3'd4 : e=E;
3'd5 : f=E;
3'd6 : g=E;
3'd7 : h=E;
default: $display(“invalid control code”);

endcase

end //End of procedure code

endmodule

DMUX

0
1
2
3

a
b
c
d

S0S1

4
5
6
7

e
f
g
h

S2

E En

0
1 G

0
7

2

Slide 34

Carleton University © John Knight

Digital Circuits p. 68 Revised; October 9, 2003

Demultiplexers, Decoders Verilog Decoder

Verilog Decoder

Comment on Slide 34

Priority Encoders

© John Knight

Dig Cir p. 69 Revised; October 9, 2003

Priority Encoders

Priority Encoder
Application

Receive one-bit interrupt signal.
Encode into 3-bit binary.

The computer receives the
number of the highest priority
interrupt.

Symbol

The HPRI/BIN at the top
tells what the block does.

The numbers help one
order the pins.

The table shows what really
happens.

Gotchya

The output is the same for:
0000001 (a=1) and
0000000 (no input).

To tell the difference, add
“Any Input” signal

2
1

HPRI / BIN

0
1
2
3

Y0

Y1 IR1
IR2

INTR0

INTR1

INTR2

INTR3 Highest Priority

µ C
O

M
P

U
T

E
R

Send in the
number of
the highest
priority interupt

1
2

HPRI / BIN
0
1
2
3

a
b
c
d

4
5
6
7

e
f
g
h

Y0

Y1

Y24

INPUT OUTPUT

h g f e d c b a Y2 Y1 Y0 Ay

1 X X X X X X X 1 1 1 1

0 1 X X X X X X 1 1 0 1

0 0 1 X X X X X 1 0 1 1

0 0 0 1 X X X X 1 0 0 1

0 0 0 0 1 X X X 0 1 0 1

0 0 0 0 0 1 X X 0 1 1 1

0 0 0 0 0 0 1 X 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

0/1/2/3/4/5/6/7

Any
(Any Input)

Slide 35

Carleton University © John Knight

Digital Circuits p. 70 Revised; October 9, 2003

Priority Encoders Priority Encoder

Priority Encoder

To Respond to All Four Interrupts

INTR0 makes IR1=0=IR0. It does not
give out a signal. This is the same as no
interrupt!

To respond to all interrupts, generate
IRQ (interrupt request) for any interrupt
signal.
Then use IR1 and IR2 to show which one.

One can do this with an OR gate.
Priority encoder macros usually include it. Here it is the 0/1/2 output.

Dependency notation

Above, Y1*2 + Y0*1 = 2 = number of the highest priority input.
Thus with interrupts pending on 0, 1 and 2,Y1,Y0 would send 10 to the computer.

The 0/1/2/3 means any of the inputs 0, 1, 2, 3 can generate the IRQ signal. It is equivalent to the OR gate shown.

The 8-input priority encoder..

On the 8-input encoder, the 'any' output is written 0/1/2/3/4/5/6/7/ abbreviated1 here
as 0/.../7

1. The standard abbreviation is 0...7

2
1

HPRI/BIN

0
1
2
3

Y0

Y1 IR1
IR2

INTR0

INTR1

INTR2

INTR3

µ C
O

M
P

U
T

E
R

IRQ

0/1/2/3 IRQ

IRQ use either

1
2

HPRI / BIN
0
1
2
3

a
b
c
d

4
5
6
7

e
f

g
h

Y0

Y1

Y24

0/.../7
any

Comment on Slide 35

Priority Encoders

© John Knight

Dig Cir p. 71 Revised; October 9, 2003

Verilog Priority Encoder/ Use of Casex
Procedural Verilog for an 8-line to 3-Bit-Binary Encoder

reg any
reg [2:0] Y; //reg hold their values like variables in C++

always @(h or g or f or e or d or c or b or a)//trigger variables for code.

begin //Start of procedure code

casez ({h,g,f,e,d,c,b,a}) //Casez prefered over casex.

8'b1zzzzzzz : Y= 3'b111;// z will match 0 or 1 or x (undefined).
8'b01zzzzzz : Y= 3'b110;// But x will not match 0 or 1 with casez
8'b001zzzzz : Y= 3'b101;
8'b0001zzzz : Y= 3'b100;
8'b00001zzz : Y= 3'b011;
8'b000001zz : Y= 3'b010;
8'b0000001z : Y= 3'b001;
8'b00000001 : Y= 3'b000;
default : Y= 3'b000;

endcase

any = a | b | c | d |e | f | g | h;

end //End of procedure code

0
1
2
3

a
b
c
d

4
5
6
7

e
f
g
h any

1
2

HPRI / BIN

Y0

Y1

Y24

0/1/2/3/4/5/6/7

Slide 36

Carleton University © John Knight

Digital Circuits p. 72 Revised; October 9, 2003

Priority Encoders Verilog Priority Encoder

Verilog Priority Encoder
Case, Casex and Casez

Case

The values stored in the control_var and those in each statement
below it, must agree “ 1 for 1,” “0 for 0,” “x for x,” and “z for z.”

Casez1

If , is used instead of , “z” or “?” will match anything, i.e. “1, 0, x, or z,” in both directions.
The important point is a “1” or a “0” WILL NOT match an “x”.
Thus control_var = 3'bz01 will match the case 3'b101 on line 2 above.
Also control_var = 3'bx01 will NOT match the case 3'b101.

Casex

If , is used instead of

, “x”, “z” will match anything, i.e. “1, 0, x, or z,” in both directions.

Several cases, one action

Place several cases on one line 3'b101, 3'b010: Separate the cases by commas.

Using “?”

The “?” is equivalent to Z in list of cases inside case blocks. It improves readability.

1.• PROBLEM

Add an “Any Input” output line to the Verilog priority encoder description that uses casez.

1. Using casez instead of casex for the priority encoder, and useingstatements like 3'b1zz for matching, makes no difference for
synthesis, but an accidental X during simulation will never give an unintended for match for a 1 or a 0.

casez(control_varb)
3'b101, 3'b010 : . .
3'b1z1 : . . .

default : . . .

3'b0zx : . . .

end case

2
1

3

5
6

4
3'b1??

7

casez; case

casex

case

Comment on Slide 36

Programmable Shifters

© John Knight

Dig Cir p. 73 Revised; October 9, 2003

Programmable Shifters

Barrel Rotators (Shifters)
Applications

Multiply/Divide by 2, 22, 23 ...

Normalizing numbers
especially integer to float pt.
conversion.

Not CMOS

• First thought: transmission
gates.

• Big shifter takes a lot of
area. Speed dominated by
wiring capacitance.

• To reduce area have only
one well.
� no PMOS.

• NMOS can only pull up to
VDD-VTHRESH

• Slow pull up
Faster pull down

X3

X2

X1

X0

Y3

Y2

Y1

Y0

ROTATE RIGHT 0

ROTATE RIGHT 1

ROTATE RIGHT 2
ROTATE RIGHT 3

Slide 37

Carleton University © John Knight

Digital Circuits p. 74 Revised; October 9, 2003

Programmable Shifters The Barrel Rotator

The Barrel Rotator

NMOS or CMOS

A 32 bit barrel has 322 cells. There is little room for the extra wells (tubs) required for PMOS and NMOS1.
Usually only NMOS is used.

The NMOS gates can only pull up VDD -VTHRESH and some speed or leakage power is sacrificed.

Speed

There is only one series transistor in any path; this helps speed. Each data line will see n drain capacitances
which will reduce speed. However in modern processes the wire capacitance is likely larger than the drain
capacitances. This is an important reason for using only NMOS to reduce the area.

Also zeros will go through NMOS transistors better than ones.

Verilog Synthesis

Synthesizers will not produce a very good barrel shifter, since the would try to synthesize gate level CMOS.
Try to find a shifter already laid out.

Sign Extension

A negative 2’s complement number will have one as its most significant bit. If one shifts to
divide by 2, 4 ..., one must move a 1 in from the right for negative numbers and a 0 in for
positive ones. This is called sign extension.

Thus 100 right shifted 1 positions is 110.
A bigger number; 100100100 right shifted 3 positions is 111100100

1. Wayne Wolf, Modern VLSI Design, A Systems Approach, Prentice Hall, 1994, pp. 221-223.

2’s complement
+3 011
+2 010
+1 001

0 000
-1 111
-2 110
-3 101
-4 100

Comment on Slide 37

Programmable Shifters

© John Knight

Dig Cir p. 75 Revised; October 9, 2003

Barrel Rotator With Weak Pullups
• Weak pullups

overcome NMOS
poor pullup
properties.

• Shifter is still a
reasonable size.

X3

X2

X1

X0

Y3

Y2

Y2

Y0

ROT RT 0

ROT RT 1
ROT RT 2

ROT RT 3

W0

W1

W2

W3

Weak Pullups

Slide 38

Carleton University © John Knight

Digital Circuits p. 76 Revised; October 9, 2003

Programmable Shifters The Barrel Rotator

Pull-Ups for the Barrel Shifter.

• The PMOS transistors will pull-up the barrel shifter NMOS transistors.
When a WK lines rise above VDD/2 the PMOS transistors will turn on. This raises the WK line, which
lowers the PMOS gate, which raises the WK line, which ...

• When an X input was high, and then goes low, the PMOS will still be initially pulling up.
The PMOS transistor must be made weak enough that the NMOS transistor can pull point W below half
way when both transistors are on.

• The complete shifter is much smaller than a complete CMOS implementation would be.

Why does not one make all CMOS that way?

The Wk lines in the barrel shifter are never floating. They are fed by pass transistors which either pull them low,
or pull them high. Of course the high is always a threshold or more below VDD.

If CMOS gates had only a single transistor PMOS section, it could not pull up unless the W line was partially
high already. If the W line was pulled low, when the NMOS transistors turned off, the W lines would stay low,
held by the charge on the stray capacitance, and the Z line would stay high.

S

b

+5 V

S

a
W Z

Go high and stay high circuit

Comment on Slide 38

Programmable Shifters

© John Knight

Dig Cir p. 77 Revised; October 9, 2003

Verilog rotator/shifters
Synthesis

Synthesis will not give the NMOS circuits described.

You must have a laid-out circuit which can be treated
as a special module.

If R is a variable, the synthesizer may not like
X>>R or {X[R:0],X[N:R-1]}.

Code For Simulation

Shifting 2's complement numbers

If the leading bit is “1”, the number is negative.
The leading bit must be maintained during shifts.

Use replication for sign extension.

X

tmp={{4{X[3] } ,X}

tmp >> 2

rotate

Z

11110 = -2 in 2’s complement
shift right 3 -> 11111
shift left 2 -> 11000

R=2

wire [1:0] R\\Rotate R bits;
wire [3:0] X,Z;

assign Z =
{X[R:0],X[3:R-1]};

// Sign extension.

assign tmp={ {4{X[3]},X }
/ / {4{X[3]}} = {X[3],X[3] ,X[3]X[3]}

assign Z = tmp >> Sh;

Slide 39

Carleton University © John Knight

Digital Circuits p. 78 Revised; October 9, 2003

Programmable Shifters Barrel Rotator Shifter (cont.)

Barrel Rotator Shifter (cont.)
Verilog

Because of the size problem. one does not synthesize a large barrel shifter.

One would lay out the NMOS circuit rather than synthesize it from gates.

The Shift Operators

means shift W right Y places. V will be zero filled on the right.

means shift X right Y places. Z will be zero filled on the left unless it is an integer or real.

Sign Extension

A negative 2’s complement number will have one as its most significant bit. If one shifts to
divide by 2, 4 . . . , one must move a 1 in from the left for negative numbers and a 0 in for
positive ones. This is called sign extension.

Thus (-4) 100 right shifted 1 position, with sign extension, is 110 (-2).
A bigger number; (-220) 100100100 right shifted 3 positions is 111100100 (-28).

• Verilog right shifts do a zero fill for variables with a user defined bit width, like 7'd33.

• Right shifts do sign extension for integers or real, but not reg or wire. An
integer is the default 32 or 64 bit word of the computer running Verilog.

Concatenation and Replication

{A,B} concatenates A and B. Thus {2'b11, 3'b001}� {5'b11001}
A Concatenation of many copies of the same thing can be written, {5{X}}, instead of {X,X,X.X.X}
the replication number, 5 above, must be a constant.

V= W << S

Z= X >> S

2’s complement
+3 011
+2 010
+1 001
0 000

-1 111
-2 110
-3 101
-4 100

three-bit

Comment on Slide 39

Programmable Shifters

© John Knight

Dig Cir p. 79 Revised; October 9, 2003

The Logorithmic Barrel Shifter

COMPARISON Barrel Log Barrel

Numb transistors N2 2N·log2(N)

Numb series trans 1 log2(N)

fanout data lines N 3log2(N)

fanout control lines N N+1

Summary

Log shifter has better area esp. for large N

Speed depends on:
fanout
number of series trans.

Log shifter wins because of lower fanout.

cumulative
rotate 2

cumulative
rotate 1 Rotate

0 0 0

0 1 1

1 0 2

1 1 3

X[3]

X[2]

X[1]

X[0]

Y[3]

Y[2]

Y[1]

Y[0]

cum rotate 1

cum rotate 2

X1[0]

X1[3]

Slide 40

Carleton University © John Knight

Digital Circuits p. 80 Revised; October 9, 2003

Programmable Shifters Barrel Rotator Shifter (cont.)

Size Comparison for Rotators
inputs, n 4 8 16 32 64 128
transistors, n2 16 64 256 1024 4096 16384
transistors, 2nlog2(n) 16 48 128 320 768 1792

Speed Comparison
For m transistors in series, the delay is roughly R(3C)(m(m+1)/2

m = log2(n)
R is the channel resistance.
C is the drain capacitance of each transistor. See Comment on Slide 14.

For the logarithmic rotator there are an average of 3 transistors at each junction.

For the standard barrel rotator the major delay is R(nC) + 2R(nC).
The driver transistors for Xi see a capacitance of nC and the pass transistors see a load of nC.
They are summed according to Elmore’s formula.1

For the same values of R and C, this analysis gives relative delays of:

inputs, n 4 8 16 32 64 128
linear delay, (n+2n) 12 24 48 96 192 384
logrithmic delay, 3m(m+1)/2 9 18 30 45 63 84

This does not include control line delay and makes some rather crude assumptions. However they indicate the
logarithmic rotator saves time as well as area.

1. See M.J.S Smith, Application -Specific Integrated Circuits, 1997,Addison Wesely, p. 280.

Comment on Slide 40

Programmable Shifters

© John Knight

Dig Cir p. 81 Revised; October 9, 2003

X[3]

X[2]

X[1]

X[0]

Y[3]

Y[2]

Y[1]

Y[0]

cumRot[1]

cumRot[2]

X1[0]

X1[3]

X2[0]

X[7]

X[6]

X[5]

X[4] X1[4]

Y[7]

Y[6]

Y[5]

Y[4]

cumRot[0]

wire [7:0] X, X1, X2, Y;

wire [3:0] cumRot;

always @(X or X1 or X2 or cumRot);

begin
X1 = (cumRot[0])? X:{X[0],X[7:1]};
X2 = (cumRot[1])? X1:

{X1[1:0],X1[7:2]};
Y = (cumRot[2])? X2:

{X2[3:0],X2[7:5]};

end

X2[1]X1[1]

Verilog; 8-bit logrithmic shifter
This code will synthesize into 24 DEMUXs

X1[2] X2[2]

X1[7]

1

0DEMUX

G0/1cumRot[2]
X1[3]

X2[1]

X2[3]

X2[3]

Slide 41

Carleton University © John Knight

Digital Circuits p. 82 Revised; October 9, 2003

Programmable Shifters Barrel Rotator Shifter (cont.)

Verilog Code
The code shows an 8-bit logarithmic rotator.

The shift operations are fixed, 1, 2, or 4. Not variable amounts, thus the synthesizer will not have trouble.

The synthesizer will use 24 CMOS MUXs. Not the NMOS circuit shown.
However the logarithmic circuit keeps the size reasonable.

The mux shown would replace the two transistors shown in red and bold.

Comment on Slide 41

Programmable Shifters

© John Knight

Dig Cir p. 83 Revised; October 9, 2003

Logarithmic Circuits in General

Examples of some circuits that can be made logarithmic
• Barrel Shifter

• Comparator

• Counter

• Brent-Krung Adder
(carry-chain)

General Example
n inputs

Algorithm must obey

• Area (or power) = K·nb b>1

or

Delay = f(n) f(n)>C·log2(n)

(K,C and b some constants)

• Must be able to divide circuit
into smaller blocks

• If the interconnections are not too large, one can save area or time.

• The comparator behaves like the “Example Algorithm” in the figure.

Area=n2 (must be > n1)

A=n2=4 4 4 4 4

44

4

Area=A(n-1)=28

log2(n)=3

Delay=n (must be > log2(n))

Delay=D·log2(n)=6

for n=2

for n=8

D=n=2

Example Algorithm for n=8
Area=n2=64
Delay=n=8

Total Area
7 circuits of n=4

Slide 42

Carleton University © John Knight

Digital Circuits p. 84 Revised; October 9, 2003

Programmable Shifters Logarithmic Circuits

Logarithmic Circuits
General Properties

Some circuits that perform certain functions, can be created to increase logarithmicly as the number of inputs
“n” grows. The logarithmic barrel shifter has an area that increases as n·log2(n). The logarithmic comparator
(next slide) has a delay that increases as log2(n).The Brent Krung adder (described in the adder section) has a
carry chain in which the delay increases as log2(n).

Different growth rates as n increases

For large n, the dominate term is the only one that is important. Thus if the area of a ciruit increases like
Area = A·log(n) +B·n +Cn·log(n) +Dn2

The important term for n large enough is Dn2. However if D=0, the important term becomes Cn·log(n), etc.

For small n, one of the lower order terms may dominate if A or B have a large value,but as n increases the
higher order terms will always win out.

Interconnections

In the example, the interconnections between the small blocks are shown as single wires. Sometimes they are
more complicated, requiring many wires and logic. This interconnect cost may negate the gains from dividing
the circuit into small blocks.

Barrel Rotator
Linear Area is proportional to n2

Logarithmic Area is proportional to 2nlog2(n)

Linear Delay is proportional to (3n)
Logarithmic Delay is proportional to 3log2(n)(log2(n)+1)/2

Comment on Slide 42

The Logarithmic Comparator

© John Knight

Dig Cir p. 85 Revised; October 9, 2003

The Logarithmic Comparator

Basic Comparator Block
Description of the yellow box

Compare two binary numbers

Each block compares:
- two 2-bit numbers

or

- two 1-bit numbers and the
result of a previous compare.

Xb Yb Xa Ya X>Y X>Y

1 0 - - 1 0

0 1 - - 0 1

Xb= Yb 1 0 1 0

Xb= Yb 0 1 0 1

Xb= Yb 0 0 0 0

X>Y X<Y

X3 Y3 X2 Y2

X>Y X<Y

X1 Y1 X0 Y0

X3X2<Y3Y2

X3X2>Y3Y2

Xb Yb Xa Ya Xb Yb Xa Ya

Xb Yb Xa Ya

X>Y X<Y

X>Y X<Y

X3 Y3 X2 Y2

X>Y X<Y

X1 Y1

X3X2<Y3Y2

X3X2>Y3Y2

Xb Yb Xa Ya Xb Yb Xa Ya

X>Y X<Y

X0 Y0

Xb Yb Xa Ya

Logarithmic

Linear

Slide 43

Carleton University © John Knight

Digital Circuits p. 86 Revised; October 9, 2003

The Logarithmic Comparator Logarithmic Circuits

The Comparator
The output of the comparator is a bit which acts like a new x and y

Thus X>Y means the number composed of the bits xixi-1 is larger than the number composed of bits yiyi-1.

The two bits (X>Y) and (X<Y) can be used in the next comparison.

Linear vs Logarithmic
Delay

For the linear comparitor, the delay increases
Delay = B·n - B

For the logarithmic comparitor the delay increases
Delay = A·log(n)

Thus one can see the logarithmic comparitor will be much faster as n gets large.

Area

There is no difference in area.

Serial inputs give different results
However do not think this spells the death of the serial (linear) comparitor. Suppose the data came in serially
with X7, Y7 coming in first and X0,Y0 coming at the end. Then the linear circuit would likely get the result out
first because the result would come out one block delay after X0, Y0 were stable.

In the logarithmic comparitor the result has to go through log2(n) blocks after the last two input bits are stable.

Comment on Slide 43

The Logarithmic Comparator

© John Knight

Dig Cir p. 87 Revised; October 9, 2003

Logarithmic vs Linear

X>Y X<Y

X7 Y7 X0 Y0

X7 Y7 X0 Y0

X>Y X<Y

3 unit
delay

log2(N)

7 unit delay (N-1)

Area: 7 units (N-1)
Power: 7 units (N-1)
Delay: 3 units log2(N)

Area: 7 units (N-1)
Power: 7 units (N-1)
Delay: 7 units (N-1)

Slide 44

Carleton University © John Knight

Digital Circuits p. 88 Revised; October 9, 2003

The Logarithmic Comparator Logarithmic Circuits

Comment on Slide 44

The Logarithmic Comparator

© John Knight

Dig Cir p. 89 Revised; October 9, 2003 Slide 45

Carleton University © John Knight

Digital Circuits p. 90 Revised; October 9, 2003

The Logarithmic Comparator Logarithmic Circuits

Comment on Slide 45

The Logarithmic Comparator

© John Knight

Dig Cir p. 91 Revised; October 9, 2003 Slide 46

Carleton University © John Knight

Digital Circuits p. 92 Revised; October 9, 2003

The Logarithmic Comparator Logarithmic Circuits

Comment on Slide 46

The Logarithmic Comparator

© John Knight

Dig Cir p. 93 Revised; October 9, 2003 Slide 47

Carleton University © John Knight

Digital Circuits p. 94 Revised; October 9, 2003

The Logarithmic Comparator Logarithmic Circuits

Comment on Slide 47

The Logarithmic Comparator

© John Knight

Dig Cir p. 95 Revised; October 9, 2003 Slide 48

Carleton University © John Knight

Digital Circuits p. 96 Revised; October 9, 2003

The Logarithmic Comparator Logarithmic Circuits

Comment on Slide 48

The Logarithmic Comparator

© John Knight

Dig Cir p. 97 Revised; October 9, 2003 Slide 49

Carleton University © John Knight

Digital Circuits p. 98 Revised; October 9, 2003

The Logarithmic Comparator Logarithmic Circuits

Comment on Slide 49

