
HDL Coding Rules and Guidelines

Gord Allan

September 3, 2003

Contents

1 HDL Coding Guidelines 2
1.1 Description . 2
1.2 Resets . 2
1.3 Clocks . 3
1.4 Naming Conventions . 3
1.5 Synchronous design and timing optimization 4
1.6 General rules . 4
1.7 Simulation and Debugging . 5

1

1 HDL Coding Guidelines

Many of these items are taken, with permission, from ”HDL Coding Guidelines,”
by Damjan Lampret and Jamil Khatib, June 7, 2001, www.opencores.org

1.1 Description

The guidelines are of different importance, and fall into three classes

• Good practice - signifies a rule that is common good practice and should
be used in most cases. This means that in some cases there are specific
problems that violate this rule.

• Recommendation - signifies a rule that is recommended. It is uncommon
that a problem can not be solved without violating this rule.

• Strong recommendation - signifies a hard rule, this should be used in all
situations unless a very good reason exists to violate it.

1.2 Resets

Resets make the design deterministic. It prevents reaching prohibited states
and avoides simultation/synthesis mismatches.

• Recommendation: All flip-flops should have a reset. Prevents simula-
tion/synthesis mismatches.

• Recommendation: Resets should be active-low. Cell libraries contain
active-low reset flops. Coding them as such prevents the insertion of un-
wanted buffering on the reset logic.

• Recommendation: Resets should be asynchronous. Most flops have them.
Maintains compatibility between ASIC/FPGA code. Easier debugging.

• Good Practice: The active-low reset should be applied asynchronously,
de-asserted synchronously.

// synchronize the external reset
always @(posedge clk)

rst_sn <= rst_an_pushbutton;

// reset comes off once when pushbutton is ’high’ AND posedge clk
assign rst_an = rst_sn & rst_an_pushbutton;

All flops reset as soon as the pushbutton is applied — eases debugging.
The reset track has a full clock cycle to de-assert after a clock edge —
eases timing.

2

• Strong Recommendation: Active-low, asynchronously reset flops are coded
as follows:

always @(posedge clock or negedge rst_an)
if(~rst_an) q <= 0;
else q <= d;

• Strong Recommendation: On an FPGA or CPLD the reset should be glob-
ally connected. FPGAs and CPLDs have fixed routing that are connected
to all device resources.

1.3 Clocks

• Recommendation: Signals that cross different clock domains should be
sampled before and after the crossing domains (double sampling is pre-
ferred). Prevent meta-stability state.

• Good practice: Use as few clock domains as possible in any design.

• Recommendation Do not use clocks or reset as data or as enable. Do not
use data as clock or as reset. Code such as this must be prevented:

always @(posedge signal) begin ... end

Synthesis results may be different than HDL, causes timing verification
problems.

• Recommendation: Don’t use gated clocks. It negatively effects timing and
can cause unwanted glitching. If necessary, they will be implemented at
the top level of an IC.

• Strong Recommendation: Clock signal must be connected to global dedi-
cated reset or clock pin on an FPGA or CPLD. This is because such pins
provide low skew routing channels.

1.4 Naming Conventions

• Good Practice: Try to write one module in one file. The File name should
be the same as the module’s name.

• Recommentation: Try to use named notation for instantiating instead of
positional notation. For easier debugging and understanding the code.

• Good Practice: Keep the same signal name through different hierarchies.
So tracing after the signal will be easy. Enable easy netlist debugging.

• Good Practice: Suffix signal names with a for asynchronous and n for
active-low. eg. rst an is an active-low asynchronous reset signal. Helps
keep logic clear.

3

• Recommendation: Start buses at bit 0. Some tools don’t support buses
that don’t start at bit 0.

• Recommendation: Use MSB to LSB for busses. This is to avoid misin-
terpretation through the design hierarchy.

1.5 Synchronous design and timing optimization

• Strong Recommendation: Use only synchronous design. It avoids problems
in synthesis, in timing verification and in simulations.

• Recommendation: Avoid using latches. They causes synthesis, testing,
and timing verification problems.

• Strong Recommendation: Do not use delay elements.

• Strong Recommendation: All blocks external IOs should be registered. It
prevents long timing paths.

• Good Practice: Block internal IOs should be registered. This is a design
issue but is recommended in most cases.

• Recommendation: Avoid using FlipFlop with negedge clock. Causes syn-
thesis problems and timing verification problems.

• Strong recommendation: Include all signals that are read inside a com-
binational process in its sensitivity list. (i.e. Signals on Right Hand
Side RHS of signal assignments or conditions. This is to prevent sim-
ulation/synthesis mismatches.

• Strong recommendation: Ensure variables are assigned in every branch of
a combinational logic process. Prevents inferring of unwanted latches.

1.6 General rules

• Strong Recommendation: In RTL, never initialize registers in their dec-
laration. Use proper reset logic. Initialization statements can not be syn-
thesised.

• Recommended: Write fsms in two always blocks — one for sequential as-
signments (registers) and the other for combinational logic. This provides
more readability and prediction of combinational logic size.

• Strong Recommendation: Use non blocking assignment (<=) in clocked
blocks, and blocking assignment (=) in combinational blocks. Synthesis
tools expects for this format. Makes the simulation respond deterministi-
cally.

• Recommendation: Try to use the ’include’ command without a path. HDL
should be environment independent.

4

• Good Practice: Compare buses with the same width. The missing bits
may have unexpected value in the comparison process.

• Strong recommendation: Avoid using long if-then-else statements and use
case statement instead. This is to prevent inferring of large priority de-
coders and makes the code easier to be read.

• Strong Recommendation: Avoid using internal tri-state signals. They
increase power consumption and make backend tuning more difficult.

1.7 Simulation and Debugging

• Strong Recommendation: Test benches should be intelligent enough to
determine sucessfull operation without user interaction. Reduces devel-
opment time and human oversights.

• Strong Recommendation: The same test-bench should be used for RTL
and gate-level simulations. Ensures that synthesis and optimization is
sucessfull.

• Recommendation: Try to write the test bench in two parts, one for data
generation and checking and one for interfacing to the device-under-test.
The interface to the device should be written with normal hardware coding
rules in place. This is to isolate data (results checking) from the hardware
interfacing. By writing the interface logic with conventional hardware de-
scription (ie. registers), it allows for interchangable RTL and gate level
simulation.

• Good Practice: Use $display(”%t - (%m) Message”, $time, vars...) liber-
ally to provide information while debugging a design.

• Good Practice: Ensure the ‘timescale command is specified only once.
Different ‘timescale causes simulation problems: races and too long paths.

5

	HDL Coding Guidelines
	Description
	Resets
	Clocks
	Naming Conventions
	Synchronous design and timing optimization
	General rules
	Simulation and Debugging

