Information and Instructions

1. Attempt all questions.
2. Show all analyses.
3. The exam marks total 77.
4. Unless otherwise specified, use only the simplified hybrid-pi model for the BJT, i.e.,
take $r_x = 0$, $r_o = \infty$, and $r_{\mu} = \infty$.

Useful Formulas

\[r_x = \frac{\beta}{g_m}, \quad r_o = (\beta + 1) r_e, \quad \alpha = \beta / (\beta + 1), \quad g_m = I_C / V_T, \quad V_T = 25 mV @ 20^\circ C \]

\[|\text{forward-biased } V_{BE}| = 0.7 \text{ volts} \]

\[\omega_L \approx \omega_{L1} + \omega_{L2} + \ldots \]

\[\frac{1}{\omega_H} \approx \frac{1}{\omega_{H1}} + \frac{1}{\omega_{H2}} \]

Miller's Theorem: $Y_1 = Y(1 - v_2/v_1)$, $Y_2 = Y(1 - v_1/v_2)$
Question 1 (Total 13 marks)

1 mark a) Draw the complete hybrid π model of a BJT including $g_m, r_\pi, r_\mu, r_o, C_\pi$, C_μ and r_x.

2 mark b) Given $I_c = 1.25\,mA$, calculate the BJT transconductance g_m. Given $\beta = 100$, compute r_π.

3 marks c) Draw the circuit diagram of
 i) common emitter
 ii) common collector
 iii) common base
amplifiers by adding coupling and bypass capacitors to the bias scheme in Figure 1. Label V_{in} and V_{out} in the diagram.

![Figure 1]

3 marks d) State one major disadvantage and on major (relative) advantage of each of the following power amplifier configurations
 i) class A amplifier
 ii) class B amplifier
 iii) class C amplifier

4 marks e) A power BJT needs to dissipate up to $150\,W$ of power at room (ambient) temperature of $25^\circ C$. The maximum allowed junction temperature is $200^\circ C$. The junction to case thermal resistance is $\theta_{JC} = 0.4\,^\circ C/W$. What is the maximum allowable thermal resistance between case and ambient, i.e., $\theta_{CA} =$?
Question 2 (Total 24 marks)

Analyze the amplifier circuit in Figure 2 using appropriate and simplified models, to find general expressions (i.e. without component values unless specifically asked for).

![Amplifier Circuit Diagram]

Figure 2

3 marks a) Draw the mid-band small signal equivalent circuit.

2 marks b) Determine the mid-band input resistance R_{in}.

7 marks c) Determine the mid-band gain $A_v = \frac{v_o}{v_s}$.

3 marks d) Determine the mid-band R_{out}. Include r_{02}. Ignore r_{01}, $r_{\mu 1}$ and $r_{\mu 2}$.

4 marks e) Determine the low frequency poles (i.e. ω_L's) for C_1 and C_2 only.

5 marks f) Determine the high frequency poles (i.e. ω_H's). Assume that R_4 is shorted to ground at high frequencies in order to simplify calculations. Include C_{π} and C_{μ} for both transistors.
Question 3 (Total 13 marks)

In this question:

i) All analysis to be performed at midband frequencies

ii) All transistors are matched and all β's = 100.

iii) R_s, r_o and r_μ may be ignored.

8 marks

a) Analyze the op amp shown in Figure 3, including R_L to find general expressions (i.e., without component values) for

i) R_{idm}

ii) R_{icm}

iii) A_{dm}

3 marks

b) Use a current mirror to replace the current source I_0 (and its impedance R_o) such that the transistors Q_1 and Q_2 are biased at $I_{C1} = I_{C2} = 2mA$. Redraw the circuit including the new current mirror, Q_1-Q_4 and R_L.

2 marks
c) Find the common mode input swing range $V_{cm(max)}$ and $V_{cm(min)}$ for the amplifier in b)
Question 4 (Total 18 marks)

7 marks a) Derive the voltage transfer function, $\frac{V_o(s)}{V_i(s)}$, of the high pass filter circuit shown in Figure 4.

![Figure 4](image)

4 marks b) For the filter transfer function

$$\frac{V_o(s)}{V_i(s)} = \frac{K}{R_1 R_2 C_1 C_2 s^2 + (R_2 C_2 + R_1 C_2 + (1 - K) R_1 C_1) s + 1}$$

i) find the expression for H_0, ω_0 and Q.

ii) Assume $R_1 C_1 = R_2 C_2$, and $R_1 = 25 \, \text{k}\Omega$. Find suitable component values (K, R_1, C_1, R_2, C_2) to make $H_0 = 2$, $\omega_0 = 4000 \, \text{Rad/second}$ and $Q = 2.5$.

2 marks c) Plot the amplitude response of a 2nd order low pass filter, clearly identify H_0, ω_0 and Q and the high frequency roll-off rate for 2 cases:

i) case 1: $Q < 1$, ii) case 2: $Q > 1$

1 marks d) What is the high frequency roll-off rate of a 8th order low pass filter

4 marks e) Show the form of the 2nd order filter transfer function for each of the 4 cases:

i) low pass filter, ii) high pass filter,

iii) bandpass filter, iv) bandstop filter
Question 5 (Total 9 marks)

1 marks a) What is Barkhausen Criteria?

7 marks b) The circuit in Figure 5 can be connected to an op amp non-inverting amplifier of gain K, resulting in an oscillator circuit.

![Oscillator Circuit Diagram]

Figure 5

i) draw the complete oscillator circuit using resistors, capacitors and an op amp.

ii) Write any required conditions for oscillation, and the frequency of oscillation.

1 marks c) show the location of poles in the s-plane (complex frequency domain) for

i) a second order filter with $Q > 0.5$

ii) an oscillator