1) Draw the small-signal equivalent circuit. (4 marks)

2) Find the mid-band gain A_v. (4 marks)

3) Find the mid-band R_{in}. (2 marks)

4) Find the mid band R_{out} (include $r_{\mu 2}$, and r_{o2}). (3 marks)

5) Find the ω_L's for C_{in}, C_1, C_2, and C_{out} (for C_2 only, assume R_5 is 0 Ω). (4 marks)

6) Find the ω_H's for the circuit. Do not consider $C_{\pi 2}$. (4 marks)

7) Assume that $V_{cc} = 15V$, $\beta_1=50$, $\beta_2= 100$, If R_{C1}, R_{E2}, R_3, R_4, and R_5 are each 3 kΩ, adjust V_{BB} such that the input impedance of the circuit (R_{in}) is about 50Ω. Determine the current in each of the transistors. If you can’t find the input impedance, then for part marks, adjust V_{BB} so that the current through Q_1 is 1 mA and find the resulting current through Q_2. (4 marks)

$$r_\pi = \frac{\beta}{g_m}, \quad r_\pi = (\beta + 1)r_e, \quad \alpha = \frac{\beta}{\beta + 1}, \quad g_m = \frac{I_c}{V_T}, \quad V_T = 25mV \quad @ 20^\circ C.$$

$$\omega_L \approx \omega_{L1} + \omega_{L2} + \omega_{L3} + \ldots \quad \text{and} \quad \frac{1}{\omega_H} \approx \frac{1}{\omega_{H1}} + \frac{1}{\omega_{H2}} + \frac{1}{\omega_{H3}} + \ldots$$

Miller’s Theorem: $Y_1 = Y\left(1 - \frac{V_2}{V_1}\right)$, $Y_2 = Y\left(1 - \frac{V_1}{V_2}\right)$