1) Draw the small-signal equivalent circuit. (4 marks)
2) Find the mid-band gain A_v. (4 marks)
3) Find the mid-band R_{in}. (2 marks)
4) Find the mid band R_{out} (include r_{o2}, and r_{o2}). (3 marks)
5) Find the ω_L’s for the circuit (do not solve for ω_L associated with C_2) (4 marks)
6) Find the ω_H’s for the circuit. (4 marks)
7) Given that $V_{cc} = 15V$, $\beta_1=50$, $\beta_2=100$, adjust resistor sizes R_1 through R_6 such that currents $I_{C1} = 0.5$ mA and $I_{C2} = 2$ mA, voltages on emitters are $V_{E1} = 12V$, $V_{E2} = 3V$, collector voltage on Q_2 is $V_{C2} = 9V$, and current through R_3 is 0.1 mA. (4 marks)

Miller’s Theorem: $Y_1 = Y \left(1-\frac{V_o}{V_1}\right)$, $Y_2 = Y \left(1-\frac{V_i}{V_2}\right)$