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6.1. Introduction to Tunneling

Tunneling is a distinct phenomenon in QM. Suppose we have an elec-
tron in a voltage barrier as shown in figure 1. Classically the electrons
traveling with kinetic energy E < V0 will be reflected when they hit
the barrier but they will pass the barrier if E > V0. In QM we deal
with this problem by solving the Schrodinger equation, as is explained
in the following sections.

Figure 1. a) Electron movement in a voltage barrier. b) Potential
hill and classical and QM transmission.

6.2. Simple Approach
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6.3. Transmission using Potential step and T ma-
trices

A powerful way of modeling tunneling is using T matrices. The easiest
analysis is a simple step in the potential. In this case we have a constant
potential in both regions. Suppose that we have an upward potential
step at z = 0 where potential jumps to V0 at z = 0, as shown in figure 2.
Classically the electrons traveling with energy E < V0 will be reflected

Figure 2. Step Barrier

when they hit the barrier but they will pass the barrier if E > V0.
The QM description of electrons in a region of constant potential is

a simple plane wave (at least if the energy of the electron is greater then
the potential). We can identify three expected waves . An incoming
wave in region 1 moving towards the barrier. A reflected wave moving
in region 1 to the left and transmitted wave moving to the right in re-
gion 2. The incoming wave in z < 0 is exp(ik1z) where k1 =

√
2mE/~.

The outgoing waves are

• the reflected wave: r exp(−ik1z) where k1 =
√

2mE/~
• the transmitted wave: t exp(ik2z) where k2 =

√
2m(E − V0)/~

Note that r and t are called reflection and transmission amplitudes and
in general can be complex. Initally we assume that E > V0 and so k2
is real (we will relax this condition later) and all the waves propagate
(to be general we included a 4th which is moving in region 2 from right
to left).

ψ(z) =

{
A exp(ik1z) + B exp(−ik1z), z < 0
C exp(ik2z) + D exp(−ik2z), z > 0

}
(6.1)
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The wave function and its derivative must be continues at z = 0 so we
have

A + B = C + D

k1(A − B) = k2(C − D) (6.2)

We can find the waves in right in terms of the waves in left as below:

C =
1

2
(1 + k1/k2)A +

1

2
(1− k1/k2)B

D =
1

2
(1− k1/k2)A +

1

2
(1 + k1/k2)B (6.3)

By substituting A = 1 (arbitrary assignment of the incident electron
flux), B = r, C = t and D = 0 (as we expect no electrons traveling to
the left in region 2) we have:

t =
2k1

k1 + k2

r =
k1 − k2
k1 + k2

(6.4)

6.3.1. Density of currents

As we are interested in the flow of electrons i.e. the current we need an
expression for the current density. Quantum Mechanics tells us that
the current density is calculated for a given wave ψ(x) = F exp(ikx)
by

J =
1

2
[ψ∗(

p̂

m
ψ) + (

p̂

m
ψ)∗ψ] (6.5)

where p̂ = −i~ d
dx

and E = ~2 k2
2m

. So we have

J =
1

2
[Feikx(

−i~
m

d(Feikx)

dx
) + (

−i~
m

d(Feikx)

dx
)∗Feikx]

=
1

2
[
|F |2 ~k
m

+
|F |2 ~k
m

]

= |F |2~k
m

(6.6)

So we can conclude

• for the incident wave exp(ik1z) the current density is ~k1|1|2/m.
• for the reflected wave r exp(−ik1z) the current density is ~k1|r|2/m
• for the transmitted wave t exp(ik2z) the current density is
~k2|t|2/m
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From here from can obtain the transmission and reflection coefficients
which are defined as the the ratio of currents as below:

T =
~k2|t|2/m
~k1|/m

=
k2
k1
|t|2 =

4k1k2
k1 + k2

R =
~k1|r|2/m
~k1/m

= |r|2 = (
k1 − k2
k1 + k2

)2 (6.7)

An important check is that T and R must satisfy T + R = 1, because
every incident particle must be reflected or transmitted (conservation
of particles).

For the other case where E < V0, k2 will be imaginary so the
waves in right hand side are real (typically decaying) exponentials with

wave number κ2 =
√

2m(V0 − E)/~ i.e. k2 = iκ2. These decaying
(non propagating waves) we call evanescent waves. We know that an
evanescent (decaying) wave does not carry current. So in this case we
have T = 0 and R = 1.

Classically the transmission would be T = 1 for all energies higher
than the step but in quantum mechanics T −→ 1 only for high energies.
For E < V0 both the classical and quantum mechanical result in T = 0.

6.4. T matrix

The above solution was for a single step. It can be written in useful
way using a matrix. The T matrix can be used to simply analyse a
sequence of step transitions and form more complicated barriers.

The relation we found in 6.3 can be rewritten in matrix from as(
C
D

)
= T (21)

(
A
B

)
=

(
T11 T12
T21 T22

)(
A
B

)
(6.8)

The reflection and transmission coefficients can be obtained from the
T matrix. (

t
0

)
=

(
T11 T12
T21 T22

)(
1
r

)
(6.9)

So we have

r = −T21
T22

, t =
T11T22 − T12T21

T22
(6.10)

The T matrix for the step potential above for E > V0 considering
equations 6.3 is given by

T (21) =
1

2k2

(
k2 + k1 k2 − k1
k2 − k1 k2 + k1

)
≡ T (k2, k1). (6.11)
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If E < V0 we have k2 = iκ2.
In the above we had assumed that the step is at the origin (z = 0).

A more flexible formulation is if we apply potential at z = d. We then
need to fix T matrix as below.

T (d) =

(
e−ik2d 0

0 eik2d

)
T (0)

(
eik1d 0

0 e−ik1d

)
(6.12)

Note that if in equation 6.12, the wave numbers in both sides are equal
then we will have T (d) = A−1(d)T (0)A(d).

The formulation of T matrix in equation 6.8, allows us to simply
multiply the T matrices for complex barriers in one dimension as follows
(for example see figure 3):

Figure 3. waves in three Region

(
E
F

)
= T (32)

(
C
D

)
= T (32)T (21)

(
A
B

)
= T (31)

(
A
B

)
(6.13)

where

T (31) = T (32) T (21) (6.14)

6.5. Square Barrier

Consider the potential barrier as shown in figure 4.

Figure 4. Potential Energy Barrier
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(a) Shift the barrier so it is centered at the origin with a = L/2
and we have,

V (z) =

{
V0 −a/2 < z < a/2
0 elsewhere

}
(6.15)

(b) E < V0
(c) the potentials at regions 1 and 3 are zero so k1 = k3
(d) for the upward step (region 1 to 2) we need a translation of

d = −a/2 and for the downward step (region 2 to 3) we need
as translation of d = a/2.

(e) The expect solution would have the form shown in Fig. 5 with
incoming, reflected and transmitted waves and a evanescent
wave in the barrier. We could get the exact solution by solving
the SCE.

Figure 5. Square Barrier Solution

However, if we are interested in the reflection/transmission be-
haviour of the barrier we can simply use the T matrix. Considering
the mentioned points we have the T matrix as follows

T =

(
e−ik1a/2 0

0 eik1a/2

)
T (k1, k2)

(
eik2a/2 0

0 e−ik2a/2

)
×
(
eik2a/2 0

0 e−ik2a/2

)
T (k2, k1)

(
e−ik1a/2 0

0 eik1a/2

)
(6.16)
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Using definition 6.11 we have:

T =
1

2k1k2

(
e−ik1a/2 0

0 eik1a/2

)
×(

2k1k2 cos k2a+ i(k21 + k22) sin k2a −i(k21 − k22) sin k2a
i(k21 − k22) sin k2a 2k1k2 cos k2a− i(k21 + k22) sin k2a

)
×(

e−ik1a/2 0
0 eik1a/2

)
(6.17)

We see that the middle part is a function of the width of the barrier
and is does not depend on the location of origin. However the phase
factors on the sides are dependent on the location of the origin.
Using definition in 6.10 and some mathematical operations we will
have:

t =
2k1k2 e

−ik1a

2k1k2 cos k2a− i(k21 + k22) sin k2a
(6.18)

where as we know, k1 =
√

2mE/~ and k2 =
√

2m(E − V0)/~, so the
flux coefficient is as follows (illustrated in figure next page (Fig 5.6
p157)).

T = |t|2 =
4k21k

2
2

4k21k
2
2 − (k21 − k22) sin2 k2a

= [1+
V 2
0

4E(E − V0)
sin2 k2a]−1 for E > V0

(6.19)
for E < V0 then we do k2 = iκ2

T = |t|2 =
4k21κ

2
2

4k21κ
2
2 − (k21 − κ22) sin2 κ2a

= [1+
V 2
0

4E(V0 − E)
sin2 κ2a]−1 for E < V0

(6.20)
for E = V0 we have

T (E = V0) = |t|2 = [1 +
ma2V0

2~2
]−1 for E = V0 (6.21)

Notes:

• Classically for E < V0 we have no transmission (T = 0).
But in quantum mechanics approach the particles can tun-
nel through the barrie however the probability of transmission
may be small, figure6
• Classical for E > V0 we have T = 1. But in quantum mechanics

transmission coefficient has a peak of 1 when we have sin k2a =
0, figure 6.
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Figure 6. Transmission coefficient; Classical, QM

6.5.1. Not Constant barrier

In case of having a barrier which does not have a constant height as is
shown in figure 7, then we can imagine complete barriers subdivided

into many small sections of length dx and k(x) =
√

2m(V (x)−E)
~ .

Figure 7. Not a Square barrier
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6.6. Practical Examples

6.6.1. Field Emission Displays:

Concider figure 8. The screen can be controlled by controlling the
stream of electrons.

Figure 8. Array of emitting tips for flat panel display

The electric field and potential energy are related by equation 6.22

E =
−1

q

dV

dx
(6.22)

and electron energy diagram is shown in figure 9

Figure 9. Electron Energy Diagram

6.6.2. Minimum Gate Oxide Thickness in MOSFET

When the gate oxide is very thin, a current can flow from gate to source
or drain by electron tunneling through the gate oxide. This effect limits
the thickness of the gate oxide as processes are scaled, see figures 10 and
11. The same effect is of great use in electrically programmable logic
devices, such as EAROM (Electrically Alterable Read Only Memory).
By controlling the control-gate, source, and drain voltages, the very
thin tunnel oxide between the floating gate and the drain of the device
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Figure 10. mosfet structure

Figure 11. Electron Energy in substrate

is used to allow electrons to ”tunnel” to or from the floating gate to
turn the cell on or off respectively, see the structure shown in figure 12

Figure 12. Electron Energy in substrate

6.6.3. Cold fusion

We find that if deuterons can be brought close enough together they
will fuse.
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Figure 13. Cold Fusion


