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5.1. Quantum Well

To understand the behaviour of an electron quantum mechanically we
need to solve SCE for an appropriate potential. Previously, we looked
at a free electron now we will look at some simple cases that bring out
the crucial behaviour of wave-particle duality.

A large number of problems can be describe by simple potential
wells. These examples come from atomic physics and more recently
nano-technology.

We first consider an electron bounded to its atomic nucleus. For
simplicity we assume that the electron can move freely between two in-
finitely high potential barriers. The potential barriers do not allow the
electron to escape from this potential well (see the Figure 1). Because

"|i'.l.'
A

Electrom comdined
into this resion

V=0 V=00

Figure 1. Quantum Well

of the infinite potential barriers, the wavefunction v (z) vanishes out-
side the well, hence the domain (2 is given by

Q: 0<z<a (5.1)
For which we have the Schrodinger equation as:

B &) |y ypa) = Bo) (5.

" 2m da?
To represent the infinite barriers we apply the Dirichlet boundary con-
ditions as follows:

¥(0) =1(a) =0 (5.3)
i.e. we expect ¥(z) = 0 except for 0 < z < a (no chance of finding
electron outside box as V' = o0).
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Note: that in general the potential energy is a function
of the position of the particle and is a result of the forces
exerted by other charged particles but here for simplicity
we assume V. = 0.

Defining k£ = 4/ 2;;‘2E and replacing V (x) by 0, the Schrodinger equation

inside the well is as follows.
0*h(x)
0x?
which is the same as we had for the free electron and the solution is
therefore the same an oscillating wave.
The general solution to equation 5.4 is given by

Y(x) = A exp(jkz) + B exp(—jk) (5.5)

For the free electron we assumed that the wave was only going in the
~+ive x direction. Now we allow both directions.
Using equation 5.3 we have

WO0)=A+B=0 = B=-A (5.6)

+ky(z) =0 (5.4)

and
Y(a) = Aexp(ika) + B exp(—ika) =0
= Asin(ka) =0
(5.7)

This is very interesting condition as it has a set of solutions. There are
a infinite number of k that satisfy the equation as given by:

[2m
ﬁa:mr

h2 2
. n=1,2--- (5.8)

ka = nm

= F, =

2ma?
And so we have a set of solutions denoted by n which give different
electron energies and waver functions.

From previous lectures we have the normalization condition as:

+o0

() () de =1 (5.9)
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The amplitude of the wavefunction is obtained by satisfying the nor-
malization condition 5.9 as below:

fj;o 4A%sin’*(kx) dr =1
[0 4A% sin? (") dy = 1
A=/
() = \/g sin(%Xx) forn=1,2,--- (5.10)
™m
g ™ 5.11
! .1)

Note: Only certain values of k and certain energies E,
are allowed. This condition known as the “quantization
condition” is forced on the solution by setting W to zero
at the well edges! n is known as the quantum number or
quantum state the electron is in.

Table 1 shows a few examples of wavenumbers and the corresponding
set of wavefunction and energy values (eigenstates) which are illus-
trated in figure 2.

Table 1. sets of eigenstates

Level k Un E,

#n

1 ki = 7/a U = \/gsinﬂx/a Ey = W*7?/2ma®
2 ky = 27/a hy = \/%sin27rx/a Ey, = 4h*n?/2ma?
3 ks = m/a Yy = \/gsin?mx/a By = 9h*m?/2ma?

In the classical case the electron would travel back and forth be-
tween the walls and the probability density would therefore be equally
distributed along the whole length of the well. However, as can be
seen for QM the “electron” is unevenly distributed in the well and the
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Figure 2. Quantum Well eigenstates

distribution is determined by the “state” of the electron —i.e. what E

energy it has.
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5.2. Quantum Well with Finite barriers

Now lets take a slightly more realistic example with finite “walls”.
Suppose we have a potential energy as shown in figure 3. We have two
cases to consider 1) E' < Vj and 2) E >V The well is best defined as

4

Vi(x)
|
I
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 — Ve
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Figure 3. Potential energy for a QW with finite barriers

having three regions as in Fig. 4

Vo

Regionl | Region II Region III

I I
-Li2 L2

Figure 4. the three regions in a finite QW

5.2.1. Bound States
First we study the bound states which is the case with £ < V4.
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(a) —L/2 <x < L/2:
V(z) =0

ST _ g

2m  dx?

Y(z) = Acoskxr + Bsinkx

2mE
b=
(b) z < —L/2:
Viz) = Vo
h? d?
D | i) = Bu)
W(x) = Ce’™ + De *
B 2m(Vop — E)
7o h
(¢) o> L/2:
V(z) = Vo
h? d*y
BV | Viite) = Bola)

Y(r) = Ee 7 4+ Fe'*

oV = B)
7= n

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

The last two cases are very instructive. The solution to the SCE (a
wave equation) is a the sum of two (decaying/increasing) exponentials
as the Vj — E is negative not an oscillating function ( a sin or cosine).
This is referred to as an evanescent wave or non-propagating wave.

As the wavefunction must be finite everywhere even at x = +00 we

have

P(r) = Ce™ r<—L/2

P(r) = Ee* x> L/2

(5.21)

(5.22)
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At the boundaries, © = +L/2 the wavefunction and its derivatives must
be continuous which results in:

(a) v =—L/2
L L
A cos kE — BsinkE = Ce L2 (5.23)
: L L —yL/2
Aksmkg + Bk cos k§ = Cre (5.24)
(b) x =1L/2
L L
Acoskg + Bsink§ — Be L2 (5.25)
: L L —yL/2
—Aksmk‘E + Bk:cosks = —Fne (5.26)

The solution will give us a set of discrete k’s, E’s and ~’s, similar to
the infinite barrier condition.

Note: To find the unknown coefficients we will use the
normalization condition (see 5.5) and some math opera-
tions which you can work out.

The first few wave functions (corresponding to the lowest energy states)
of the finite potential well are illustrated in figure 5. As we see the
trail of the wavefunctions extend outside the well which is because of
tunneling. Having said that classically since £ < V{ the particle would
not pass the barrier. The corresponding probability densities for each
of the wavefunctions in figure 5 are shown in figure 6

These quantum states are similar to the bound ones found for the
infinite well. But, the electron is “leaking out” into the barrier. Very
strange as the electron energy is less than the barrier height. Energy is
not conserved! However, this turns out to be true for only very short
times! Usually, the electron is found in the well.
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Yu(x) forn=123.

A e -—--

Figure 5. First few wavefunction of a finite QW

| ¥, x)|? forn=123
st Ry

Figure 6. Probabilities of the wavefunctions in figure 5

5.2.2. Unbound States

In case of & > Vj, the electron is no longer bounded and we have:

11
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(a) —L/2<x < L/2:

V(z) =0
B & (x)

U(x) = AMT 4 BerIhe (5.28)

2mFE

Note that here we have continuos E’s and k’s.
(b) < —=L/2orxz>L/2:
Vir) =V
B & (x)
_ = F .

) | Vewla) = Bula) (530
Y(z) = Cet** 4 De~ike® (5.31)

2m(E —
py = VI Z 1) (5.32)

This is a similar to free electron case and so results in continuous F
and ky. However different values of energy gives us different continuous
functions as ks, see figure 7. We see that if the energy of the particle is
close to that of the potential well, the particle ”feels” the presence of
the well, however, as the particles energy increases £ > Vj, the effect
of the potential well on the particle becomes negligible and the particle
becomes completely free (unbound).
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qee(E”

Figure 7. Unbound eigenstates

In summary, the allowed energy levels for a finite potential well has
the following distribution as shown in figure 8.

@%ﬁ Eﬁlr:: :uuﬂ of w
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Figure 8. Energy levels in a finite QW

Note:As a general rule in any region with a potential
Vo, if E > Vi we have oscillatory solutions (complex ex-

ponential) whereas if E < Vi, we have evanescent (real
exponential) solutions.
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5.3. The Hydrogen Atom- Spherical Symmetry

A special and 3D case of the bound electron in a well is an atom. For
an isolated Hydrogen atom, has one electron bounded to its nucleus by
coulomb force as shown in figure 9. The potential energy is given by
equation 5.33.

Vi)
F Y i)

‘H“R .r/* Potential well

EE' hydrogen nuclens (proton)

Figure 9. Hydrogen model

Vir) = —¢ (5.33)
dmegr

Using equation 5.33 in Schrodinger equation we can analytically find

the eigenstates for the Hydrogen atom. Since the mathematics is com-

plicated we will only have the results in equations 5.34 and 5.35.
—moq* —13.6

W = S22 =5 e n=12"--- (534

2 — =1
o = \/(mao)?)(;n(nJrl)? e L2 (0)YM0,9)  (5.35)

where we have

e Principle quantum number: n
e Orbital quantum number: [ =
e Magnetic quantum number: m = -, —=[+1,---, 1 —1,1
e p = 2r/nay

e ap: Bohr radius

o L2 (p):  the laguerrer polynomials

Y™(0,¢):  spherical harmonic function

Table 2 shows few examples of the wavefunctions that describe the
chemical states (orbitals):
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(2,1,0)

(EXIXV)

(4,2,2)

5.4. Implications of Quantized states

Table 2. example orbitals

a"

>

1)

\
Ny

[CXXV)

15

Is

Because of the fact that the electron of an isolated atom can assume
only certain energy levels, it follows that the energies which are excited
or absorbed also posses only discrete values. The discrete E’s produce
spectral lines. if we have a transition from F, to FE,, then we will have

a light at a particular frequency with energy E, =

figure 10)

E, — E,. (see
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Ll

-3 4eV

-13.6eV.
Figure 10. Characteristic photon energy

Application of quantum (discrete) energy:

e Semiconductor, Photonics, Laser

e Memory storage by storing information as excited states in
molecules

e Input/Output signals using excitation and stimulated emission

e Quantum Computers; ground state= 0, 1, excited state= 1.
Use photons to switch states.

5.5. Appendix
Normalization the Wavefunction

As we said earlier the probability of finding the electron over all space
must be 1 so we have the normalization condition defined as below.

/ / / U.U*dr =1 dr = dzxdydz (5.36)

For the finite QW we have the wavefunctions in three regions as shown
in figure 4 and so the normalization condition will be as below.

9) —L/2 L/2 —o0
/ vaprdr = / Yraprdr + Yy dr + U aide =1
—o0 —00 —L/2 L/2
(5.37)



