## Final Exam

## Sample Final Exam

## ELEC-5801: High-Speed and Low-Power VLSI

Department of Electronics, Carleton University

| Instructor:      | Maitham                     | Shams          |    |                              | Exam D   | uration:  | 3 hours     |
|------------------|-----------------------------|----------------|----|------------------------------|----------|-----------|-------------|
| <b>Booklets:</b> | None                        |                |    |                              | Number o | of Pages: | 9 with this |
| Aids Allowed:    | Scientific                  | Calculator     |    | <b>Number of Students:</b> 7 |          | 7         |             |
|                  | Last Nam<br>First Nam<br>II | e:<br>e:<br>D: |    |                              |          |           |             |
|                  | 01                          | 02             | 03 | 04                           | 05       | Total     |             |

/15

/15

/20

/100

| Formula | and | Data |
|---------|-----|------|
|---------|-----|------|

$$I_n(\text{sat}) = 400 \frac{W}{L} (V_{GS} - V_{TN})^{1.30} \ \mu\text{A}$$

$$I_p(\text{sat}) = 150 \frac{W}{L} (V_{GS} - V_{TP})^{1.50} \ \mu\text{A}$$

$$V_{DD} = 1 \text{ V}$$

$$V_{TN} = 0.40 \text{ V}$$

$$V_{TP} = 0.35 \text{ V}$$

$$L_{\text{min}} = 90 \text{ nm}$$

$$t_{ox} = 25 \text{ nm}$$

$$\epsilon_{ox} = 3.9 \times 8.854 \times 10^{-14} \text{ F/cm}$$

/30

/20

# [1] True or False

## (30 marks, 0.5 each)

| 1.  | At 100 MHz, the power dissipation of a modern MCML circuit is lower than its conventional CMOS version.                  | □ True | □ False |
|-----|--------------------------------------------------------------------------------------------------------------------------|--------|---------|
| 2.  | In $\alpha$ -power law, $\alpha = 2$ for long channel devices.                                                           | □ True | □ False |
| 3.  | Dynamic CMOS circuits usually don't have short-circuit energy dissipation.                                               | □ True | □ False |
| 4.  | Abstraction is a powerful technique commonly applied in analog circuit design.                                           | □ True | □ False |
| 5.  | Dynamic circuits have to maintain a minimum clock frequency to avoid losing data.                                        | □ True | □ False |
| 6.  | Small voltage swing is a major factor for the superiority of MCML gates<br>in speed compared to conventional CMOS gates. | □ True | □ False |
| 7.  | An asynchronous circuit always consumes less energy than its synchronous counterpart.                                    | □ True | □ False |
| 8.  | In a multi- $V_T$ digital circuit, the critical path uses low- $V_T$ transistors.                                        | □ True | □ False |
| 9.  | When a static logic gate is not switching, there is always a path connecting the output to the power supply or ground.   | □ True | □ False |
| 10. | Progressive transistor sizing improves speed of a fabricated IC by 10% or more.                                          | □ True | □ False |
| 11. | Speed-independent circuits function correctly regardless of wire delays.                                                 | □ True | □ False |
| 12. | A disadvantage of dynamic CMOS circuits is that they produce glitches.                                                   | □ True | □ False |
| 13. | In a pseudo-NMOS logic gate, the lower the load resistance, the higher the nominal output low, $V_{OL}$ .                | □ True | □ False |
| 14. | Higher speed is always associated with higher power consumption.                                                         | □ True | □ False |
| 15. | A PTL circuit usually has a higher device count compared to it conventional CMOS counterpart.                            | □ True | □ False |
| 16. | Tree-like structures are generally less prone to glitches than chain-like structures.                                    | □ True | □ False |
| 17. | The input resistance of an ideal logic gate is zero.                                                                     | □ True | □ False |
| 18. | EMI is higher in an asynchronous circuit compared to its synchronous version.                                            | □ True | □ False |
| 19. | Pre-computation is a proven power-reduction technique for comparators.                                                   | □ True | □ False |
| 20. | A limitation of the basic domino CMOS circuits is that they can only implement non-inverting cascaded functions.         | □ True | □ False |
| 21. | pipelining a circuit reduces its latency.                                                                                | □ True | □ False |

2

| 22. | In conventional CMOS circuits all of the energy eventually goes to ground.                                                                 | □ True | □ False |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| 23. | The smaller the gate-oxide thickness, the lower the delay.                                                                                 | □ True | □ False |
| 24. | Electron mobility is a constant factor in modern CMOS IC circuits.                                                                         | □ True | □ False |
| 25. | DCVSL is a ratio-less CMOS logic style.                                                                                                    | □ True | □ False |
| 26. | Clock skew is becoming less of a problem by increasing integration density.                                                                | □ True | □ False |
| 27. | The overlap gate-source and gate-drain capacitances experience Miller Effect during switching.                                             | □ True | □ False |
| 28. | The goal of parallelism is to sacrifice area for reducing power consumption or increasing speed.                                           | □ True | □ False |
| 29. | The lower the slope of the input to a CMOS inverter, the higher the short-circuit energy dissipation.                                      | □ True | □ False |
| 30. | In deep saturation, the effective channel length is shorter than the physical distance between the source and drain of a MOSFET.           | □ True | □ False |
| 31. | The diffusion capacitances in a CMOS circuit may be ignored in calculating the delay, because the gate-oxide capacitances are much larger. | □ True | □ False |
| 32. | Leakage current through the gates of MOSFETS increases as the gate-oxide thickness reduces.                                                | □ True | □ False |
| 33. | Any MOSFET with a feature length below a micron is considered a short-channel device.                                                      | □ True | □ False |
| 34. | Driving a large load in one stage is faster than driving it through two stages.                                                            | □ True | □ False |
| 35. | An XOR gate is considered delay insensitive the way it is normally operated in synchronous circuits.                                       | □ True | □ False |
| 36. | In an 8-input conventional CMOS NAND gate, the NMOS transistor closest to the output usually has the highest $V_T$ .                       | □ True | □ False |
| 37. | In using multiple or dual supplies the designers attempt to equalize the delays through the different paths.                               | □ True | □ False |
| 38. | The maximum value of a reversed-biased diffusion capacitance is when the applied potential across it is closer to zero.                    | □ True | □ False |
| 39. | An <i>n</i> -input NAND gate has a lower logical effort than an <i>n</i> -input NOR gate.                                                  | □ True | □ False |
| 40. | In an ideal logic gate the low and high noise margins are both zero.                                                                       | □ True | □ False |

| Name | e & ID:                                                                                                                                                            |        | 4       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| 41.  | In DCVSL circuits, the rising delay is always larger than falling delay.                                                                                           | □ True | □ False |
| 42.  | Last-arriving inputs should be connected to the transistors attached to the power rails (i.e. GND and $V_{DD}$ ).                                                  | □ True | □ False |
| 43.  | A multiplier is usually more power consuming than several adders with the same input sizes.                                                                        | □ True | □ False |
| 44.  | The static operation of a conventional CMOS logic gate depends on its fan-out.                                                                                     | □ True | □ False |
| 45.  | Delay of N serially connected MOSFETs increases quadratically with N.                                                                                              | □ True | □ False |
| 46.  | CPL logic gates need a couple of PMOS transistors to produce full-swing outputs.                                                                                   | □ True | □ False |
| 47.  | A level-restorer is needed when a circuit using a higher $V_{DD}$ connects to a circuit with a lower $V_{DD}$ .                                                    | □ True | □ False |
| 48.  | When driving a very large capacitance it is better to use a tri-state buffer<br>with a single stack of transistors at the output rather than a double stacked one. | □ True | □ False |
| 49.  | Since MOSFET is a symmetric device, its source and drain terminals are identified by their relative voltage potentials.                                            | □ True | □ False |
| 50.  | Power dissipation remains almost constant in fixed-voltage technology scaling.                                                                                     | □ True | □ False |
| 51.  | In saturation mode, MOS current is totally independent of source-to-drain potential.                                                                               | □ True | □ False |
| 52.  | Dynamic power dissipation of MCML gates increases linearly with frequency.                                                                                         | □ True | □ False |
| 53.  | Scaling both $V_{DD}$ and $V_T$ doesn't affect static power dissipation.                                                                                           | □ True | □ False |
| 54.  | Short-channel devices have wider saturation region (in I-V curve) compared to long-channel devices operating within the same permissible voltage range.            | □ True | □ False |
| 55.  | Charge-sharing is more of a problem in a dynamic CMOS gate with a large output capacitance compared to its internal node capacitances.                             | □ True | □ False |
| 56.  | Lower power dissipation is a definitive advantage of asynchronous circuits.                                                                                        | □ True | □ False |
| 57.  | If used for short-channel devices, Shockley's square law over-estimates the current .                                                                              | □ True | □ False |
| 58.  | By enlarging the sizes of the logic gates along a path, the overall delay decreases.                                                                               | □ True | □ False |
| 59.  | It is impossible to implement a non-inverting function of the the primary inputs in one stage using conventional CMOS style.                                       | □ True | □ False |
| 60.  | Reducing the threshold voltage in digital CMOS circuits improves speed and reduces static power dissipation.                                                       | □ True | □ False |

#### [2] General Delay and Power Calculations

- 1. A two-input NAND gate in 90 nm technology that drives a 100 fF load in 50 ps, with equal rising and falling delays.
  - (a) Design this logic gate, i.e. find transistor sizes.

- (b) What is the maximum frequency of operation while maintaining a full-swing output?
- (c) What is the capacitive load at each input of this logic gate?
- 2. A CMOS chip fabricated in 90 nm technology operates at a maximum frequency of 3 GHz and dissipates 5 w with  $V_{DD} = 1$  V. The very same chip is then scaled-down and fabricated in 65 nm technology with  $V_{DD} = 0.9$  V.
  - (a) What is the maximum frequency of operation, approximately?
  - (b) What is the power dissipation, approximately?

#### (20 marks)

## [3] CMOS Logic Styles

Consider the following Boolean function  $Z = \overline{AB + DE + C(AE + DB)}$ .

1. Implement in Conventional CMOS logic style with minimum number of transistors.

2. Implement in PTL with full-swing output.

#### [4] Delay Optimization (Logical Effort)

A 6-input OR gate receives its input from an inverter and drives a capacitive load. The ratio of the output load to the input capacitance of the inverter is H. Which of the following two configurations for implementing this logic gate is better in terms of delay.

1. Input Inverter + (6-input NOR + Inverter) + Load

2. Input Inverter + (3-input NOR + 2-input NAND) + Load

### (15 marks)

#### **[5]** Power Optimization (Switching Activity)

# John wants to implement the function in the next pages with the given input probabilities. Mike sees the circuit and tells mike that you have wired the gates such that it consumes the highest possible energy. Then Mike shows John how to do the wiring to minimize the energy consumption. On the figures show how John connected the inputs and the gates, and how Mike fixed it. Next calculate the energy savings by using Mike's method compared to John's by filling the table and the corresponding box. Finally write what general rule or rules Mike used to achieve the energy savings. Note that all internal nodes and the output have the same load capacitance and all other factors are ignorable. Use this page for your rough work.

#### (20 marks)



| Node | $P_0$ | Vorst Ca<br>$P_1$ | $\alpha^{\mathrm{se}}$ | $P_0^{E}$ | Best Cas $P_1$ | $\alpha$ |
|------|-------|-------------------|------------------------|-----------|----------------|----------|
| X1   |       |                   |                        |           |                |          |
| X2   |       |                   |                        |           |                |          |
| Х3   |       |                   |                        |           |                |          |
| X4   |       |                   |                        |           |                |          |
| Z    |       |                   |                        |           |                |          |

$$E_{Saved} = \frac{E_{Best} - E_{Worst}}{E_{Worst}} =$$

What is(are) the rule(s) to be used for lowest energy dissipation?