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Avoiding Unwanted Latches:    Rule 2

Any input change must recalculate the outputs. 
  If no recalculation is done, the old values must be remembered.

 The synthesizer will insert latches to do this.

Things to Include
Right-hand side variables: 

Except variables both calculated and used in the procedure. 
       always  
         begin
         x=a; y=b; z=c;
         w=x+y;      

         end

Branch controlling variables

The controlling variable for every if and case.
   always @(r or s)  
         begin
         if (r)           begin    x=2; y=0; z=0;  end
             elseif (s)   begin    x=0; y=3; z=0;  end
                  else    begin    x=0; y=0; z=4;  end
        end

All inputs used in the procedure must appear in the trigger list

@(a or b or c or x or y)

Slide 23
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 Writing Procedural Code Without Latches

Writing Procedural Code Without Latches II
Eliminating Latches

Let the inputs to a combinational logic block be held by latches, 
flip flops, or by input switches. Then the outputs only change if 
an input(s) change. 

Moreover variables thought of as control variables are just as 
much inputs as those thought of as data.

Re-evaluation must be done if any input changes

The trigger list (event list) controls when the procedure is 
evaluated.  This must contain all input variables.

Inputs

Data Inputs: 
All inputs which appear on the right hand side in any operation.

However if they appear on both the right and left sides of expression, they are not included because the variable 
changing inside the loop would retrigger the loop. This could cause infinite zero-delay loops. It is hard to think 
of a legitimate synthesizable concept using a procedure that retriggers itself.

Control inputs
Any variable checked by the control of an  if or case statement.

Other procedural operators do not cause branches or are not synthesizable.

11.• PROBLEM  What latches, if any will be generated?
always@ (z or x)

if (z==1) w=x; else w=~v;

More problems on next page.

Inputs
 Stored

P

Q

Combinational

Control

Comment on Slide 23
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Synthesis of Flip Flops and Registers

always @  Generates Flip-flops, Latches, or Combinational Logic

Flip-Flops
Positive-Edge Flip-Flops

always
 @(posedge Clk)

• This statement that tells the synthesizer
 to generate flip flops.

• There is a negedge also

Both-Edge Trigger

always
 @(C or D)

• This will give combinational logic.

If all outputs are re-evaluated when
 any input changes.

• Otherwise it will generate a latch(es)

Rising-edge triggered flip-flop

wir D, Clk;
reg Q;

always @(posedge Clk)
begin

Q <= D;
end

// On positive edge Clk, D transfers to Q
// Otherwise Q holds its previous value,
// even  if  D  changes.

Comment on Slide 1Slide 24
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Synthesis of Flip-flops Writing Procedural Code Without Latches

Comment on Slide 24

Synthesis of Flip-flops

always @(posedge clk)
The synthesizer interprets this to mean flip flop(s)

This command, and only this command (or always@(negedge clk) ) gives a flip-flop or a register of flip-flops.

12.• MORE PROBLEMS ON GENERATING UNWANTED LATCHES

Are any signals latched in the following code? Which ones?

a) always@(aziz or bob or chu)
case (aziz)

2'b00 : z=bob;

2'b01 : z=chu;

2'b11 : y=bob & chu;
2'b10 : y=bob | chu;

endcase

b) always @(a or b or c) begin
if (c) begin x=a; y=b; end  else y=b+x;

x=3'd6; //  Never mind that this makes x=a redundant, the point is do we generate latches.
end
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Finite State Machines 
A State Machine Is Defined By Its Next-state Table. 

State Graph and Next-State Table 

b+

S0 S1

S2S3

x
x

x
x

x
x

x
xS7d

A

c+

a+

B

C

x

1D
C1

1D
C1

1D
C1

                      State Table
State Next State     a+b+c+ OUTPUT
ABC x=0 x=1 z

S0= 0 0 0 S0= 0 S1= 1 0

S1= 0 0 1 S2= 2 S3= 3 0

S3=011 S7= 7 S2= 2 0

S2= 0 1 0 S7= 7 S0= 0 0

S7=111 S0= 0 S0= 0 1

Default S0= 0 S0= 0 0

a+=ACx 
 b+=ACx+BC  
  c+=Ax+ABx

z=ABC

z

Tell long story about fail-safe here.

State Graph

Circuit
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Finite-State Machines (FSMs) Writing Procedural Code Without Latches

Comment on Slide 25

Finite-State Machines (FSMs)
This is a model for many circuits. For example counters are FSMs with no inputs.

State

The  state is the collective contents of all the flip-flops (latches).

 A state machine is described by 

a. Its states and a description of their physical meaning.

b. The way the machine makes transitions to the next state.
These must be based on the present state and the present inputs only.

c. The outputs from each state. 

Outputs

a. Moore Outputs: These may depend only on the state flip-flops.
Moore machines are easier to design and can give glitch free outputs. 

b.  Mealy outputs depend on the flip-flops and/or on the inputs  directly.
Mealy machines usually have fewer states and thus are often smaller. 
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Standard Form for a Verilog FSM

 

;

// State Machine description
//  NEXT STATE CALCULATIONS

// state flip-flops
reg [2:0] state, nxt_st;

// state definitions
parameter reset=0, S1=1, S2=2, S3=3, ...

// Separate the registers from
//  the next state calculations.

// REGISTER DEFINITION
always @(posedge clk) 
 begin

state <= next_state
end

//  OUTPUT CALCULATIONS

output= f(state, inputs)

special equals
coming up soon

always @(state or . . . )
begin

end

next_state = ...

Slide 26
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Finite-State Machines (FSMs) Standard Form for FSMs

Comment on Slide 26

Standard Form for FSMs
Break FSMs into four blocks

State Definitions

The states must always be of type reg.

The states are normally given meaningful names rather than numbers. There are two common methods:

1. Use parameters as shown on the slide.

2. Use macros (`define) to do textual substitution when compiling. Synopsys suggests you use `define  for global 
names and  parameters  for local names. 

`define reset 0  // Use one `define per line and no semicolon.
`define S1 1
`define S2 2
  . . .
 if (x) next_state =`S1; else next_state = `S0; //Use a back quote whenever a macro is used.

Next State Calculations

Registers

Outputs

Do It My Way
All Verilog programmers expect finite state machines to be constructed this way. If you mix up these four parts, 
not only will you have much more trouble debugging your code, but any programmer reading your code will 
wonder who taught you!
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Code Your FSMs This Way

module FSMzy(clk, x, z) 
input clk, x;    output z;

// state flip-flops 
reg [2:0] state, nxt_st;

// state definition
parameter S0=0, S1=1, S2=2, S3=3, S7=7;

// State Machine description using case
//  NEXT STATE CALCULATIONS

// Separate the flip flops from 
// the next state calculations.

// REGISTER DEFINITION
always @(posedge clk)begin
state <= nxt_st;
end

//  OUTPUT CALCULATIONS
assign z=(state = = S7);

endmodule

always @(state or x)
begin
case (state)
S0: if (x) nxt_st = S1;

else nxt_st = S0;
S1: if (x) nxt_st = S3;

else nxt_st = S2;
S2: if (x) nxt_st = S0;

else nxt_st = S7;
S3: if (x) nxt_st = S2;

else nxt_st = S7;
S7:  nxt_st = S0;
default:    nxt_st = S0;
endcase

end
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Finite-State Machines (FSMs) Generic Code for FSMs

Comment on Slide 27

Generic Code for FSMs
Never never mix the next state calculations in with the flip flop definitions.

Next State Calculations

It is very common to use a combination of case and if for this block.
Note the default case handles all the state values not specifically mentioned in the case. If this were not put in 
then cases for state = 4, 5 and 6 would have to be explicitly mentioned or latches would be generated.

Output Calculations

Here they were so simple one assign statement could easily be used. No need to write an always block.
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Avoiding Common Verilog Errors in FSMs

• Cover every possible branch of every  if or  case  to avoid latches.

Put default values at the start to use if nothing overwrites them.
 or put an  else  with every  if.

always @( state or A or B or C.......);
begin

next_state = S1;     // Use this as a default value;

if (A | B&C)  next_state = S3;
if ((~A)&(~B)&C)  next_state=S2;

  . . .

• State must be a trigger variable
 in the procedure to update next_state.

always @( state or A or B or .......);
begin

case (state)  

• A variable on the left side of the equal sign must not be in the trigger list
or the machine may go into an infinite loop.

always @( state or A or B or C.......);
begin

A = B+C;  // A will immediately retrigger the always procedure.

S1
A&B&C

A|B&C S3

S2

#00

A
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Finite-State Machines (FSMs) Generic Code for FSMs

Comment on Slide 28

Avoiding Common Errors in FSMs

Cover Every Possible Branch

The alternative to writing over a default value is making the defaults appear in every else.

always @( state or A or B or C.......);
begin

if (A | B&C)      next_state = S3; else next_state = S1
if ((~A)&(~B)&C)  next_state = S1; else next_state = S1;
. . .

State must be a trigger variable

Also any variables in the conditions for any if must be in the trigger list.

always @( state or A or B or C.......);
begin

if (A | B&C) next_state = S3;
if ((state == 3'b011) & C) next_state ...

13.• PROBLEM

parameter s1=1, s2=2, s0=0, s3=3;
always @(state or x or y)

case(state)
s1:  if (x&y) nxtstate=s2; elseif (x|y) nxtstate=s0;

. . .

What is wrong with the above.
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Avoiding Common Verilog Errors in FSMs

• End all case statements with the  default  case whether you need it or not.

case (state)

. . . 

default:  next_state = reset;
endcase

• Do not forget the self loops in your state graph

case (state)
reset: if (a|b&c) next_state=S1;

else  if (c&d) next_state=S2;
else  next_state = reset;   //  and don’t  forget 

it!

• Always partition the FSM into:
 - a state definition part
 - a next-state calculation procedure
 - a register procedure.  // This is the only part that should have a clock.
 - an output calculation part

• Using “=” instead of “<=” in the register procedure

always @ (posedge clk)
Q <= D;

reset
c&d

a|b&c S1

S2
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Finite-State Machines (FSMs) Avoiding Common Errors in FSMs

Comment on Slide 29

Avoiding Common Errors in FSMs

End all case statements with the default case
Do not confuse the “default case,” which is part of the Verilog language, with the “default values” which are 
often used at the start of an always procedure. See Slide 28

The default case takes care of any cases you forgot and removes a major source of erroneous latches. Your code 
may be such that some cases never occur. Verilog is unlikely to be able to figure that out and will put in latches 
anyway unless you use the default.

Always partition the FSM
Even if you are so smart you can mix up the parts and make it work, the person who tries to maintain your code 
will be thoroughly confused.

Using “=” instead of “<=” in the register procedure
The “<=” is the “nonblocking” transfer symbol. (See Slide 41) Not using it will lead to obscure errors when:
1)   The same variable appears on both the right and left sides in a procedure.

        Q <= Q <<1   // As in this shift register
2) There are several  always @ (posedge clk) registers in the design.

In this case not using the “<=” symbol can lead to races, which are discussed later.
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 Simpler FSMs

Counters
Counters are a simple FSM machine.

Separation of the flip-flop generation code and the next-state code is not worth the effort.

In any @(posedge clk) procedure, use the nonblocking “<=” assignment operator.
(see next slide)

Binary Counter
Using toggle flip-flops

1T

C1

CLK

1T

C1

1T

C1

1T

C1

count[3]

TC

count[2]
count[1]

count[0]

Slide 30

reg  [3:0]  count;   wire TC;
// TC=Terminal count (Carry out)

always @(posedge clk or posedge rset)
begin

if (rset) count <= 0;
else count <= count+1;

end
assign TC = & count; // Reduction operator
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Finite-State Machines (FSMs) Very Simple FSMs
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Very Simple FSMs
When the Next State Calculation is One Simple Line

For very simple next state calculations we break the rule about separating the next state calculations from the 
registers.

14.• PROBLEM

a. Alternate counter code. Will this synthesize?1

always @(posedge clk or posedge rset)
begin

count <= count+1;
if (rset) count <= 0;

end

b. What does this code segment do?

reg [7:0] numb;

always @(posedge clk or posedge rset)
begin

if (du) numb = numb + 8'hff;

    else numb = numb + 1;
if (rset) numb <= 0;

end 

1. a) From what you know now, it would. Check out  Slide 38 to see the problem.    b)Check out 2's compliment numbers.
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Very Simple FSMs

 Shift Registers

The operator “<< N”  shifts left N bits.
The operator “>>N”  shifts right N bits.

Zeros are shifted in at the ends.

The Nonblocking assignment operator “<=”

For variables on the right of “<=” ( Q here) are grabbed as the procedure is triggered.
These old values are used for calculating the lefthand side.

reg  [3:0]  Q;
always @(posedge clk or posedge rset)

begin
if (rset) Q <= 0;
else begin

 Q   <= Q << 1; // Left shift 1
Q[0] <= Q[3];  // Nonblocking:

 // The old Q[3] is sent to Q[0].
 //  Not the revised Q[3] from the previous line.

end
   end

1D

C1

CLK

1D

C1

1D

C1

1D

C1

Q[0]Q[1]Q[2]Q[3]

Shift register
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Finite-State Machines (FSMs) Simple FSMs (cont)

Simple FSMs (cont)

We break the separation rule again.

15.• PROBLEM

In a right shift with two’s complement numbers, the most significant bit replicates itself during the shift.
Thus   10101 shifted right once becomes 11010. This is called sign extension.

Revise the right shift code below to give the correct answer for two’s complement numbers.

reg [7:0] Q 

always @(posedge clk or posedge rset)
begin

if (rset) Q <= 0;
Q <= Q >> 1;

end

Comment on Slide 31
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Procedural Synthesis
Logic Inference

Deciding what logic to synthesize from code is called inference.
always @  can infer:

 flip-flops,
 latches, and/or
 combinational logic.

Flop-Flops
always @(posedge Clk)

• This is the statement that tells the logic compiler to generate flip flops.

Latches and Combinational
always @(C or D)

• This may generate a latch.
It may give just combinational logic.

Combinational

• If any input change causes a recalculation of all outputs.

Latches

• For any output which is not recalculated for all possible input changes. 
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Logic Inference Generating Logic From Procedures

Logic Inference

Generating Logic From Procedures
A major concern is that synthesized logic and simulation both yield the same result. This is certainly not always 
true. Three examples that sometimes do not match are:

1.  One has an incomplete trigger list but does not generate a latch. See Comment on Slide 33.

2. The use of functions which never infer latches.See Slide 35.

3. Assigning the same variable in two different procedures. See Slide 45.

Comment on Slide 32
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Combinational Inference

• Used to allow procedural code (if, for, case, . . ) in combinational logic.

• Should include all inputs in trigger list.

Result of Synthesizing Poor Code
Bad Combinational Gate

 reg Y;
always @(A or B)

Y = A|(B&C);
. . . 

Good Combinational Gate

. . . 
always @(A or B or C)

Y = A|(B&C);

. . . 

For the Bad gate

• Simulator:
C changes are only noted when triggered by a 
change in A or B. 

• Compiler:
Generated an AND-OR gate

• SNAWS
Simulation may Not Agree With Synthesis

for the Good Gate

• Including all variables in the trigger list
 removed all problems.

B
A

C

Y

B
A

C

Y
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Combinational Inference Incomplete Trigger Lists

Incomplete Trigger Lists
What happens

The Design Compiler from Synopsys generated an AND-OR gate here as specified. My theory is that because 
the gate was so explicitly expressed it decided to generate it without the latch.

Other synthesizers might put in latches.

One synthesis engine, no longer available, made a logic block which returned a constant Y=0.

Moral
Put all the input variable in the trigger list unless you are trying to build latches.
Input variables are:

all variables on the right-hand side of the equal sign,
all control variables for if and case.

Comment on Slide 33
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Latch Inference

Inserting Latches With or Without Your Asking

Latches From IFs
Latch Inference from if

reg Q;
always @(Clk or D)

 begin
if (Clk) Q <= D;

end

No Latch Inference from if

reg Z;
always @(C or D)

 begin
Z<=1’b0; //Initialize
if (Clk) Z <= D;

end

There is no else 
HDLs infer no  else  as “hold the 
old value.”

Here a latch was wanted.

Often the else is ignored through 
ignorance and generates a latch.

1D

C1

D
Clk

Q

There is an effective else 
Either use an  else.
or initialize before the if.

Then no latch is assumed.

always @(C or D)
 begin

if (C==1) Z <= D;
else Z <= 0; //Used 

else

D

Clk Z
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Combinational Inference Incomplete Trigger Lists

Latch Insertion in Combinational Ifs

• Latches are inserted if the else branch is not explicitly stated.
This is a very common error.

• The easy way to make sure all else cases are covered is to assign a default value to all outputs at the 
start of the procedure. Then use the if  statements to overwrite it.

Comment on Slide 34
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Functions

Functions Never Infer Latches

No Latch Inference from if
module nolatch(Z,D,C);

input D,C;
output Z; reg Z;

always @(C or D)

 begin
Z=and_func(C,D);

end

function and_func;

input D,C;
reg Z;

begin
if (C==1) Z = D;
// No else

and_func=Z;
end

endfunction

endmodule

Functions

• One or more inputs.

• One output;
may be a concatenation of stuff.

• Functions forget everything between calls.
Hence latches are not generated.

• Functions generate only combinational logic.

But no clear principle says what takes the 
place of inferred latches.

• Avoid latch-inferring inferences.

• Functions contain no timing control, delay 
or event checking statements.

• Functions must be contained within a 
module. Their argument passing is too 
weak to go outside.

• Functions can call functions.
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Combinational Inference Functions Never Infer Latches

Functions Never Infer Latches
An incomplete specification

The lack of an else leaves two squares in the 
Karnaugh map undefined.

The possible combinatorial alternatives are:-

  Z=C·D,   Z=C⊕D, Z=D + C,  or Z=D.

The and_function shown was sent through the Design Compiler, and it generated an AND gate.

It did not generate the simplest logic treating the unspecified cases as don’t cares. That would give  Z=D.
It did treat the unspecified cases as zero which gives Z=C·D.

Functions subject to SNAWS1 

Until a definite principle is generally known, assume anything may come out of the unspecified case.

Use functions only to save writing

A function can be used to define a block of code which will be repeated. 

That is clearer and shorter than typing multiple detailed copies.

Tasks

Task are like functions but can contain multiple outputs and timing information, but not @(posedge clk). Tasks 
are not treated in these notes or by most synthesizers.

1. Simulation does Not Agree With Synthesis

C
D

0

1

0 1

0 1 0 1 0 1 0 1 0 1

0 110 0 1 10

C·D C⊕D D + C Z=D

unspecified
two squares The one

chosen
Minimal

logic
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Latch Inference (Cont)
Latches Inferred From Non-full Case

Latch Inference from case

// decimal-decoder

wir [3,0] in;
reg [10:1] Y; 

always @(in)
 case(in)

4’h1: Y=0000000001;
4’h2: Y=0000000010;
4’h3: Y=0000000100;
4’h4: Y=0000001000;
4’h5: Y=0000010000;
4’h6: Y=0000100000;
4’h7: Y=0001000000;
4’h8: Y=0010000000;
4’h9: Y=0100000000;
4’ha: Y=1000000000;
endcase

These are undefined cases

4’h0: Z=0000000000;
4’hb: Z=0000000000;
4’hc: Z=0000000000;
4’hd: Z=0000000000;
4’he: Z=0000000000;
4’hf: Z=0000000000;

If one occurs Z will stay at its 
previous values.
Thus synthesis will infer 10 latches.

To avoid latches

Either include all cases,

or equivalently use

. . . .
4’h9: Y=0100000000;
4’ha: Y=1000000000;

 default: Y=0000000000;
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Combinational Inference Latches Generated When Case is Not Full

Latches Generated When Case is Not Full
Full Case

A full case is when an output is specified for all 2N cases. Where N is the number of bits in the case control.

If the case is not full, latches will be generated, even the unspecified cases can never happen.

16.• PROBLEM

Suggest another method of avoiding latches in a non-full case without using default.
Hint, put in a value that will be overwritten. 

Comment on Slide 36
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Flip-Flop Inference
Flip-Flops

Positive-Edge Flip-Flops

wir D, Clk;
reg Q;
always @(posedge Clk)

Q <= D;

Negative-edge trigger 

always @(negedge C)

If a negative edge ff in library fine.
If not check what happens,

Both in one design

Are you sure you want to do this?

Group in separate levels of hierarchy to 
keep timing analysis simple.

Will your test methods cover having 
both at once? 

Automatically inserted scan has to be 
coerced!

1D

C1

1D

C1

1D

C1

1D

C1

1D

C1
1D

C1Clk

D Q
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Flip-Flop Inference
Negative Edge Trigger

Many libraries do not have falling-edge triggered flip-flop. The synthesizer may then insert an inverter in the 
clock line. Unless the circuit is all falling edge triggered, this will cause clock skew, and the synthesizer will 
then insert inverters in the data lines to fix hold time violations.

Scan Testing

Scan testing is a very common test system.  The flip flops all have muxs connected to their inputs. When Test/
Run = 0 the circuit runs normally. When Test/Run = 1, the flip-flops are all connected as a shift register. The 
shift register makes it very easy to set the flip-flops to any values. Then Test/Run is set to 0 to inject these values 
into the logic and perform a test on the logic.

If some of the flip-flops are falling edge triggered, then one needs two scan chains (shift registers) and the tests 
going between the chains are at best difficult for present test generation software. 

Why Mix Clock Edges

A few circuits, like RAMbus, use both clock edges. Conversion from these inputs could use one or two opposite 
edge flip-flops although it is simpler to use latches. Other uses, such as eliminating hold time violations in shift 
registers, usually have better fixes. 

D 0

1

Scan testable circuit

1D

C1
D 0

1
1D

C1

Scan_In

D 0

1

Test/Run(L)

Clk

1D

C1logic
logic logic

Inputs

Outputs
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Flip-Flops With Asynchronous Reset

Synthesis is Fussy
Flip-Flop With Asynchronous Reset

wir D, Clk, Rst;
reg Q;

always @(posedge Clk
 or posedge Rst)

begin
if (Rst) Q<=0;
else Q <= D;

end

If the flip flop resets when high

- Use negedge
- Use ( ! Rst_n)  in the if condition. 

always @(posedge Clk
 or negedge Rst-n)

begin
if (!Rst_n) Q<=0;
else Q <= D;

This Format Must Be Followed 

• Reset and Clk are single-bit variables

• always @(---edge Clk) or ---edge 
Rst)
if (Rst) . . .
else

//what happens on active clk edge
endif

• A second reset must go in an else if

• if immediately follows:
 always @(. . .) begin

• Else automatically assumes it will only be 
done on a positive(neg) Clk edge.

• Condition is restricted to:
if (Rst)
if (~Rst_n)
if (!Rst_n)
if (Rst == 1'b1)
if (Rst_n == 1'b0)
if (R[1]) is not allowed.
if (R >(2-1)) is not allowed.
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Flip-Flops With Asynchronous Reset

Synthesis assumes that anything with @( posedge . . . ) is a flip flop and does not leave any freedom for creative 
coding.

17.• PROBLEM

always @(posedge clk or posedge rst or posedge set)

if (rst&(~set)) state<=start;

elseif (set) state=4'hf;
else begin

state<=nxtstate;
end

What is wrong with the above for synthesis?
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Flip-Flops With Synchronous Reset

Easier than asynchronous

Typical Synch Reset Code

reg Q;

always @(posedge Clk)
begin
if (Rst) Q<=0;
else Q <= D;

end

Much Less Rigid Format

• Leave off the  or posedge Rst.

• The if - else could be replaced by:

Q<= (!R)&D;

Synchronous resets are easy, but-

They are not as good as asynchronous resets.

1. They have setup and hold times

2. Be careful using them for “power up” reset.

a. The reset signal may violate the setup
   time.

b. Machine will end up half in the reset 
state, and half in state one.

3. If clock dividers are reset,
 the flip flops they feed may never see
 the reset.
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Flip-Flops with Synchronous Reset

These have much more freedom for coding but are less useful.

Awkward properties of resets

When applying a synchronous reset, one must be sure that all the flip flops to be rest are supplied with at 
least one active clock edge during reset. If some flip flops are supplied from a clock divider, and the flip flops in 
the divider are reset, then divided clock will never appear during reset. This is a disadvantage of synchronous 
reset.

Asynchronous reset is like any other asynchronous signal. When it changes on the clock edge, some flip 
flops will get the old value and some the new. This means some of the flip flops will stay in reset another cycle, 
and the others will come out of reset now. To avoid this one must synchronize the reset signal, that is pass it 
through a D flip flop before applying it to the other flip flops.

In general the best reset is applied asynchronously and removed synchronously. However the 
synchronization is done to the reset signal. The individual flip flops still use an asynchronous reset.
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Minimizing Flip-Flops

Do Not Declare Extra Registers Inside An @(posedge ---) Procedure

reg [2:0] count
reg andy, ory; ;

wire andy, ory 

Too much inside @(posedge ---)

• andy and ory do not need storage.
Storing count is enough.

• Move them outside into combinational 
logic.

• The upper square will generate 5 ff,
the lower square 3 ff.

always @(posedge Clk or posedge R)
begin

if (R) count=0;
else 

begin
count=count+1;
andy= & count;
ory = | count;
end

1D

C1

1D

C1

1D

C1
1D
C1 1D

C1

]always @(posedge Clk or posedge R)
if (R) count=0;
elsecount=count+1;

assign andy= & count;
assign ory = | count;

1D
C1

1D
C1 1D

C1
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Minimizing Flip-Flops
The concept is very simple. Partition your finite state machines and do not include outputs in the block which is 
only supposed to contain registers.

18.• PROBLEM

What would you have done differently if you had written the code below.1

always @(posedge clk or posedge rst)

if (rst) state<=start;
else begin

state<=nxtstate;
nxtstate= state & (x^y);

end

1. Mixing “=” and “<=” won’t synthesize. nxtstate will be stored when it should not be.   
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Blocking or Nonblocking
Using  “=”  or   “<=”

Blocking “=”

Blocking assignment is like C code. 

The next assignment waits (is blocked) until the present one is finished.

x= A + B;
z = x + D;  // z will use the new x value

Nonblocking  “<=”

Nonblocking is like flip flops.

The inputs are grabbed and held at the time the procedure is triggered.
All the assignments use these held values.

always @(posedge clk)
x <= A + B;
z = x + D; // z will use the old value x had as the clk changed

Rule For Using “=” and “<=”

Use “=” for combinational logic.
Use “<=” for registers, latches and flip flops.
Don’t mix them in one procedure.
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Blocking and Nonblocking

Nonblocking

In synthesis nonblocking will act as though all right-hand variables were sampled on procedure entry

Even for variables calculated within the procedure.

  Example

always @(a or b or c)
b<=a;
if (b)   // will be the old b 

Blocking

Blocking means calculations for the next statement are blocked until the present statement is completed.

initial begin
#1 e=2;
#1 b=1;   // completed at t=2
#1 b<=0 // completed at t=3. A previous blocking statement delays both blocking and nonblocking.
     e<=b; // completed at t=3; the preceding statement is nonblocking so this grabbed the old b=1.
     f=e;   // completed at t=3, using the old e=2. It did not wait for e<=b to complete.

Rule for Synthesizable Procedures

     Use blocking “=” for all combinational logic.
Allows assignments to depend on previous assignments like C code does. 

Use nonblocking “<=” for flip-flops and registers.
Blocking behaves like D-flip-flops, transferring all data simultaneously.

Use nonblocking after always@(posedge clk) in synchronous test benches.

Comment on Slide 41



Combinational Inference Blocking and Nonblocking (Example)

 Printed;  13/01/01 Department of Electronics, Carleton University
Modified; January 13, 2001 © John Knight Vrlg  p. 83

Blocking and Nonblocking (Example)

Shift Registers

wir Clk, X;
reg Z,Y;

The Nonblocking Assignment “<=”

• This is like a real flip-flop.
On the clock edge,
   the old outputs are grabbed and used
   as the right-hand side inputs. 

• The outputs are all revised based on 
these grabbed inputs.

The Blocking Assignment “=”

• Like a C++ program.

• Statements at the top can change 
inputs beneath them.

You Can’t Use Both

• Verilog for simulation lets you use a 
reasonable mix of “=” and “<=.”

• Synthesizers will not allow both in one 
block.

always @(posedge Clk)
begin
Z=Y; Y=X;
end

1D
C1

1D
C1

Z Y X

always @(posedge Clk)
begin
Y=X; Z=Y;
end

1D
C1

1D
C1

Z Y X

But Y is now X

always @(posedge Clk)
begin
Z<=Y; Y<=X;
end

1D

C1

1D
C1

Z Y X

always @(posedge Clk)
begin
Y<=X; Z<=Y;
end

1D
C1

1D
C1

Z Y X
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Blocking and Nonblocking

Top Figure

Normal shift register 

Z=Y;  // Z get old Y

Y=X;  //Y gets input X

Next Figure Down

Y=X; // Y gets input
 Z=Y; // In C this would also make Z=X. So does it here.

Bottom Two Figures

Here the values of Y and X are saved when the procedure is entered. 
Changing Y on the left (output) side does not change it on the input side.
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Races From Blocking “=” Assignments

Parallel Procedures
Blocking assignments follow order of 
statements

Parallel procedures have no order.

blocking

always @(posedge clk)
begin
a = b;
end

always @(posedge clk)
begin
b = a;
end

nonblocking

always @(posedge clk)
begin
a <= b;
end

always @(posedge clk)
b <= a;
end

Parallel procedures

blocking

• With Blocking both start at same 
time.

• a could transfer to b first.
b could transfer to a first.

nonblocking

• This is two parallel flip-flops

• Both clocked at same time.

Think: next-state <= previous state
a+ <= b;

b+ <= a;
1D

C1

1D

C1

b+

a+

b

a
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Multiple Assignments 
If both statements are in the same procedure, the En2 would replace the En1 result in zero time. In synthesis this 
would mean the En2 result would take priority over En1. 
This type of coding is common for synthesis.

always @(posedge Clk)
begin

if (En1) Q=D1; // An enabled flip flop
if (En2) Q=D2;

end

It should not matter whether the assignments are blocking or nonblocking.

If delays are put on the statements simulation could give a glitch.

always @(posedge Clk)
begin

if (En1) #2 Q<=D1;
if (En2) #3 Q<=D2;

end

19.• PROBLEM     What happens if:1

 always @(posedge Clk)
begin if (En1) Q=D1;
end

 always @(posedge Clk)
begin if (~En1) Q=D2;
end

1. This is a poor way to code. It should work for simulation since the two Qs are never activated at once. Synthesis might do anything.
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